TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů

Rozměr: px
Začít zobrazení ze stránky:

Download "TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů"

Transkript

1 TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů Číslo otázky : 14. Otázka : Návrh struktury relační databáze, funkční závislosti. Obsah :

2 1. Návrh struktury relační databáze relační datový model(rdm) Převod konceptuálního schématu zapsaného v nějakém konceptuálním modelu není jediným způsobem, jak navrhnout relační schéma databáze. Současně se vznikem teorie relačního modelu dat vznikla také metoda návrhu relačních schémat, založená na jiných principech, než intuitivním návrhem konceptuálního modelu, a to pomocí funkčních závislostí. Podívejme se na úlohu návrhu struktury databáze takto: z reálného světa máme dánu množinu atributů, které chceme rozmístit do jednotlivých schémat relací. Názvy těchto relací (názvy typů entit) ani jejich počet předem neznáme. Úkolem je navrhnout schéma databáze bez redundancí. Ukážeme si to na konkrétním případě. Mějme relaci R (Přednáška, Učitel, Místnost, Hodina, Student, Známka). Prvkem tohoto schématu je přednáška, učitel, který ji přednáší v uvedené místnosti a uvedenou hodinu, student, který přednášce naslouchá a známka, kterou dostane po vykonání zkoušky z daného předmětu. Klíčem tohoto schématu je (Hodina,Student). Snadno si všimneme následujících nedostatků a potíží: redundance, pro každého studenta navštěvujícího přednášku se opakují hodnoty přednáška, učitel, místnost, hodina nebezpečí vzniku nekonzistence při modifikacích jako důsledek redundance, anomálie při vkládání záznamů: nemůžeme vložit učitele, který nepřednáší, neboť by nebyly obsazeny klíčové atributy anomálie při vypouštění záznamů: přestane-li učitel přednášet, vypustíme prvky tohoto učitele, tím ztratíme informaci i o jeho jménu. Je zřejmě nutné schéma databáze změnit, atributy rozdělit do více relačních schémat. V následujícím seznamu jsou uvedena různá relační schémata databáze, popisující původní situaci. Pro jednoduchost místo atributů píšeme jen jejich počáteční písmena: R1 = {PU, HMP, HUM, PSZ, HSM } R4 = {PU, HMP, PSZ, HSP } R2 = {PU, HSP, PSZ, HSM } R5 = {HMPU, PSZ, HSM } R3 = {PU, HSM, PSZ, HMP } R6 = {PU, HMP, HSM } R7 = {PSUHM, PSZ } Po rozboru uvidíme, že všechna schémata jsou smysluplná, avšak nedovedeme říci, čím se vlastně od sebe liší, je-li některé z nich lepší než ostatní. Jediným zdrojem informací pro upřesnění sémantiky mohou být IO. Čím více jich budeme mít k dispozici, tím lépe můžeme provést návrh schématu. Současně se vznikem teorie relačního modelu dat vznikla také metoda návrhu relačních schémat, založená na jiných principech, než intuitivním návrhem konceptuálního modelu, a to pomocí funkčních závislostí.

3 2. Funkční závislosti Funkční závislost je definovaná mezi dvěma podmnožinami atributů v rámci jednoho schématu relace. Jde tedy o vztahy mezi atributy nikoliv mezi entitami. Definice: Nechť R({A1,A2,...,An}, f) je relační schéma, nechť X, Y jsou podmnožiny množiny jmen atributů {A1,A2,...,An}. Řekneme, že Y je funkčně závislá na X, píšeme X Y, když pro každou možnou aktuální relaci R(A1,A2,...,An) platí, že mají-li libovolné dva prvky (= dva řádky) relace R stejné hodnoty atributů X, pak mají i stejné hodnoty atributů Y. Je-li Y X říkáme, že závislost X Y je triviální. Jak plyne z definice funkční závislost je definována na základě všech možných aktuálních relací, není tedy možné soudit na funkční závislost z vlastností jediné (třeba aktuální) relace. Tak můžeme poznat pouze neplatnost funkční závislosti. Funkční závislosti jsou tvrzení o reálném světě, o významu atributů nebo vztahů mezi entitami (jako každé IO), je nutné je brát v úvahu při návrhu schématu databáze. Ukážeme si opět příklad: Je dána aktuální relace dle relačního schématu z minulého příkladu. Podívejme se podrobněji na obsah tabulky: Všimneme si vztahu mezi podmnožinami X = {místnost, hodina} a Y = {předmět}. Vždy, když 2 řádky tabulky mají stejné hodnoty atributů X, mají i stejné hodnoty atributů Y. V tabulce jsou vyznačeny stejnou barvou, X světlejším, Y tmavším odstínem. Slovně to můžeme formulovat takto: v dané místnosti a v danou hodinu v týdnu se učí jediný předmět. Tedy existuje funkční závislost M H P. Tuto funkční závislost známe obecně z reality. Funkční závislost nám také plyne z integritního omezení IO - v uvažované škole platí, že každý předmět přednáší jeden učitel - P U. Celkem v příkladě můžeme určit tuto množinu funkčních závislostí F - F = { MH P, P U, HU M, PS Z, HS M} Z aktuální relace by se mohlo usuzovat na platnost funkční závislosti M H, ovšem obecně to zřejmě není pravda. Nelze tedy z jedné relace dokázat platnost funkčního vztahu. Naopak negativní fakta mohou být zjistitelná, protože tvoří protipříklad: není pravda PU M, protože TZD se učí ve dvou posluchárnách v týdnu. Uvedeme ještě další pojmy, které jsou důležité pro další použití. Nechť F je množina funkčních závislostí pro relační schéma R, nechť X Y je funkční závislost. Řekneme, že F logicky implikuje X Y, jestliže v každé relaci R, v níž jsou splněny závislosti z F, je splněna i závislost X Y. Množinu všech závislostí, které jsou logicky

4 implikovány množinou F, nazýváme uzávěrem množiny F, označujeme F+. Nechť X, Y jsou podmnožiny atributů schématu R s množinou závislostí F. Říkáme, že Y úplně závisí na X, jestliže X Y a pro žádnou vlastní podmnožinu X' X není X' Y. Jinými slovy Y je funkčně závislá na X, ale není funkčně závislá na žádné vlastní podmnožině X. Nechť R ({A1,A2,...,An},f) je relační schéma s množinou funkčních závislostí F, nechť X {A1,A2,...,An}. Řekneme, že X je klíč schématu R, jestliže 1. X A1...An F+ 2. pro každou vlastní podmnožinu Y X je Y A1...An F Přidali jsme tedy podmínku minimality. Zřejmě můžeme klíč schématu definovat také jako takovou X A, že A je úplně závislá na X. V relačním schématu může být více klíčů, z nich obvykle vybíráme jeden a označujeme jako primární klíč. Atribut relačního schématu R se nazývá primární, je-li podmnožinou alespoň jednoho klíče schématu R. Ostatní atributy nazveme sekundárními. 2.1 Amstrongovy axiomy K určení klíče relačního schématu a k hledání logických implikací množiny závislostí potřebujeme nalézt uzávěr F+, nebo určit, zda daná závislost X Y je prvkem F+. K tomu existují pravidla zvaná Armstrongovy axiomy. Tato pravidla jsou úplná (dovolují odvodit z dané množiny závislostí F všechny závislosti patřící do F+) a bezesporná (dovolují z F odvodit pouze závislosti patřící do F+). Nechť A je množina atributů daného relačního schématu, F množina funkčních závislostí mezi atributy A. V následujících pravidlech označujeme sjednocení X Y jako XY. Následující odvozovací pravidla se obvykle nazývají Armstrongovými axiomy jsou: A1: jestliže Y X A, pak F logicky implikuje X Y (reflexivita, triviální fční závislost) A2: jestliže X Y a Z A, pak XZ YZ (rozšíření) A3: jestliže X Y a Y Z, pak X Z (tranzitivita) A4: jestliže X Y a X Z, pak X YZ (sjednocení) A5: jestliže X Y a WY Z, pak XW Z (pseudotranzitivita) A6: jestliže X Y a Z Y, pak X Z (zúžení) A7: jestliže X YZ, pak X Y a X Z (dekompozice) Důsledkem sjednocení a dekompozice je: X A 1...A n právě tehdy, když X A i pro všechna i. Příklad: Určete klíč relačního schématu R(Jméno, Katedra, Předmět, Úvazek) se závislostmi F = {Jméno Katedra, Jméno Předmět Úvazek}. Pro stručnost zapíšeme zadání i další odvozování opět jen prvními písmeny atributů: Zadání: A = {J, K, P, U }, F = {J K, JP U } Odvození klíče: 1. J K ( dáno v F ) 2. JP KP ( aplikace rozšíření na 1. ) 3. JP U ( dáno v F ) 4. JP KPU ( aplikace sjednocení na 2. a 3. ) 5. JP JKPU ( aplikace reflexivity na 4. ) Neplatí například J P, P K, podle důsledků pravidel je JP minimální a tedy klíč. Platí, že F lze nahradit závislostmi, které vzniknou dekompozicí pravých stran závislostí na

5 jednotlivé atributy. Závislost, která má na pravé straně pouze jeden atribut, nazýváme elementární. Je-li F' množina elementárních závislostí, které vzniknou z F uvedeným způsobem, platí F+ = F '+ Z F' lze odstraňovat závislosti, které jsou odvoditelné ze zbytku F'. Říkáme, že závislost f je redundandní v F', jestliže platí (F' - {f})+ = F'+ Odstraněním všech redundandních závislostí z F' vznikne tzv. neredundandní pokrytí F. Definice: Pokrytí množiny funkčních závislostí F je taková množina G funkčních závislostí, pro niž platí G+ = F+. Neredundandní pokrytí je takové pokrytí, které neobsahuje redundandní závislosti. Neredundandní pokrytí není dáno jednoznačně, závisí na pořadí, ve kterém odebíráme neredundandní závislosti. Obecně tedy nemusí být podmnožinou původní množiny F, pokud vycházíme z F+, ne z F. Příklad Určete neredundandní pokrytí množiny funkčních závislostí F: F = {X Y, Y X, Y Z, X Z} Řešení: 1. Uzávěr celé množiny F je : F+ = { X XYZ, Y YXZ, Z Z } 2. (F - {X Y})+ = {X XZ,... }... menší než F+, vyloučení závislost není redundandní, 3. (F - {Y X})+ = {X XZY, Y YZ... }... menší než F+, 4. (F - {Y Z})+ = {X XZY, Y YXZ, Z Z... }... stejný jako F+, Y Z je redundandní, 5. (F - {X Z})+ = {X XZY, Y YXZ, Z Z... }... stejný jako F+, X Z je redundandní, ale ne obě (Y Z i X Z) současně. Výsledek tedy není jednoznačný, záleží na pořadí odebírání redundandních závislostí: buď Fnered = { X Y, Y X, X Z } nebo Fnered = { X Y, Y X, Y Z } Příklad 5.8. Určete neredundandní pokrytí množiny funkčních závislostí F: F: AB C, C A, BC D, ACD B, D EG, BE C, CG BD, CE AG 1)Nejprve upravíme F, aby obsahovala jen elementární závislosti F': AB C, C A, BC D, ACD B, D E, D G, BE C, CG B, CG D, CE A, CE G Zde CE A, CG B jsou redundandní, vyloučíme je v uvedeném pořadí a dostaneme výsledek: F1: AB C, C A, BC D, ACD B, D E, D G, BE C, CG D, CE G 2)Jestliže zvolíme jiné pořadí při odstraňování redundandních závislostí v pořadí CE A, CG D, ACD B, obdržíme: F2: AB C, C A, BC D, D E, D G, BE C, CG B, CE G Při provádění dekompozicí univerzálního schématu R(A) se zadanou množinou funkčních závislostí F často není nutné znát celý uzávěr F+, ale stačí uzávěr podmnožiny atributů X A vzhledem k F. Tento uzávěr tvoří množina všech atributů funkčně závislých na X a označíme jej X+. Jestliže X Y a pro nějaké C X platí (X - C)+ = X+, říkáme, že atribut C je redundandní pro zadanou závislost. Pokrytí, v jehož závislostech neexistují žádné redundandní atributy, nazýváme minimálním pokrytím. Význam minimálního pokrytí je v tom, že pro manipulaci s IO (např. testování jejich splnění při aktualizaci relací) jich má být co nejméně.

6 Příklad Je dáno schéma R(A,B,C,D,E). Určete minimální pokrytí Fmin množiny funkčních závislostí F = {ABC D, E C, AB E, C D} Řešení: A+ = {A}, B+ = {B}, C+ = {CD}, D+ = {D}, E+ = {EA} AB+ = {ABECD}... v ABC D je C redundandní Výsledek: Fmin = {AB DEC, E C, C D} Příklad 5.9. Uvažme opět neredundandní pokrytí F1 z dŕívějšího příkladu: F1: AB C, C A, BC D, ACD B, D E, D G, BE C, CG D, CE G. Z C A lze odvodit CD AD a CD ACD. Protože ACD B, platí dále CD B. Tak získáme minimální pokrytí Fmin: AB C, C A, BC D, CD B, D E, D G, BE C, CG D, CE G Při eliminaci redundandních atributů se nenaruší uzávěr množiny funkčních závislostí, z redukovaných závislostí je možno získat původní. Z redukovaných závislostí se také nedají získat jiné závislosti, než ty původní. Platí tedy F+ = F1+ = F2+ = Fmin+ Obě transformace (odstranění redundandních závislostí a redundandních atributů) nelze provádět v libovolném pořadí. Pro získání minimálního pokrytí je nutno odstranit nejprve redundandní atributy a potom závislosti. 3. Normální formy 3.1 První normální forma - 1NF Relace je v první normální formě, pokud každý její atribut obsahuje jen atomické hodnoty. Tedy hodnoty z pohledu databáze již dále nedělitelné. Například v relaci obsahující data o nějaké osobě budeme chtít mít více telefonních čísel: Osoba Jméno Přijmení Adresa Telefony Jan Novák Havlíčkova 2 Praha ; ; Petr Kovář Svatoplukova 15 Brno ; ; Pavel Pavel Papalášova 25 Kocourkov ; ; S takovouto tabulkou by byla spousta problémů, například by se dost špatně prováděly změny čísel, případně vyhledávání podle telefonního čísla. Aby tabulka byla v 1NF musíme buďto rozdělit atribut telefon do více atributů (pouze za předpokladu, že jsme si jisti, že se množství telefonních čísel nezvýší), nebo oddělit telefoní čísla do samostatné tabulky, což já osobně preferuji, protože je to podstatně flexibilnější řešení: Osoba ID Jméno Příjmení Adresa 1 Jan Novák Havlíčkova 2 Praha 3 2 Petr Kovář Svatoplukova 15 Brno 3 Pavel Pavel Papalášova 25 Kocourkov

7 Telefon ID_osoby Cislo Zjednodušeno(jiný zdroj): Vyžaduje, aby všem atributovým jménům byly jako domény přiřazeny jednoduché datové typy. Tedy vlastně nic extra. 1NF asi nelze nesplnit. 3.2 Druhá normální forma - 2NF Relace se nachází v druhé normální formě, jestliže je v první normální formě a každý neklíčový atribut je plně závislý na primárním klíči, a to na celém klíči a nejen na nějaké jeho podmnožině. Z čehož vyplívá, že druhou normální formu musíme řešit pouze v případě, že máme vícehodnotový primární klíč. Zní to poněkud složitě, ale nic na tom není, opět pomůže příklad: V tabulce zboží v obchodě bude název zboží, výrobce, telefon na výrobce, cena zboží a množství na skladě. Sklad Název Výrobce Telefon Výrobce Cena Množství Mléčná čokoláda Milka Kč 2500 Oříšková čokoláda Milka Kč 2800 Tyčinka milkyway Milka Kč 7000 Mléčná čokoláda Orion Kč 5800 Oříšková horalka Horalka Kč 4560 Klíčem této relace je kombinace atributů Název a Výrobce. Telefon výrobce ovšem není závislí na celém klíči, ale pouze na atributu výrobce. To by vedlo k aktualizační anomálii a to k té, že pokud by se vymazaly veškeré výrobky od výrobce Milka, ztratilo by se telefoní číslo na výrobce Milka, což není zrovna žádané. Řešením je opět rozpad na dvě tabulky: Výrobek Název Výrobce_ID Cena Množství Mléčná čokoláda 1 30Kč 2500 Oříšková čokoláda 1 30Kč 2800 Tyčinka milkyway 1 10Kč 7000 Mléčná čokoláda 2 25Kč 5800 Oříšková horalka 3 7Kč 4560

8 ýrobce Vyrobce_ID Vyrobce Telefon 1 Milka Orion Horalka Zjednodušeno(jiný zdroj): Zakazuje míšení různých údajů v jedné tabulce. Formálně se to řekne: žádný neklíčový atribut (něco, co se v tab. vyhledává) není funkčně závislý jen na části libovolného klíče. Nesmím být tedy schopen najít nějaký údaj v tabulce podle informace, která je menší než klíč. (Jinak bych tabulku měl rozdělit na dvě.) 3.3 Třetí normální forma - 3NF V této formě se nachází tabulka, splňuje-li předchází dvě formy a žádný z jejich atributů není tranzitivně závislý na klíči. Jiné vyjádření téhož říká, že relace je v 3.NF, pokud je ve 2.NF a všechny neklíčové atributy jsou navzájem nezávislé. Opět definice, která zní nesrozumitelně, ale její použití je vlastně jednoduché. Tranzitivní závislost je taková závislost, mezi minimálně dvěma atributy a klíčem, kde jeden atribut je funkčně závislý na klíči a druhý atribut je funkčně závislý na prvním. Koukám, že jsem tomu opět moc nepomohl, takže nejlepší bude příklad: Řekněme, že firma chce uchovávat informace o zaměstnancích, takže vytvoříme relaci Zaměstnanec s atributy r.č. (primární klíč), Jméno, Příjmení, Město, PSČ, Funkce a Plat, zbytek adresy vynecháme, protože pro příklad není důležitý. Zaměstnanec r.č Jméno Příjmení Město PSČ Funkce Plat 1 Jack Smith Jihlava CEO Franta Vomáčka Praha Senior Software Architect Pepa František Plzeň Senior Software Architect Pavel Novák Kocourkov Junior Developer Petr Koukal Praha Database Designer Honza Novák Plzeň Junior Developer Z této tabulky je vidět kromě závislosti všech atributů na klíči ještě závislost PSČ a Města a závislost Platu na Funkci. Aby jsme si to ukázali pomocí obou vyjádření definic. Závislost r.č -> Město -> PSČ je tranzitivní závislost PSČ na klíči, stejně tak závislost r.č. -> Funkce ->Plat. Pochopitelnější je asi druhé vyjádření, podle něj jsou závislosti Město -> PSČ a Funkce ->Plat přesně ty, které porušují sousloví: "všechny neklíčové atributy jsou navzájem nezávislé". Řešením problému je opět rozpad na více relací, v tomto případě dokonce na 3, protože jsme 3.NF porušily rovnou dvakrát.

9 Zaměstnanec r.č Jméno Příjmení Město_ID Funkce_ID 1 Jack Smith Franta Vomáčka Pepa František Pavel Novák Petr Koukal Honza Novák 4 4 Město Město_ID Město PSČ 1 Jihlava Praha Kocourkov Plzeň Funkce Funkce_ID Funkce Plat 1 CEO Senior Software Architect Database Designer Junior Developer Zjednodušeno(jiný zdroj): Zakazuje tranzitivní funkční závislosti. Formálně: neexistuje klíč Klíč schématu R, podmnožina P schématu R a neklíčový atribut X, který není v P obsažen, aby Klič->P->X, ale přitom neplatilo P- >Klíč ani x->klíč. V tabulce Zaměstnanec( RČ, Č_Vedoucího, Č_Oddělení) lze Č_Vedoucího odvodit z Č_Oddělení. Klíčem do tabulky je přitom RČ zaměstance. (Nešikovné je to, protože při změně vedoucího nějakého oddělení budu muset projít všechny zaměstnance toho oddělení a vedoucího u nich upravit.) 3.4 Boyce Coddova normální forma - BCNF Boyce/Coddova normální forma se pokládá za variaci třetí normální formy a dokonce je původní definicí 3.NF tak jak byla publikována v 70 letech. Je vymezena stejnými pravidli jako 3.NF forma, říká, že musí platit i mezi hodnotami uvnitř složeného primárního klíče. Relace se nachází v BCNF, jestliže pro každou netriviální závislost X -> Y platí, že X je nadmnožinou nějakého klíče schématu R. Zní to poněkud šíleně, ale ničeho se nebojte, k tomu, aby byla porušena BCNF musí být splněno několik podmínek a to poměrně specifických: Relace musí mít více kandidátních klíčů Minimálně 2 kandidátní klíče musí být složené z více atributů Některé složené kandidátní klíče musí mít společný atribut. Nejsnáze Boyce/Coddovu normální formu pochopíme s pomocí funkčních závislostí. Boyce/Coddova normální forma v podstatě říká, že mezi kandidátními klíči nesmí být žádná funkční závislost. Jak známo, nejlépe se definice chápou na příkladech, takže mějme relaci adresář:

10 Původní příklad byl odstraněn, byl chybný, tento jsem si vypůjčil ze script Databázové systémy, Prof. RNDr. Jaroslav Pokorný CSc., Ing Ivan Halška Adresa Město Ulice PSČ Praha 10 Černokostelecká Jihlava Žižkova Praha 10 Vrátkovská Brno Dvořákova Praha 6 Chaloupeckého V této relaci platí dvě netriviální funkční závislosti: {Město,Ulice} -> PSČ a PSČ -> Město Protože neplatí Ulice -> PSČ ani Město -> PSČ, tvoří dvojice {Město, Ulice} klíč schématu. Klíčem je ale i {Ulice, PSČ} platí totiž PSČ -> Město, nikoliv však PSČ -> Ulice. Tudíž je {PSČ, Ulice} kandidátním klíčem schématu. Schéma má všechny atributy atomické a nemá žádný neklíčový atribut a tudíž je v 3.NF, ale není v BCNF. Tento fakt vede k tomu, že nelze evidovat města s PSČ bez znalosti Ulice a krom toho jsou v relaci redundantní data, pokud by se evidovalo velké množství ulic v jednom městě, začal by to být problém. Klasické řešení, rozpad na dvě tabulky. Vzhledem k tomu, že neplatí PSČ -> Ulice, musíme spojit PSČ a Ulice. Výsledkem tudíž budou relace Města(PSČ, Město) a Ulice(PSČ, Ulice) Město PSČ Město Praha Praha Jihlava Brno Adresa Ulice PSČ Černokostelecká Vrátkovská Dvořákova Chaloupeckého Dvořákova Zjednodušeno(jiný zdroj): Nedovoluje ani tranzitivní závislost klíčových atributů, tj. obsahuje pouze body 1. a 2. : 1. závislost je triviální, tj. atribut x je obsažn v Y, 2. Y je nadklíč schématu A 3.5 Čtvrtá normální forma - 4NF Tabulka je ve čtvrté normální formě, je-li v BCNF a popisuje pouze příčinnou souvislost (jeden fakt). Sice jednoduché vyjádření bez složitých definic, ale poněkud nicneříkající, takže zkusíme jinou definici: " Relace je ve čtvrté normální formě, pokud je v Boyce/Coddově normální formě, a navíc všechny vícehodnotové závislosti jsou zároveň funkčními závislostmi z kandidátních klíčů. " Mno koukám, že jsem tomu moc nepomohl, tak zkusíme definici a příklad ze skript Tvorba datového modelu v prostředí strategických informačních systému, Prof. Ing. Jindřich Kaluža, CSc. :

11 "ve čtvrté normální formě je relace tehdy, je-li v BCNF a všechny vícehodnotové závislosti obsažené v relaci jsou zároveň funkčními závislostmi. Vícehodnotovou závislost atributů lze definovat následovně: V relaci R, která je v BCNF, s atributy A, B, C nastává vícehodnotová závislost atributu B na atributu A právě tehdy, jestliže množina hodnot B přiřazená dvojici hodnot A, C závisí jen na hodnotě atributu A a je nezávislá na hodnotě atributu C." Tak teď už je to definice přesná a všeříkající, ale bez perfektní znalosti všech použitých pojmů je opět špatně pochopitelná, tudíž příklad si vypůjčím vysvětlení a příklad ze skript Databázové systémy, Vostrovský, Merunka: Čtvrtá normální forma se zabývá vztahy uvnitř složeného primárního klíč. Pokud je v tabulce složený primární klíč, může se stát, že některé hodnoty tohoto klíče jsou na sobě nezávislé, ale tím, že spolu tvoří klíč, vzniká falešná souvislost mezi těmito hodnotami a nemohou existovat nezávisle na sobě, což není v souladu s modelovanou realitou. 4.NF proto vyžaduje, aby klíč tvořily jen ty hodnoty, které mají skutečnou vzájemnou souvislost. Mějme relaci zachycující vztah zaměstnance, kvalifikace a úkolu: Pracovní zařazení(zaměstnanec, Úkol, Kvalifikace) Pracovní zařazení Zaměstnanec Úkol Kvalifikace Ing Petr Pastyňák Tvorba webu Webdeveloper Ing PetrPastyňák Návrh databáze podnikového IS Database Specialist Eva Petrželová Asistentka Ing Pastyňáka Psaní na stroji Eva Petrželová Asistentka Pastyňáka ECDL Pavel Mrkvička Analytik podnikového IS Aanalyst Pavel Mrkvička Analytik podnikového IS UML Všechny atributy dohromady tvoří klíč schématu a neexistuje mezi nimi žádná funkční závislost, tudíž je v BCNF a všechno vypadá ideálně, ale není tomu tak. I když se dá předpokládat, že atributy Kvalifikace a Úkol jsou na sobě nezávislé, tak tabulka neumožňuje zachytit kvalifikaci zaměstnance, který nemá přiřazen žádný úkol (a úkolujte někoho o kom netušíte co umí) a nelze ani úkolovat zaměstnance bez kvalifikace. Krom ztráty informací se rozkladem vyvarujeme i redundance dat. Tudíž je opět nutno tabulku rozdělit a to na dvojici: Kvalifikace (Zaměstnanec, Kvalifikace), Úkol (Zaměstnanec, Úkol). Kvalifikace Zaměstnanec Kvalifikace Ing Petr Pastyňák Webdeveloper Ing Petr Pastyňák Database Specialist Eva Petrželová Psaní na stroji Eva Petrželová ECDL Pavel Mrkvička Aanalyst Pavel Mrkvička UML Ing Petr Cibula Project manager Ing Petr Cibula RUP Specialist

12 Úkol Zaměstnanec Úkol Ing Petr Pastyňák Tvorba webu Ing Petr Pastyňák Návrh databáze podnikového IS Eva Petrželová Asistentka Ing Pastyňáka Pavel Mrkvička Analytik podnikového IS Jan Celer Kopání odvodňovacího kanálu Do rozložených relací jsem záměrně přidal data, která v původní relaci nebyla, ale měla by být. Krásně se tím ukazuje, jak snadné je teď najít project m,anagera na tvorbu podnikového IS, ale zkuste si to v nenormalizované tabulce, když pan Cibula zrovna nemá přidělen žádný úkol.

Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti

Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti Relační datový model Integritní omezení funkční závislosti multizávislosti inkluzní závislosti Normální formy Návrh IS Funkční závislosti funkční závislost elementární redundantní redukovaná částečná pokrytí

Více

4. Základy relačních databází, logická úroveň návrhu

4. Základy relačních databází, logická úroveň návrhu 4. Základy relačních databází, logická úroveň návrhu Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace.

Více

Teorie zpracování dat

Teorie zpracování dat Teorie zpracování dat Návrh struktury databáze Funkční závislosti Vlastnosti dekompozice relačního schématu Normální formy Algoritmy návrhu struktury databáze 1 NÁVRH STRUKTURY DATABÁZE dosud návrh struktury

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

UDBS Cvičení 10 Funkční závislosti

UDBS Cvičení 10 Funkční závislosti UDBS Cvičení 10 Funkční závislosti Ing. Miroslav Valečko Zimní semestr 2014/2015 25. 11. 2014 Návrh schématu databáze Existuje mnoho způsobů, jak navrhnout schéma databáze Některá jsou lepší, jiná zase

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

DBS Normální formy, normalizace

DBS Normální formy, normalizace DBS Normální formy, normalizace Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2010 BI-DBS, ZS 2010/11 https://edux.fit.cvut.cz/courses/bi-dbs/

Více

Databáze I. Přednáška 3

Databáze I. Přednáška 3 Databáze I Přednáška 3 Normální formy relací normální formy relací definují určité vlastnosti relací, aby výsledná databáze měla dobré vlastnosti, např. omezena redundance dat snažíme se převést navržené

Více

Úvod do databázových systémů

Úvod do databázových systémů Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 12 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování Univerzální relační

Více

Obsah přednášky. Databázové systémy. Normalizace relací. Normalizace relací. Normalizace relací. Normalizace relací

Obsah přednášky. Databázové systémy. Normalizace relací. Normalizace relací. Normalizace relací. Normalizace relací Obsah přednášky Databázové systémy Logický model databáze normalizace relací normální formy tabulek 0NF, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, DNF denormalizace zápis tabulek relační algebra klasické operace

Více

Kvalita relačního schématu, normalizace

Kvalita relačního schématu, normalizace Kvalita relačního schématu, normalizace Dva přístupy k návrhu struktury relačního schématu: normalizační teorie Metoda návrhu pomocí funkčních závislostí z konceptuálního schématu Metoda návrhu pomocí

Více

Úvod do databázových systémů. Cvičení 12 Ing. Martin Zwierzyna

Úvod do databázových systémů. Cvičení 12 Ing. Martin Zwierzyna Úvod do databázových systémů Cvičení 12 Ing. Martin Zwierzyna Základní pojmy Redundance Stejná data jsou uložena v databázi na více místech, zbytečně se opakují Řešení: Minimalizace redundance Základní

Více

Analýza a modelování dat 3. přednáška. Helena Palovská

Analýza a modelování dat 3. přednáška. Helena Palovská Analýza a modelování dat 3. přednáška Helena Palovská Historie databázových modelů Relační model dat Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM

Více

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky.

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Projekt ESF OP VK reg.č. CZ.1.07/2.2.00/28.0209 Elektronické opory a e-learning pro obory výpočtového

Více

Databázové systémy. Úvod do teorie normalizace. Vilém Vychodil

Databázové systémy. Úvod do teorie normalizace. Vilém Vychodil Databázové systémy Úvod do teorie normalizace Vilém Vychodil KMI/DATA1, Přednáška 12 Databázové systémy V. Vychodil (KMI/DATA1, Přednáška 12) Úvod do teorie normalizace Databázové systémy 1 / 10 Přednáška

Více

Databáze I. 4. přednáška. Helena Palovská

Databáze I. 4. přednáška. Helena Palovská Databáze I 4. přednáška Helena Palovská palovska@vse.cz Mapování ER modelu do relačního DB schématu Od 80. let 20. stol. znám algoritmus, implementován v CASE nástrojích Rutinní postup s volbami rozhodnutí

Více

7. Normální formy. PŘ: POJIŠŤOVNA Povinné ručení relace Platby

7. Normální formy. PŘ: POJIŠŤOVNA Povinné ručení relace Platby 7. Normální formy PŘ: POJIŠŤOVNA Povinné ručení relace Platby Rodné číslo 7407111234 7407111234 7407111234 7407111234 481123123 481123123 481123123 481123123 Jméno majitele Dvořák Petr Dvořák Petr Dvořák

Více

Úvod do databázových systémů

Úvod do databázových systémů Úvod do databázových systémů Databáze je dnes velmi často skloňovaným slovem. Co se pod tímto termínem skrývá si vysvětlíme na několika následujících stranách a cvičeních. Databáze se využívají k ukládání

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

11. blok Normalizace. Studijní cíl

11. blok Normalizace. Studijní cíl 11. blok Normalizace Studijní cíl Využití normalizace při návrhu databáze. Vliv nenormalizovaných tabulek na vznik anomálií a nekonzistence v databázi. Pravidla spojená s nejužívanějšími normálními formami

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou:

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou: Relační databáze Pojem databáze, druhy databází Databází se myslí uložiště dat. V době začátků využívání databází byly tyto členěny hlavně hierarchicky, případně síťově (rozšíření hierarchického modelu).

Více

Střední průmyslová škola Zlín

Střední průmyslová škola Zlín VY_32_INOVACE_33_01 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více

Zadání. Slovníček pojmů. Otázka 19 A7B36DBS

Zadání. Slovníček pojmů. Otázka 19 A7B36DBS Otázka 19 A7B36DBS Zadání... 1 Slovníček pojmů... 1 Návrh relačního schématu... 2 Normalizace schématu formou dekompozice... 5 Kritéria kvality dekompozice... 15 Návrh schématu relační databáze přímou

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází 1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,

Více

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Co je to databáze? Jaké

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Otázka č. 1 (bodů za otázku: 4)

Otázka č. 1 (bodů za otázku: 4) Otázka č. 1 (bodů za otázku: 4) Agendy - redundance Která z následujících tvrzení charakterizují redundanci dat v databázi? Je to opakování stejných dat pouze v různých souborech. Je zdrojem nekonzistence

Více

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR): Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Konceptuální modelování. Pavel Tyl 21. 3. 2013

Konceptuální modelování. Pavel Tyl 21. 3. 2013 Konceptuální modelování Pavel Tyl 21. 3. 2013 Vytváření IS Vytváření IS Analýza Návrh Implementace Testování Předání Jednotlivé fáze mezi sebou iterují Proč modelovat a analyzovat? Standardizované pracovní

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Primární klíč (Primary Key - PK) Je právě jedna množina atributů patřící jednomu z kandidátů primárního klíče.

Primární klíč (Primary Key - PK) Je právě jedna množina atributů patřící jednomu z kandidátů primárního klíče. Primární a cizí klíč Kandidát primárního klíče (KPK) Je taková množina atributů, která splňuje podmínky: Unikátnosti Minimálnosti (neredukovatelnosti) Primární klíč (Primary Key - PK) Je právě jedna množina

Více

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS Relační databázový model Databázové (datové) modely základní dělení klasické databázové modely relační databázový model relační databázový model Základní konstrukt - relace relace, schéma relace atribut,

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Úvod do databázových systémů 6. cvičení

Úvod do databázových systémů 6. cvičení Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů 6. cvičení Ing. Petr Lukáš petr.lukas@nativa.cz Ostrava, 2012 Modelování databází [1]

Více

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu. Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1

Více

Minimalizace KA - Úvod

Minimalizace KA - Úvod Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Kapitola 6: Omezení integrity. Omezení domény

Kapitola 6: Omezení integrity. Omezení domény - 6.1 - Omezení domény Referenční integrita Aserce Spouštěče (Triggers) Funkční závislosti Kapitola 6: Omezení integrity Omezení domény Omezení integrity zabraňují poškození databáze; zajišťují, že autorizované

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava. Úvod do databázových systémů 2012/2013 IS MHD

Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava. Úvod do databázových systémů 2012/2013 IS MHD Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava Úvod do databázových systémů 2012/2013 IS MHD Jiří Znoj, (zno0011) Ostrava, 29. listopadu 2012 I. Obsah I. Obsah...

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

S databázemi se v běžném životě setkáváme velmi často. Uvádíme běžné použití databází velkého rozsahu:

S databázemi se v běžném životě setkáváme velmi často. Uvádíme běžné použití databází velkého rozsahu: Úvod do databází Základní pojmy Databáze je množina záznamů, kterou shromažďujeme za nějakým konkrétním účelem. Databáze používáme zejména pro ukládání obsáhlých informací. Databázové systémy jsou k dispozici

Více

Jiří Mašek BIVŠ V Pra r ha 20 2 08

Jiří Mašek BIVŠ V Pra r ha 20 2 08 Jiří Mašek BIVŠ Praha 2008 Procesvývoje IS Unifiedprocess(UP) Iterace vývoje Rysy CASE nástrojů Podpora metodických přístupů modelování Integrační mechanismy propojení modelů Podpora etap vývoje Generování

Více

Terminologie v relačním modelu

Terminologie v relačním modelu 3. RELAČNÍ MODEL Relační model reprezentuje databázi jako soubor relací. Každá relace představuje tabulku nebo soubor ( ve smyslu soubor na nosiči dat ). Terminologie v relačním modelu řádek n-tice ( n-tuple,

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Databázové systémy. Ing. Radek Holý

Databázové systémy. Ing. Radek Holý Databázové systémy Ing. Radek Holý holy@cvut.cz Literatura: Skripta: Jeřábek, Kaliková, Krčál, Krčálová, Kalika: Databázové systémy pro dopravní aplikace Vydavatelství ČVUT, 09/2010 Co je relační databáze?

Více

RELACE, OPERACE. Relace

RELACE, OPERACE. Relace RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé

Více

DBS Konceptuální modelování

DBS Konceptuální modelování DBS Konceptuální modelování Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze Michal.Valenta@fit.cvut.cz c Michal Valenta, 2010 BIVŠ DBS I, ZS 2010/11 https://users.fit.cvut.cz/

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Modelový příklad Knihovna Vypracovaný příklad ze cvičení včetně komentářů k řešení 2014-02-28

Modelový příklad Knihovna Vypracovaný příklad ze cvičení včetně komentářů k řešení 2014-02-28 Modelový příklad Knihovna Vypracovaný příklad ze cvičení včetně komentářů k řešení 2014-02-28 v.1.0 Mějme evidenci klasické knihovny, našim cílem je evidovat informace o výpůjčkách a s tím související

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

1. Matematická logika

1. Matematická logika MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice 63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY (doplňující text ke konzultacím v 3. ročníku kombinovaného bakalářského studia oboru Aplikovaná

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

IMPORT DAT DO DATABÁZE

IMPORT DAT DO DATABÁZE Úvod do problematiky IMPORT DAT DO DATABÁZE Databázové tabulky lze naplňovat i již dříve pořízenými údaji. Můžeme tak snadno načíst do databáze data pořízená v textovém editoru WORD nebo v tabulkovém procesoru

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Databázové a informační systémy

Databázové a informační systémy Databázové a informační systémy 1. Teorie normálních forem Pojem normálních forem se používá ve spojitosti s dobře navrženými tabulkami. Správně vytvořené tabulky splňují 4 základní normální formy, které

Více

Analýza a modelování dat. Helena Palovská

Analýza a modelování dat. Helena Palovská Analýza a modelování dat Helena Palovská Analýza a modelování pro SW projekt Strukturovaný přístup Dynamická část (procesy, aktivity, funkce) Statická část (data) Objektově orientovaný přístup use case

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Ontologie. Otakar Trunda

Ontologie. Otakar Trunda Ontologie Otakar Trunda Definice Mnoho různých definic: Formální specifikace sdílené konceptualizace Hierarchicky strukturovaná množina termínů popisujících určitou věcnou oblast Strukturovaná slovní zásoba

Více

DATABÁZOVÝ SYSTÉM Proč databázový systém? Vrstvy modelování Konceptuální datové modelování

DATABÁZOVÝ SYSTÉM Proč databázový systém? Vrstvy modelování Konceptuální datové modelování DATABÁZOVÝ SYSTÉM - databáze (data) - je logicky uspořádaná (integrovaná) kolekce navzájem souvisejících dat. - je sebevysvětlující, protože data jsou uchovávána společně s popisy, známými jako metadata

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více