SEMINÁRNÍ PRÁCE Z MATEMATIKY

Rozměr: px
Začít zobrazení ze stránky:

Download "SEMINÁRNÍ PRÁCE Z MATEMATIKY"

Transkript

1 SEMINÁRNÍ PRÁCE Z MATEMATIKY PETROHRADSKÝ PARADOX TEREZA KIŠOVÁ 4.B

2 MOTIVACE: K napsání této práce mě inspiroval název tématu. Když jsem si o petrohradském paradoxu zjistila nějaké informace tak mě velmi zaujal. Petrohradský paradox přednesl roku 1783 Daniel Bernoulli před Petrohradskou akademií věd (předchůdce dnešní Ruské akademie věd). Petrohradský paradox míchá dohromady statistiku, rozhodování a pravděpodobnost. V Petrohradě máme kasíno, které nám nabízí hru, ve které můžeme vyhrát určitý počet peněz. Naším úkolem je zjistit, jaká by bylo férové vstupné do této hry.

3 Petrohradský paradox Představme si, že jsme vyzváni ke hře, která spočívá v opakovaném házení mincí. Jestliže nám na první pokus padne panna, pak nám protihráč zaplatí 2 koruny a hru skončíme. Jestliže prvním hodem padne orel a druhým panna, zaplatí nám 4 koruny a hru opět ukončíme. Jestliže nejprve padne dvakrát orel a pak panna, dostaneme 8 korun a hra skončí. Pokračujeme tímto způsobem, dokud nám nepadne panna. Pokaždé, když padne orel, hra pokračuje a protihráč zdvojnásobuje částku, kterou získáme, až nám padne panna. Nyní si představme, že někdo, kdo sleduje naši hru, nám nabídne 10 korun, pokud ho necháme hrát místo sebe. Přijmeme jeho nabídku? Nebo raději odmítneme? Co kdyby nabídl 50 korun? Nebo 100 korun? Jinými slovy: jak si ceníme tuto hru? Výši výhry v této hře lze tedy zobecnit do vzorce 2 n-1, kde n je pořadí hodu, v němž padla hlava. Pravděpodobnost, že v každém jednom hodu mincí padne hlava, je 50%, tedy 0,5. Ale protože jde o sérii nezávislých náhodných pokusů, je pravděpodobnost konce hry právě po n-tém hodu rovna (1/2) n. Pravděpodobnosti a výše výhry pro prvních pět variant průběhu hry jsou v následující tabulce: Výsledky hodů Pravděpodobnost Výhra H 1 OH 2 OOH 4 OOOH 8 OOOOH 16

4 Nyní nastává otázka, kolik by měl hráč zaplatit za vstup do takovéto hry. Na základě statistických principů je logické vypočítat střední hodnotu výhry, tedy nejpravděpodobněji očekávanou výši výhry. Tu můžeme spočítat jako součet všech součinů pravděpodobnosti a výhry, tedy: (1/2)+(2/4)+(4/8)+(8/16)+ Nebo vynásobíme částku, kterou můžeme získat s pravděpodobností, se kterou na tuto částku můžeme dosáhnout a všechno sečteme. Dostáváme: Pokud hráč souhlasí s n hody mincí bez ohledu na to, zda se hlava objeví, pak je tento součet a tedy i střední hodnota výhry rovna n/2. Pokud však se bude hrát podle pravidel, tedy dokud se neobjeví hlava, pak je n nekonečno a tudíž i n/2 je nekonečno. Z toho plyne, že podle střední hodnoty je optimální cena za vstup do hry nekonečně vysoká. Takovýto závěr není ale prakticky pro nikoho přijatelný. Žádný racionální člověk totiž za vstup do takovéto hry nezaplatí nekonečnou cenu, naopak i lidé s malou averzí k riziku zaplatí jen konečnou sumu, a to ne větší než dvoucifernou a většina lidí dokonce jen jednocifernou. Je to způsobeno tím, že střední hodnota výhry je zkreslena možností astronomické výhry v mizivém procentu případů. A protože racionální lidé tento fakt intuitivně vycítí, nejsou ochotni přistoupit na cenu ve výši střední hodnoty výhry bez ohledu na subjektivní postoj k riziku. Kritici tohoto paradoxu samozřejmě namítají, že nemůžete hrát nekonečně dlouhou dobu, nemůžeme vyhrát nekonečně mnoho peněz a dokonce i když snížíte počet maximálních hodů mincí z nekonečna na nějaké konečné číslo n, pak se stejně poměrně brzy dostanete do takových částek, které nikdo na světě nemá. Například po 41 hodech už byste vyhráli 2 40 dolarů, což je přibližně bilion dolarů (tisíc miliard dolarů). Po dalších deseti hodech byste vyhráli tisíckrát více peněz. Konečné vstupné Nekonečně mnoho dolarů vám samozřejmě nikdo na vstupném nedá. Nicméně paradox lze částečně předvést i s konečným množstvím peněz. Pro každou celodolarovou částku totiž existuje maximální počet hodů mincí, pro kterou vyjde střední hodnota taková, jakou potřebujeme. Pokud například chceme mít vstupné tisíc dolarů, řekneme, že maximální počet hodů mincí je Pak počítáme takovouto sumu: k= = =1000 k= = =1000 Střední hodnota pak bude 1000 dolarů. Chceme-li mít vstupné ve výši dolarů, pak řekneme, že maximální počet hodů mincí je 2D. Samozřejmě ale žádný rozumný člověk nezaplatí vstupné například tisíc dolarů, pokud má naprosto minimální šanci, že vyhraje více než tisíc dolarů.

5 ZÁVĚR: Když si položíme otázku, jaká byla rychlost hry, kolik hodů za minutu byl průměr, než se vyplatily výhry či zdvojily sázky, vyslechly komentáře kibiců a upilo se na štěstí, tak dojdeme k závěru, že když jedno sezení netrvalo déle než jednu noc, tak to mohlo být maximálně několik tisíc hodů. Když vyškrtáme nedokončené hry, můžeme si soubor našich konečných her představit jako model dosti dlouhé hry. Průměrná výhra je mnohem nižší než výhra z úplné pravděpodobnosti. Zkušení hráči sázeli na průměrný výsledek asi 50 her. A to má do úplné pravděpodobnosti hodně daleko. V reálném životě nelze sázet na úplnou pravděpodobnost, každá série skončí nejpozději v polovině nekonečnosti.

Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 1 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

Teorie her a ekonomické rozhodování. Úvodní informace Obsah kursu 1. Úvod do teorie her

Teorie her a ekonomické rozhodování. Úvodní informace Obsah kursu 1. Úvod do teorie her Teorie her a ekonomické Úvodní informace Obsah kursu 1. Úvod do teorie her Úvodní informace Mgr. Jana SEKNIČKOVÁ, Ph.D. Místnost: 433 NB Konzultace: Středa 6:30 7:30, 19:30 20:30 Čtvrtek E-mail: jana.seknickova@vse.cz

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

Teorie her a ekonomické rozhodování. 8. Vyjednávací hry

Teorie her a ekonomické rozhodování. 8. Vyjednávací hry Teorie her a ekonomické rozhodování 8. Vyjednávací hry 8. Vyjednávání Teorie her Věda o řešení konfliktů Ale také věda o hledání vzájemně výhodné spolupráce Teorie vyjednávání Odvětví teorie her dohoda

Více

HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o.

HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o. HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o. HISTORIE REVIZÍ Datum Verze Popis změn Autor změn 16. 4. 2012 1.0 První naplnění Karel Kyovský OBSAH Historie revizí... 2 Obsah... 3 Úvod... 4 Rozsah

Více

Statistika. Jindřich Soukup. University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters, School of complex systems

Statistika. Jindřich Soukup. University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters, School of complex systems Statistika Jindřich Soukup 2013-07-24 University of South Bohemia in České Budějovice Faculty of Fisheries and Protection of Waters, School of complex systems Statistika umí: Předpovídat budoucnost? "...

Více

Herní plán BREAK THE BANK

Herní plán BREAK THE BANK Herní plán BREAK THE BANK Break The Bank 1. Úvod Break The Bank je hra se třemi válci a 5 statickými výherními liniemi. Hra obsahuje 10 různých symbolů-včetně bonusového symbolu. 2. Pravidla hry a její

Více

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům

Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům MINISTERSTVO FINANCÍ Státní dozor nad sázkovými hrami a loteriemi Věc: Rozšířené stanovisko Ministerstva financí k tzv. Kvízomatům Podle ust. 1 odst. 1 zákona č. 202/1990 Sb., o loteriích a jiných podobných

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících

Více

TEORIE HER Meta hry PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 4. Zuzana Bělinová

TEORIE HER Meta hry PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 4. Zuzana Bělinová PŘEDNÁŠKA 4a TEORIE HER Meta hry OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáška 4 Strategické hry se nenulovým součtem počet hráčů není dán, ale dále uvažujeme 2 hráče hrající racionálně Meta

Více

HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o.

HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o. HERNÍ PLÁN MAD MECHANIC APOLLO GAMES APKSOFT s.r.o. HISTORIE REVIZÍ Datum Verze Popis změn Autor změn 16. 04. 2012 1.0 První naplnění Karel Kyovský 23. 10. 2015 1.1 Změna v riziku Radoslav Hrčka 08. 01.

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Nová hra od Sazky JEDINÁ KASIČKA, KTERÁ NÁSOBÍ VKLADY. Splňte si svůj sen

Nová hra od Sazky JEDINÁ KASIČKA, KTERÁ NÁSOBÍ VKLADY. Splňte si svůj sen Nová hra od Sazky JEDINÁ KASIČKA, KTERÁ NÁSOBÍ VKLADY Splňte si svůj sen KASIČKA je nová hra od SAZKY! Kasička je nová hra, ve které může sázející tipovat tři, čtyři nebo pět čísel. V systému kombinované

Více

HERNÍ PLÁN GOLDEN TREASURE APOLLO GAMES APKSOFT s.r.o.

HERNÍ PLÁN GOLDEN TREASURE APOLLO GAMES APKSOFT s.r.o. HERNÍ PLÁN GOLDEN TREASURE APOLLO GAMES APKSOFT s.r.o. HISTORIE REVIZÍ Datum Verze Popis změn Autor změn 27. 05. 2008 1.0 První naplnění Karel Kyovský 17. 06. 2008 1.1 Doplnění statistik a tabulek výher

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Test obecné finanční gramotnosti

Test obecné finanční gramotnosti Test obecné finanční gramotnosti Finanční inteligence je něco, co se ve škole nenaučíte. A přitom je to obor stejně důležitý ne-li důležitější než algebra v matematice nebo historie literatury v češtině.

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Ozobot základní trénink lekce 2

Ozobot základní trénink lekce 2 Ozobot základní trénink lekce 2 Autor: Ozobot Publikováno dne: 1. listopadu 2014 Popis: Studenti se naučí Ozobota ovládat a směrovat pomocí ozokódů. Také se zde dozví, jak používat Ozobota na tabletu.

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

STRATEGICKÁ HRA MAGNETIC CHALLENGE

STRATEGICKÁ HRA MAGNETIC CHALLENGE STRATEGICKÁ HRA MAGNETIC CHALLENGE Jen chvilka postačí k pochopení pravidel a k jejich vysvětlení příteli. Magnetická výzva je zábavná, strhující, poučná kombinační hra, která kombinuje hru a zábavu s

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

STATISTICKÉ ZJIŠŤOVÁNÍ

STATISTICKÉ ZJIŠŤOVÁNÍ STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho

Více

Herní plán. Hot as Hell

Herní plán. Hot as Hell Herní plán Hot as Hell Hot as Hell 1. Úvod Hot as Hell je hra s pěti válci a 5 výherními liniemi. Hra obsahuje 7 různých symbolů, jeden divoký symbol Wild a bonusový symbol Pyramid of Joy. 2. Pravidla

Více

Dělitelnost přirozených čísel. Násobek a dělitel

Dělitelnost přirozených čísel. Násobek a dělitel Dělitelnost přirozených čísel Násobek a dělitel VY_42_INOVACE_ČER_10 1. Autor: Mgr. Soňa Černá 2. Datum vytvoření: 2.1.2012 3. Ročník: 6. 4. Vzdělávací oblast: Matematika 5. Vzdělávací obor: Matematika

Více

MAGIC FOX MULTIGAME V.2.3 CZ(750)

MAGIC FOX MULTIGAME V.2.3 CZ(750) MAGIC FOX MULTIGAME V.2.3 CZ(750) OBSAHUJE NÁSLEDUJÍCÍ HRY: HOT COINS ULTRA HEAT CRYSTAL FRUITS SPARKLING HOT WATER WORLD JOKERS DELUXE ROYAL POKER EUROPEAN POKER DELUXE FRUIT POKER TUTTI FRUTTI + HI LO

Více

Herní plán DIRTY MONEY

Herní plán DIRTY MONEY Herní plán DIRTY MONEY Dirty Money 1. Úvod Dirty Money je hra s pěti válci a 9 výherními liniemi. Hra obsahuje 9 různých symbolů. 2. Pravidla hry a její průběh Ve hře Dirty Money může hráč nastavit sázky

Více

Připomeňme, že naším cílem je tvorba nástroj, pro zjištění stavu světa případně

Připomeňme, že naším cílem je tvorba nástroj, pro zjištění stavu světa případně Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Racionální rozhodování Připomeňme, že naším cílem je tvorba racionálních agentů maximalizujících očekávanou

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Kód uchazeče ID:... Varianta: 14

Kód uchazeče ID:... Varianta: 14 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 14 1. V lednu byla zaměstnancům zvýšena mzda o 16 % prosincové mzdy. Následně

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

Herní plán QUICK PAY JACKPOTS

Herní plán QUICK PAY JACKPOTS Herní plán QUICK PAY JACKPOTS Quick Pay Jackpots 1. Úvod Quick Pay Jackpots je hra s 5 válci a 10 výherními liniemi. Hra obsahuje 15 různých symbolů. 2. Pravidla hry a její průběh Ve hře Quick Pay Jackpots

Více

Pravidla hry. Herní materiál

Pravidla hry. Herní materiál Průmyslovou revoluci v Americe by si bez železnice snad ani nikdo nedokázal představit. Rozvíjet tak velkou zemi bez možnosti přepravovat potřebný materiál na velké vzdálenosti zkrátka nejde. Železniční

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

HERNÍ PLÁN IVT SYNOT

HERNÍ PLÁN IVT SYNOT HERNÍ PLÁN IVT SYNOT 1 Celtic Magick Celtic Magick je hra se čtyřmi válci a 81 výherními liniemi. Hra obsahuje 10 různých symbolů. Ve hře Celtic Magick může hráč nastavit sázky v následujících krocích:

Více

Název: Pravděpodobnost a běžný život

Název: Pravděpodobnost a běžný život Název: Pravděpodobnost a běžný život Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 3. (1. ročník

Více

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste.

Usekne-li Honza 1 hlavu, narostou dva ocasy. Tento tah můžeme zakreslit následujícím způsobem: Usekne-li 2 hlavy, nic nenaroste. Řešení 2. série Řešení J-I-2-1 1. krok: Číslici 2 ve třetím řádku můžeme dostat jedině násobením 5 4 = 20, 5 5 = 25. Tedy na posledním místě v prvním řádku může být číslice 4 nebo 5. Odtud máme i dvě možnosti

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost

Více

CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání

Více

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS) KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto

Více

Kajot Casino Ltd. Popis hry Joker 27

Kajot Casino Ltd. Popis hry Joker 27 Joker 27 Joker 27 Popis a pravidla Joker 27 je hra se třemi kotouči. Zobrazený výsledek se skládá ze tří řad po třech symbolech (každý kotouč zobrazuje tři symboly). Náhledy Uvedený obrázek představuje

Více

Kód uchazeče ID:... Varianta: 12

Kód uchazeče ID:... Varianta: 12 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 12 1. V lednu byla zaměstnancům zvýšena mzda o 10 % prosincové mzdy. Následně

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

WORKSHOP IV. Téma: Internetová hra Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 8. srpna 2016

WORKSHOP IV. Téma: Internetová hra Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 8. srpna 2016 WORKSHOP IV. Téma: Internetová hra Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 8. srpna 2016 Druhy hazardních her, které lze provozovat jako internetovou hru - a) loterii -

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Současná pravidla regulace hazardu na území obcí a připravované změny od roku 2016 Odbor 34 Státní dozor nad sázkovými hrami a loteriemi

Současná pravidla regulace hazardu na území obcí a připravované změny od roku 2016 Odbor 34 Státní dozor nad sázkovými hrami a loteriemi Současná pravidla regulace hazardu na území obcí a připravované změny od roku 2016 Odbor 34 Státní dozor nad sázkovými hrami a loteriemi HODONÍN 18.6.2015 Co se rozumí loterií a jinou podobnou hrou a kdo

Více

Kajot Casino Ltd. Popis hry Crazy Fruits

Kajot Casino Ltd. Popis hry Crazy Fruits Crazy Fruits Crazy Fruits Popis a pravidla Crazy Fruits je hra se pěti kotouči. Zobrazený výsledek se skládá ze tří řad po pěti symbolech (každý kotouč zobrazuje tři symboly). Náhledy Uvedený obrázek představuje

Více

Herní plán AGE OF VIKINGS

Herní plán AGE OF VIKINGS Herní plán AGE OF VIKINGS AGE OF VIKINGS 1. Úvod Age of Vikings je hra s pěti válci a 9 statickými výherními liniemi. Hra obsahuje 12 různých symbolů včetně bunusového a divokého symbolu. 2. Pravidla hry

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),

Více

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy.

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Habermaaß-hra 3389A /4521N. Počítání s piráty (mini verze)

Habermaaß-hra 3389A /4521N. Počítání s piráty (mini verze) CZ Habermaaß-hra 3389A /4521N Počítání s piráty (mini verze) Počítání s piráty mini verze Vzdělávací hra pro 2 až 4 piráty ve věku od 6 do 99 let. Obsahuje variantu pro jednoho hráče. Autor: Wolfgang Dirscherl

Více

4. Lineární (ne)rovnice s racionalitou

4. Lineární (ne)rovnice s racionalitou @04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

JAK HRÁT ON-LINE? 0. PŘIZPŮSOBTE SI SVŮJ ŠTÍT A SVÉ BARVY

JAK HRÁT ON-LINE? 0. PŘIZPŮSOBTE SI SVŮJ ŠTÍT A SVÉ BARVY JAK HRÁT ON-LINE? 0. PŘIZPŮSOBTE SI SVŮJ ŠTÍT A SVÉ BARVY Budete si moci přizpůsobit tvar, formu a vzor znaku. Váš znak by měl do srdce soupeře vnést strach! Navíc, pokud se stanete význačným hráčem ADRENALYN

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

Hra pro 2 10 hráčů od deseti let. OBSAH HRY CÍL HRY

Hra pro 2 10 hráčů od deseti let. OBSAH HRY CÍL HRY Hra pro 2 10 hráčů od deseti let. OBSAH HRY 104 hracích karet s čísly 1 104, pravidla hry CÍL HRY Na všech kartách jsou symboly krav. Každá kráva, kterou během hry vezmete, znamená jeden minusový bod.

Více

Kombinatorika. Irina Perfilieva. 19. února logo

Kombinatorika. Irina Perfilieva. 19. února logo Kombinatorika Irina Perfilieva Irina.Perfilieva@osu.cz 19. února 2008 Outline 1 Předmět kombinatoriky Základní kombinatorické konfigurace 2 Dvě základní pravidla kombinatoriky 3 Počet základních kombinatorických

Více

Rozhodování při riziku, neurčitosti a hry s neúplnou informací. Rozhodování při riziku

Rozhodování při riziku, neurčitosti a hry s neúplnou informací. Rozhodování při riziku Rozhodování při riziku, neurčitosti a hry s neúplnou informací Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Výkladová část 1) Rozhodování při riziku a neurčitosti I. Rozhodování

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:

Více

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2. 9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Správné odpovědi. 7, Kdo většinou tvoří peníze: a, centrální banka

Správné odpovědi. 7, Kdo většinou tvoří peníze: a, centrální banka Správné odpovědi 1, Pro dosažení vedoucí a řídící pozice může být největší překážkou: a, nedostatek finanční inteligence b, nedostatek emocionální inteligence je velmi důležitá pro řízení lidí, jejich

Více

Úvod. Tlačítka. Typ baterie

Úvod. Tlačítka. Typ baterie Math Professor Úvod Kalkulačka je určena dětem jako pomůcka k výuce matematiky. Pomáhá trénovat mozek k rychlejším výpočtům, budovat logické myšlení a zdokonalovat paměť. Tlačítka Stiskněte pro vstup do

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

Habermaaß-hra 4646. Chutná nebo nechutná?

Habermaaß-hra 4646. Chutná nebo nechutná? CZ Habermaaß-hra 4646 Chutná nebo nechutná? Chutná nebo nechutná? Hra podporující exekutivní funkce pro 2 4 hráče ve věku od 4 do 99 let. Využívá Fex-efekt na zvýšení stupně obtížnosti hry. Autoři: Markus

Více

Cvičení ze statistiky - 4. Filip Děchtěrenko

Cvičení ze statistiky - 4. Filip Děchtěrenko Cvičení ze statistiky - 4 Filip Děchtěrenko Minule bylo.. Dokončili jsme deskriptivní statistiku Tyhle termíny by měly být známé: Korelace Regrese Garbage in, Garbage out Vícenásobná regrese Pravděpodobnost

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)

Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků) Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

HERNÍ PLÁN SLOT BIRDS APOLLO GAMES APKSOFT s.r.o.

HERNÍ PLÁN SLOT BIRDS APOLLO GAMES APKSOFT s.r.o. HERNÍ PLÁN SLOT BIRDS APOLLO GAMES APKSOFT s.r.o. HISTORIE REVIZÍ Datum Verze Popis změn Autor změn 25. 02. 2012 1.0 První naplnění Miroslav Lazárek 31. 07. 2015 1.1 Změna obsahu-riziko Radoslav Hrčka

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120

KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA. Charakteristiky variability. Mgr. Jakub Němec. VY_32_INOVACE_M4r0120 KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Charakteristiky variability Mgr. Jakub Němec VY_32_INOVACE_M4r0120 CHARAKTERISTIKY VARIABILITY Charakteristika variability se určuje pouze u kvantitativních znaků.

Více

Teorie her a ekonomické rozhodování 5. Opakované hry

Teorie her a ekonomické rozhodování 5. Opakované hry Teorie her a ekonomické rozhodování 5. Opakované hry (chybějící či chybná indexace ve skriptech) 5.1 Opakovaná hra Hra až dosud hráči hráli hru jen jednou v reálu se konflikty neustále opakují (firmy nabízí

Více

WORKSHOP III. Téma: Bonusy, hry nad rámec HP Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4.

WORKSHOP III. Téma: Bonusy, hry nad rámec HP Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. WORKSHOP III. Téma: Bonusy, hry nad rámec HP Vytvořeno: Odborem 34 Státní dozor nad sázkovými hrami a loteriemi Praha 4. srpna 2016 Body tematického okruhu úvod novinky v zákoně č. 186/2016 Sb., o hazardních

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

INTERACTIVE GAMES 750 CZK

INTERACTIVE GAMES 750 CZK POPIS HRY INTERACTIVE GAMES II 750 je mincový výherní hrací přístroj, jehož náhodný herní průběh je řízen mikroprocesorem. Hra je opticky znázorněna na obrazovce, která je umístěna na hlavní desce přístroje.

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Pedagogická poznámka: Hodina je trochu netypická, na jejím začátku provedu výklad (spíše opakování), který nechám na tabuli a potom až do konce řeší žáci zbytek

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více