Elementární křivky a plochy

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Elementární křivky a plochy"

Transkript

1 Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin (resp. jejich podmnožin). V této části rozšíříme množinu studovaných objektů i na nelineární křivky a plochy. Objekty a množiny objektů. Kromě popisu geometrických objektů pomocí souřadnic máme k dispozici ještě další možnosti. Můžeme použít systém rovnic f j (x 1, x 2,..., x n ) = 0, kde j = 1, 2,..., k nebo parametrické vyjádření dané předpisem x i = x i (t 1, t 2,..., t m ), kde i = 1, 2,..., n. Poznamenejme jen, že studovaný objekt je považován za souhrn dílčích objektů (nejčastěji bodů nemusí však tomu být vždy, např. svazek nadrovin je souhrn nadrovin apod.); parametry t i R potom 1

2 Geometrie II představují vnitřní souřadnice těchto dílčích objektů vztažené k lokální soustavě souřadnic celkového objektu. Např. rovina ϱ E 3 je jednoznačně určena svými homogenními souřadnicemi ñ = (n 0, n 1, n 2, n 3 ), dále ji můžeme chápat jako množinu bodů, jejichž souřadnice x i vyhovují rovnici f(x) = n 1 x 1 + n 2 x 2 + n 3 x 3 + n 0 = 0, popř. lze použít parametrické vyjádření x = x(t 1, t 2 ) = a + t 1 u + t 2 v, kde n = u v, přičemž (t 1, t 2 ) jsou vnitřní souřadnice bodů roviny ϱ vztažené k lokálnímu souřadnému systému S A; u, v. Počet navzájem nezávislých souřadnic dílčích objektů, které jsou nutné k jednoznačnému určení jistého dílčího objektu, udává dimenzi celkového objektu, který je souhrnem uvedených dílčích objektů. Přitom n+1 homogenních souřadnic udává stejnou dimenzi jako n nehomogonenních souřadnic, tj. dimenzi n. Jedna rovnice f(x 1, x 2,..., x n ) = 0 s n proměnnými souřadnicemi x i dílčích objektů popisuje (n 1)-dimenzionální objekt. Každá další nezávislá rovnice snižuje dimenzi vždy o 1. Aplikujme výše uvedené poznatky na konkrétní příklady. Prostor E 3 má tedy jakožto množina rovin dimenzi 3 (každá rovina má 4 homogenní souřadnice). Rovina ϱ jakožto souhrn bodů má dimenzi 2 (každý bod roviny je jednoznačně určen 2 parametry u, v lokální souřadnice). Lineární rovnice v proměnných x 1, x 2, x 3 (souřadnice bodů v E 3 ) popisuje rovinu jako dvojdimenzionální bodovou množinu; rovnice v proměnných n 0, n 1, n 2, n 3 (homogenní souřadnice roviny v E 3 ) popisuje dvoudimenzionální množinu rovin, která je částí prostoru E 3 jakožto souhrnu všech rovin. Svazek nadrovin má dimenzi 1, neboť každá nadrovina svazku je popsána dvěma homogenními souřadnicemi t 0, t 1. A.2 Křivky a jejich tečny Ačkoliv je pojem křivky dosti názorný, z hlediska matematického je poměrně složitě definovatelný. Zjednodušeně řečeno, křivkou nebo její 2

3 A.2. Křivky a jejich tečny částí budeme rozumět jednodimenzionální množinu bodů eukleidovského prostoru E n. DEFINICE A.2.1: Křivkou nazýváme množinu právě těch bodů eukleidovského prostoru E n, jejichž kartézské souřadnice jsou dány souřadným vektorem x = (x 1 (t), x 2 (t),..., x n (t)), kde x i (t) jsou reálné funkce reálné proměnné t definované na nějakém intervalu I R, které mají spojité derivace podle t alespoň prvního řádu. Přísluší-li několika hodnotám parametru t jediný bod, pak takovýto bod nazýváme několikanásobný. Jestliže chápeme parametr t jako čas, potom křivka k : x = x(t) představuje dráhu. Uvažujme nyní dva různé body křivky X 0 : x(t 0 ) a X : x(t) = x(t 0 + h). Přímka spojující tyto dva body je sečnou křivky k se směrovým vektorem 1 h (x(t 0 + h) x(t 0 )). Přímku, která je limitním případem sečny X 0 X pro X X 0, nazýváme tečna křivky v bodě X 0. Její směrový vektor pak nabývá tvaru ẋ 0 = d dt x(t x(t 0 + h) x(t 0 ) x(t) x(t 0 ) 0) = lim = lim = h 0 h t t0 t t 0 = lim t t0 x 1(t) x 1(t 0) t t 0 x 2(t) x 2(t 0) t t 0 x 3(t) x 3(t 0) t t 0 = dx 1(t 0) dt dx 2(t 0) dt dx 3(t 0) dt. Bod x 0 = x(t 0 ) křivky k se nazývá regulární, jestliže existuje derivace ẋ 0 = d dt x(t 0) 0; v regulárním bodě x 0 křivky k je možné jednoznačně sestrojit tečnu této křivky, jejíž parametrická rovnice je y(λ) = x 0 + λẋ 0. 3

4 Geometrie II Body křivky, které nejsou regulární označujeme jako singulární. Křivka, která je tvořena výhradně regulárními body, se nazývá hladká. Jestliže opět interpretujeme parametr t jako čas a tím pádem x(t) jako dráhu, potom vektor ẋ(t) představuje rychlost. Rovinné křivky. V eukleidovské rovině E 2 můžeme body křivky (nebo její části) při pevně zvolené kartézské soustavě souřadnic analyticky popsat pomocí parametrického vyjádření k : x = x(t) = (x 1 (t), x 2 (t)), kde t J R, popř. můžeme použít implicitní rovnici nebo explicitní rovnici k : f(x 1, x 2 ) = 0 k : x 2 = g(x 1 ). Zvláštním typem rovinných křivek jsou křivky, které jsou popsány algebraickou rovnicí n-tého stupně: k : a ij x i 1x j 2 = a 00 + a 10 x 1 + a 01 x 2 + a 11 x 1 x = 0, i,j=0 kde n = max(i + j). Tyto křivky nazýváme algebraické křivky n-tého stupně; algebraické křivky stupně n = 2, 3, 4... se nazývají kuželosečky, kubiky, kvartiky... Není-li f polynomem, křivka k : f(x 1, x 2 ) = 0 se nazývá transcendentní. A.3 Plochy a jejich tečné roviny Obdobně jako v případě křivky nám pro první vymezení poslouží pojem dimenze. Plochou nebo její částí budeme rozumět dvoudimenzionální množinu bodů eukleidovského prostoru E n. 4

5 A.3. Plochy a jejich tečné roviny DEFINICE A.3.1: Plochou nazýváme množinu právě těch bodů eukleidovského prostoru E n, jejichž kartézské souřadnice jsou dány souřadným vektorem x = (x 1 (u, v), x 2 (u, v),..., x n (u, v)), kde x i (u, v) jsou reálné funkce dvou reálných proměnných u, v definované na dvojrozměrné oblasti B R 2, které mají spojité parciální derivace alespoň prvního řádu. Parametry u, v představují vnitřní křivočaré souřadnice bodů plochy P tzv. Gaussovy souřadnicemi. Jestliže v parametrickém vyjádření x = x(u, v) plochy P položíme u = u 0 = konst., resp. v = v 0 = konst., dostáváme jednoparametrické rovnice x = x(u 0, v), resp. x = x(u, v 0 ), které v obou případech popisují křivky ležící na ploše P. Pro u = u 0 = konst. dostáváme tzv. v-křivky, pro v = v 0 = konst. dostáváme tzv. u-křivky plochy P (tzv. parametrické křivky). Souhrn u- a v křivek vytváří na ploše tzv. souřadnicovou síť. Pro pevně zvolený bod X 0 = x(u 0, v 0 ) na ploše P představuje x u = u x(u 0, v 0 ) směrový vektor tečny u-křivky v bodě X 0 ; x u = v x(u 0, v 0 ) směrový vektor tečny v-křivky v bodě X 0. Odchylka ϕ tečen parametrických křivek v bodě X udává odchylku parametrických křivek v bodě X a platí cos ϕ = x u x v x u x v. Je-li ve všech bodech plochy ϕ = π 2, potom hovoříme o tzv. ortogonální síti. Jestliže pro bod X = x(u 0, v 0 ) P platí n(u 0, v 0 ) = x u (u 0, v 0 ) x v (u 0, v 0 ) o, nazýváme jej regulární bod plochy P s parametrizací x = x(u, v). V opačném případě hovoříme o singulárním bodu. 5

6 Geometrie II Rovnice u = ϕ(t), v = ψ(t) (t I) definují parametricky na ploše P křivku k : x = (x 1 [ϕ(t), ψ(t)], x 2 [ϕ(t), ψ(t)],..., x n [ϕ(t), ψ(t)]) za předpokladu, že funkce ϕ(t), ψ(t) mají na intervalu I spojité derivace alespoň prvního řádu a t I leží (ϕ(t), ψ(t)) v množině B. Každá křivka k P se nazývá křivka plochy, každá tečna každé křivky plochy P se nazývá tečna plochy P. Rovina τ se nazývá tečná rovina plochy P v bodě X 0, jestliže každá přímka roviny τ procházející bodem X 0 je tečnou plochy P. Bod X 0 se nazývá bod dotyku. Kolmice v bodě dotyku k tečné rovině plochy P se nazývá normála plochy v bodě X 0. Směrový vektor normály plochy P v bodě X = x 0 = x(u 0, v 0 ) je n = x u (u 0, v 0 ) x v (u 0, v 0 ) a parametrická rovnice této normály má tvar y(λ) = x 0 + λn. Plochy v prostoru. V eukleidovském prostoru E 3 můžeme body plochy (nebo její části) při pevně zvolené kartézské soustavě souřadnic analyticky popsat pomocí parametrického vyjádření P : x = x(u, v) = (x 1 (u, v), x 2 (u, v), x 3 (u, v)), kde (u, v) B R 2, popř. můžeme použít implicitní rovnici nebo explicitní rovnici P : f(x 1, x 2, x 3 ) = 0 P : x 3 = g(x 1, x 2 ). Je-li plocha P popsána explicitní rovnicí x 3 = g(x 1, x 2 ) kde (x 1, x 2 ) B R 2, potom snadno určíme parametrické vyjádření této plochy ve tvaru P : x = x(u, v) = (u, v, g(u, v)), kde (u, v) B R 2. 6

7 A.4. Válcová a kuželová plocha V tomto případě hovoříme o tzv. Eulerově parametrizaci. Zvláštním typem ploch v prostoru E 3 jsou plochy, které jsou popsány algebraickou rovnicí n-tého stupně: P : a ijk x i 1x j 2 xk 3 = 0, i,j,k=0 kde n = max(i + j + k). Tyto plochy nazýváme algebraické plochy n-tého stupně; algebraické plochy stupně n = 2 se nazývají kvadriky. Není-li f polynomem, plocha P : f(x 1, x 2, x 3 ) = 0 se nazývá transcendentní. Poznamenejme ještě, že v eukleidovském prostoru E 3 lze tečnou rovinu plochy P v bodě x 0 = x(u 0, v 0 ) popsat pomocí obecné rovnice n(x x 0 ) = 0, kde n = x u (u 0, v 0 ) x v (u 0, v 0 ) je normálový vektor v bodě x 0. Křivky v prostoru. V eukleidovském prostoru E 3 můžeme body křivky samozřejmě popsat parametricky (viz předcházející kapitolu). Další možností je určit křivku prostřednictvím dvou nezávislých rovnic k : f 1 (x 1, x 2, x 3 ) = 0, f 2 (x 1, x 2, x 3 ) = 0. Obě rovnice f 1 = 0, f 2 = 0 popisují dvě plochy P 1, P 2 a tudíž je křivka k = P 1 P 2 jejich průsečnou křivkou. Algebraická plocha n-tého stupně je proťata rovinou, která není její součástí v algebraické křivce n-tého stupně. A.4 Válcová a kuželová plocha Válcová a hranolová plocha. Nechť je dána křivka k : y = y(u), u I a přímka s se směrovým vektorem s. Válcovou plochou rozumíme množinu všech přímek daného směru s (tzv. povrchových přímek, popř. površek), které protínají danou křivku k (tzv. řídicí křivku). Parametrické vyjádření válcové plochy má tvar x = y(u) + vs, (u, v) I R. 7

8 Geometrie II Je-li k mnohoúhelník (tzv. řídicí mnohoúhelník), potom hovoříme o hranolové ploše. Povrchové přímky jdoucí vrcholy řídicího mnohoúhelníka nazýváme hrany. Množina všech přímek plochy, které protínají stranu řídicího mnohoúhelníka, tvoří tzv. stěnu hranolové plochy. Kuželová a jehlanová plocha. Nechť je dána křivka k : y = y(u), u I, která se nazývá řídicí křivka a bod S k, jenž nazýváme vrchol. Kuželovou plochou rozumíme množinu všech přímek procházejících bodem S (tzv. povrchových přímek, popř. površek), které protínají řídicí křivku k. Parametrické vyjádření kuželové plochy je x(u, v) = s + v(y(u) s), (u, v) I R. Je-li k mnohoúhelník (tzv. řídicí mnohoúhelník), potom hovoříme o jehlanové ploše. Povrchové přímky jdoucí vrcholy řídicího mnohoúhelníka nazýváme hrany. Množina všech přímek plochy, které protínají stranu řídicího mnohoúhelníka, tvoří tzv. stěnu jehlanové plochy. Tečná rovina válcové a kuželové plochy. Uvažujme na válcové, popř. kuželové ploše bod A = x(u 0, v 0 ) jakožto průsečík površky s a tvořicí křivky k : y = y(u) evidentně je v případě válcové plochy v 0 = 0 a v případě kuželové plochy v 0 = 1. Normálový vektor plochy v bodě A můžeme vypočítat { ẏ s (válcová plocha) n = x u (u 0, v 0 ) x v (u 0, v 0 ) = ẏ (y s) (kuželová plocha), kde ẏ je směrový vektor tečny tvořicí křivky v bodě A a s, resp. (y s) je směrový vektor površky válcové, resp. kuželové plochy. Odtud je vidět, že tečnou rovinu τ A v bodě A = k s lze určit pomocí površky s a tečny t k řídicí křivky k v bodě A. Nechť B = x(u 0, v 1 ), v 1 v 0, je libovolný bod na površce s různý od bodu A = x(u 0, v 0 ) = s k. 1 Vypočteme normálový vektor plochy v bodě B { ẏ s (válcová plocha) n 1 = x u (u 0, v 1 ) x v (u 0, v 1 ) = v 1 ẏ (y s) (kuželová plocha). 1 V případě kuželové plochy uvažujeme rovněž B S. 8

9 A.5. Plochy vznikající pohybem křivek Je vidět, že n n 1, a proto tečná rovina v bodě B je totožná s tečnou rovinou τ A. A.5 Plochy vznikající pohybem křivek Parametrické vyjádření plochy často získáme ze znalosti principu, jakým byla tato plocha vytvořena. Příkladem mohou být plochy vznikající pohybem křivek, které nejsou dráhou pohybu (plochy v tomto případě chápeme jako jednoparametrické soustavy křivek). Tvořicí křivku k : y = y(u), u I R podrobíme jistému pohybu popsanému rovnicí x = Ay + b, A T A = E. Skutečnost, že pohyb závisí na parametru v, vyjádříme zápisem b = b(v), A = A(v), A(v) T A(v) = E, v J R. Každý bod tvořící křivky k opisuje tedy určitou trajektorii (podle předpokladu různou od křivky k), jejichž souhrnem je plocha s parametrickým vyjádřením x(u, v) = A(v)y(u) + b(v), (u, v) I J R 2 (A.1) Podle druhu pohybu rozeznáváme např. plochy translační (posunutí), rotační (otočení) nebo šroubové (šroubový pohyb). Plochy je možné třídit rovněž i podle tvořící křivky např. přímkové plochy. Rotační plochy. Rotační plocha vzniká rotací tvořicí křivky k kolem přímky o, kterou nazýváme osa rotační plochy. Je-li speciálně o = x 3, potom má rotace vyjádření x = cos v sin v 0 sin v cos v y, kde v J = 0, 2π). (A.2) Z rovnice (A.1) dostáváme pro k : y = y(u) = ( y 1 (u), y 2 (u), y 3 (u) ) T, u I parametrické vyjádření rotační plochy cos v sin v 0 x(u, v) = sin v cos v 0 ( y 1 (u), y 2 (u), y 3 (u) ) T =

10 Geometrie II = y 1 (u) cos v y 2 (u) sin v y 1 (u) sin v + y 2 (u) cos v y 3 (u), (u, v) I J. (A.3) Rotací libovolného bodu A tvořicí křivky k kolem osy o vzniká tzv. rovnoběžková kružnice (rovnoběžka) se středem [0, 0, y 3 (u i )] a poloměrem r(u i ) = y 2 1 (u i) + y 2 2 (u i). Řez rotační plochy rovinou, která prochází osou rotační plochy, se nazývá meridián. Rotační plocha se při otočení kolem své osy reprodukuje (zobrazuje sama na sebe), a proto můžeme každý meridián chápat rovněž jako tvořicí křivku. Je-li jakožto tvořicí křivka dán např. meridián ležící v souřadné rovině x 2 = 0 s vyjádřením m = m(u) = ( m 1 (u), 0, m 3 (u) ) T, u I, potom z (A.3) dostáváme parametrické vyjádření x(u, v) = m 1(u) cos v m 1 (u) sin v, (u, v) I J. (A.4) m 3 (u) Snadno se přesvědčíme, že v tomto případě je parametrická síť ortogonální (pro všechny body plochy platí ẋ u ẋ v = 0). 10

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

Základní vlastnosti ploch

Základní vlastnosti ploch plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Klasické třídy ploch

Klasické třídy ploch Klasické třídy ploch Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Klasické třídy ploch klasické plochy jsou často generovány kinematicky, a to pohybem tvořicí křivky takto např. vznikají

Více

Diferenciální geometrie

Diferenciální geometrie Diferenciální geometrie Pomocný učební text díl I. František Ježek Plzeň, červen 2005 Obsah 1 Křivky 4 1.1 Vyjádření křivky......................... 4 1.2 Transformace parametru..................... 5

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

KMA/G2 Geometrie 2 9. až 11. cvičení

KMA/G2 Geometrie 2 9. až 11. cvičení KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Kuželosečky. Kapitola Elipsa

Kuželosečky. Kapitola Elipsa Kapitola 4 Kuželosečky 4.1 Elipsa DEFINICE 4.1.1. Množinu všech bodů v rovině E, které mají od dvou různých pevně zvolených bodů F 1, F konstantní součet vzdáleností a, nazýváme elipsa; tj. k e = {X E

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha. Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 2. Pomocný učební text - díl II

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 2. Pomocný učební text - díl II Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 2 Pomocný učební text - díl II František Ježek, Světlana Tomiczková Plzeň 7. února 2006 verze 2.0 Obsah 7 Obalové

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl I Světlana Tomiczková Plzeň 12. února 2016 verze 2.0 2 Autoři Obsah 1 Elementární

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

3.6. ANALYTICKÁ GEOMETRIE PARABOLY

3.6. ANALYTICKÁ GEOMETRIE PARABOLY 3.6. ANALYTICKÁ GEOMETRIE PARABOLY V této kapitole se dozvíte: jak je geometricky definována kuželosečka zvaná parabola; co je to ohnisko, řídící přímka, vrchol, osa, parametr paraboly; tvar vrcholové

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Konstruktivní geometrie

Konstruktivní geometrie Mgr. Miroslava Tihlaříková, Ph.D. Konstruktivní geometrie & technické kreslení Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

3. Obecný rovinný pohyb tělesa

3. Obecný rovinný pohyb tělesa . Obecný rovinný pohyb tělesa Při obecném rovinném pohybu tělesa leží dráhy jeho jednotlivých bodů v navzájem rovnoběžných rovinách. Těmito dráhami jsou obecné rovinné křivky. Všechny body ležící na téže

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

KMA/G1 GEOMETRIE 1 Pomocn y uˇ cebn ı text Miroslav L aviˇ cka Plzeˇ n, z aˇ r ı 2008

KMA/G1 GEOMETRIE 1 Pomocn y uˇ cebn ı text Miroslav L aviˇ cka Plzeˇ n, z aˇ r ı 2008 KMA/G1 GEOMETRIE 1 Pomocný učební text Miroslav Lávička Plzeň, září 2008 KMA/G1 Geometrie 1 2 Předmluva Tento text vznikl jako pomocný učební materiál pro potřeby studentů Fakulty aplikovaných věd a Fakulty

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Projektivní prostor a projektivní zobrazení

Projektivní prostor a projektivní zobrazení Kapitola 4 Projektivní prostor a projektivní zobrazení 4.1 Projektivní rozšíření eukleidovského prostoru Vlastnost býti incidentní v eukleidovském prostoru E 3 vykazuje nedostatek symetrie zatímco např.

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

PŘÍKLADY K MATEMATICE 2

PŘÍKLADY K MATEMATICE 2 PŘÍKLADY K MATEMATICE ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměnných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem

Více

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0

Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0 Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 1. února 2009 verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie

Více

Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly.

Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly. Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly. Výpočty trajektorií bodů při složených pohybech. Příklad 1: Je dána kružnice k s poloměrem

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE 3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více