Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Rozměr: px
Začít zobrazení ze stránky:

Download "Způsobilost. Data a parametry. Menu: QCExpert Způsobilost"

Transkript

1 Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány související hodnoty řekročení secifikace a ARL. Modul umožňuje výočet indexů i ro jednostranné secifikace a ro data s asymetrickým (nenormálním) rozdělením. Data a arametry Vstuními daty jsou naměřené hodnoty sledovaného znaku jakosti. Tento modul očekává data v jednom slouci. V dialogovém anelu je dále nutno zadat cílovou hodnotu a alesoň jednu secifikační mez LSL (sodní secifikační mez, Lower Secification Limit) a USL (horní secifikační mez, Uer Secification Limit). V oli Slouce se vybere říslušný slouec s daty a říadně zvolíme výočet ro označená nebo neoznačená data v oli Data. V oli Grafy můžeme vybrat grafy, které chceme mít v grafickém výstuu, řehled grafů je uveden níže v odstavci 0. Je-li u sledovaného rocesu definována jen jedna secifikační mez, ať už sodní nebo dolní, zaíše se tato mez do dialogového anelu, druhá mez se onechá rázdná. Zadaná Hladina významnosti je oužita ro výočet intervalu solehlivosti jednotlivých indexů zůsobilosti a výkonnosti. Mezní je hodnota, indexu zůsobilosti, od kterou chceme ovažovat roces za nezůsobilý. V rotokolu se všechny hodnoty indexů i mezí jejich intervalů solehlivosti, které jsou menší než mezní, zvýrazní červeně. Obvyklá hodnota mezního bude zřejmě 1. Je-li zaškrtnuto olíčko Klasické indexy, vyočítají se a uvedou v rotokolu klasické indexy zůsobilosti a výkonnosti c, c k, c m,, k, m odle níže uvedených vztahů a k nim říslušné další arametry. okud je uvedena ouze jedna secifikační mez, klasické indexy se neočítají. V tom říadě je nutno zaškrtnout olíčko Obecné indexy a oužít index c * k. Je-li zaškrtnuto olíčko Obecné * indexy, vyočítají se a uvedou v rotokolu zobecněný index zůsobilosti c k založené na ravděodobnostním řístuu. Tento zobecněný index lze oužít i ro jednostrannou secifikační mez nebo ro asymetrická data, která nevyhovují ředokladu normálního rozdělení. (Test normality rozdělení dat je obsažen v modulu Základní statistika. Je-li zaškrtnuto olíčko Asymetrická data, * očítá rogram s možností asymetrického (sešikmeného) rozdělení dat a řisůsobí výočet c k skutečnému rozdělení dat za omocí exonenciální transformace dat, která je oužita k výočtu říslušné hodnoty kvantilové funkce F 1 ve vztahu ro c * k. ozor, není-li olíčko Asymetrická data zaškrtnuté, rogram oužije násilně model normálního rozdělení ro výočet c * k i v říadě, že data z normálního rozdělení neocházejí. okud si tedy nejsme jisti, necháme toto olíčko zaškrtnuté. Další odrobnosti o exonenciální transformaci viz modulu Transformace, říadně v Kuka: Statistické řízení jakosti, viz dooručená literatura. Nemají-li data normální rozdělení, klasické indexy jsou nerealistické, často silně nadhodnocené (avšak mohou být i odhodnocené) a není vhodné jich tedy oužívat.

2 Obrázek 1 Dialogový anel ro Zůsobilost c USL LSL min USL x, x LSL, c, 6 k 3 c m USL 2 LSL x 2 6 T USL LSL 6 1 d min USL x, x LSL 3, k, 2 n i2 x i x n1 i1 n 1, 2 xi x, d 2 = 1,128 n 1 i1 m 2 LSL x 2 USL 6 T zm F N x LSL 1 F N USL x ARL * c k F 1 ARL, 3 kde F -1 je inverzní distribuční funkce (neboli kvantilová funkce) normálního rozdělení. oznámka: rotože skutečná hodnota indexu zůsobilosti se nerovná vyočítanému odhadu, ale může ležet kdekoliv uvnitř intervalu solehlivosti, je jistější ovažovat za skutečnou hodnotu indexu sodní mez intervalu solehlivosti. Je nutno mít na aměti, že vyjde-li naříklad index c =1.001 s intervalem solehlivosti 0.8 až 1.2, je roces s 50% ravděodobností nezůsobilý (tedy c <1)! Vyjde-li však index c =1.2 s intervalem solehlivosti 1.0 až 1.4, je ravděodobnost (riziko), že roces je nezůsobilý, jen asi 2.5%. zm

3 rotokol Zůsobilost a výkonnost ro normální rozdělení Název úlohy : Výočty ro normální rozdělení se rovádějí ouze ři zadání obou secifikačních mezí. Je-li zadána jen jedna mez, oužijí se výsledky odstavce k ro asymetrická data. Název sešitu s daty. ílová hodnota: Zadaná ožadovaná hodnota arametru (cílová hodnota, target). Secifikační meze LSL Sodní secifikační mez, je-li zadána. USL Horní secifikační mez, je-li zadána. Mezní Nejnižší říustná hodnota zůsobilosti, res. výkonnosti. Hodnoty nižší než mezní budou v rotokolu označeny červeně a tučně. Indexy zůsobilosti Aritmetický růměr Aritmetický růměr dat. Směrodatná odchylka Směrodatná odchylka dat. +/- 3sigma Sodní a horní mez intervalu 3 kolem aritmetického růměru. Z-skore Hodnoty Z-skóre odovídající sodní a horní části rozdělení dat. Index Hodnota klasického indexu zůsobilosti c na základě. k Hodnota klasického indexu zůsobilosti c k na základě. m Hodnota klasického indexu zůsobilosti c m na základě. Dolní mez Dolní mez intervalu solehlivosti ro říslušné indexy. Udává nejnižší Horní mez Horní mez intervalu solehlivosti ro říslušné indexy. Udává nejvyšší Indexy výkonnosti Aritmetický růměr Aritmetický růměr dat. Směrodatná odchylka Směrodatná odchylka dat. +/- 3sigma Sodní a horní mez intervalu 3 kolem aritmetického růměru. Z-skore Hodnoty Z-skóre odovídající sodní a horní části rozdělení dat. Index Hodnota klasického indexu výkonnosti na základě. k Hodnota klasického indexu výkonnosti k na základě. m Hodnota klasického indexu výkonnosti m na základě. Dolní mez Dolní mez intervalu solehlivosti ro říslušné indexy. Udává nejnižší Horní mez Horní mez intervalu solehlivosti ro říslušné indexy. Udává nejvyšší ravd. řekročení ravděodobnost řekročení horní, res. sodní secifikační meze, zm. Toto číslo lze cháat jako ravděodobnost, že říští měření adne od sodní, res. nad horní secifikační mez ravd. řekročení % ravděodobnost řekročení horní, res. sodní secifikační meze (v rocentech). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích 100 měření, okud se v rocesu nic nezmění.

4 ravd. řekročení M ravděodobnost řekročení horní, res. sodní secifikační meze (v M). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích měření, okud se v rocesu nic nezmění. ravd. mimo SL ravd. mimo SL % ravd. mimo SL M ARL ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo lze cháat jako ravděodobnost, že říští měření adne mimo secifikační meze. ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích 100 měření, okud se v rocesu nic nezmění. ravděodobnost řekročení kterékoliv ze secifikačních mezí v rocentech. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích měření, okud se v rocesu nic nezmění. Střední (očekávaná) délka běhu (anglicky ARL = Average Run Length) mezi dvěma o sobě následujícími řekročeními secifikačních mezí. k ro asymetrická data 1) očet hodnot Oravený růměr ílová hodnota Mezní očet dat ro výočet Odhad střední hodnoty s ohledem na sešikmení dat. V říadě symetrických dat se rovná aritmetickému růměru, viz modul Transformace. Zadaná cílová hodnota (target). Nejnižší říustná hodnota zůsobilosti, res. výkonnosti. Hodnoty nižší než mezní budou v rotokolu označeny červeně a tučně. Secifikační meze Zadané secifikační meze. ravd. řekročení ravděodobnost řekročení horní, res. sodní secifikační meze, zm. Toto číslo lze cháat jako ravděodobnost, že říští měření adne od sodní, res. nad horní secifikační mez. ravd. řekročení % ravděodobnost řekročení horní, res. sodní secifikační meze (v rocentech). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích 100 měření, okud se v rocesu nic nezmění. ravd. řekročení M ravděodobnost řekročení horní, res. sodní secifikační meze (v M). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích měření, okud se v rocesu nic nezmění. ravd. mimo SL ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo lze cháat jako ravděodobnost, že říští měření adne mimo secifikační meze. ravd. mimo SL % ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích 100 měření, okud se v rocesu nic

5 nezmění. ravd. mimo SL M ravděodobnost řekročení kterékoliv ze secifikačních mezí v rocentech. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích měření, okud se v rocesu nic nezmění. ARL Střední (očekávaná) délka běhu (anglicky ARL = Average Run Length) mezi dvěma o sobě následujícími řekročeními secifikačních mezí. k Hodnota zobecněného indexu zůsobilosti c * k ro symetrická i asymetrická data latná ro oboustranné i jednostranné symetrické i asymetrické secifikační meze. Tato hodnota ck by se měla oužívat vždy v říadě rokazatelně asymetrických dat. Meze ro k Dolní a horní mez intervalu solehlivosti indexu zůsobilosti c * k. Udává nejnižší a nejvyšší 1) Výočty ro asymetrická data jsou založeny na transformované klasické směrodatné odchylce Grafy Modul Zůsobilost oskytuje čtyři grafy, z nichž tři mají charakter hustoty ravděodobnosti a jeden distribuční funkce. rvní tři grafy, tedy Histogram, Distribuční funkce a Hustoty ravděodobnosti se zobrazí ouze bylo-li zaškrtnuto olíčko Klasické indexy, oslední graf, Transformovaná hustota ravděodobnosti, se vytváří ouze bylo-li zaškrtnuto olíčko Obecné indexy. Orientační graf orovnávající data se secifikačními mezemi. Data jsou ředstavována histogramem, jádrovým odhadem hustoty ravděodobnosti (červeně) a křivkou hustoty normálního rozdělení (Gaussovou křivkou). Svislé čáry označují cílovou hodnotu, sodní a horní secifikační mez. Vrchol Gaussovy křivky (zeleně) odovídá aritmetickému růměru, který má být co nejblíže cílové hodnotě. Křivka distribuční funkce normálního rozdělení (neboli kumulativní hustota ravděodobnosti) vyočítaná z dat za ředokladu normálního rozdělení dat. Svisle jsou oět vyznačeny cílová hodnota (target) a secifikační meze. Vodorovná římka odovídá ravděodobnosti 0.5 a její růsečík s křivkou odovídá aritmetickému růměru dat. Z tohoto grafu lze římo odečítat ravděodobnosti ro odovídající hodnoty arametru. ro řesnější odečet oužijte funkci Detail v interaktivním režimu grafu. Křivky hustoty ravděodobnosti. Červeně je vyznačen jádrový odhad hustoty, zeleně je vyznačena Gaussova křivka hustoty normálního rozdělení. Odlišuje-li se výrazně tvar těchto dvou křivek může to svědčit o tom, že data neocházejí z normálního rozdělení. ro objektivní osouzení je však nutno oužít test normality, který je obsažen v modulu Základní statistika. řerušovanými svislými římkami jsou vyznačeny secifikační meze a cílová hodnota. Data jsou rerezentována černými body od osou x. Tyto body jsou náhodně roztýleny ve svislém směru ro leší řehlednost. V záhlaví grafu je uveden vyočítaný odhad klasických indexů c, c k a c m.

6 Transformovaná hustota ravděodobnosti. Jedná se o graf s obdobným významem jako graf ředchozí. Hustota ravděodobnosti je vyočtena metodou exonenciální transformace (další odrobnosti o exonenciální transformaci viz modulu Transformace). Není-li řed výočtem zaškrtnuto olíčko Asymetrická data, transformace se nerovádí a křivka v grafu ředstavuje hustotu normálního rozdělení. Křivka hustoty ravděodobnosti odráží říadné sešikmení rozdělení dat. V záhlaví je uvedena hodnota indexu c k * a v závorce (jsouli zadány obě secifikační meze) i klasického indexu c k. Liší-li se výrazně tyto hodnoty, je vhodnější oužít rvní hodnotu c k *. Ilustrace vlevo uvádí tvary grafu ro symetrická data a ro sešikmená data.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Zahraniční platební styk CZA 3.2 CZ. 1. Popis/Instalace... 3

Zahraniční platební styk CZA 3.2 CZ. 1. Popis/Instalace... 3 Zahraniční latební styk CZA 3.2 CZ Obsah CZA 3.2 CZ: 1. Pois/Instalace... 3 1.1 Modul CZA... 3 1.2 Instalace... 3 1.3 Suštění rogramu... 3 1.4 Uživatelské rostředí... 3 1.4.1 Lišta menu... 4 1.4.2 Lišta

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

1.1 Využití tabulkového procesoru jako laboratorního deníku. 1.3 Systém jakosti a počítačová kontrola jakosti

1.1 Využití tabulkového procesoru jako laboratorního deníku. 1.3 Systém jakosti a počítačová kontrola jakosti Semestrální práce Strana 1 Semestrální práce 1.1 Využití tabulkového procesoru jako laboratorního deníku 1.3 Systém jakosti a počítačová kontrola jakosti Ing. Ján Lengyel, CSc. Centrální analytická laboratoř

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež, statistika.

Více

P Ř I Z N Á N Í k dani z příjmů právnických osob

P Ř I Z N Á N Í k dani z příjmů právnických osob Než začte vylňovat tiskois, řečtěte te si, rosím, okyny. Finančnímu úřadu ro / Secializovanému finančnímu úřadu Pardubický kraj Územnímu racovišti v, ve, ro Moravské Třebové T 0 Daňové identifikační číslo

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

STATISTICKÉ METODY A DEMOGRAFIE

STATISTICKÉ METODY A DEMOGRAFIE STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5., 7.6. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež,

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízení ro akademický rok 24/5 na magisterský studijní rogram PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (ísemný test) U každé otázky či odotázky v následujícím zadání vyberte srávnou odověď zakroužkováním

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Nejlepší odhady polohy a rozptýlení chemických dat

Nejlepší odhady polohy a rozptýlení chemických dat Nejlepší odhady polohy a rozptýlení chemických dat Prof. RNDr. Milan Meloun, DrSc., Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice email: milan.meloun@upce.cz, http://meloun.upce.cz

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

S y s t é m e l e k t r o n i c k é h o b a n k o v n i c t v í. Napojení na účetní systémy popis exportních / importních souborů

S y s t é m e l e k t r o n i c k é h o b a n k o v n i c t v í. Napojení na účetní systémy popis exportních / importních souborů S y s t é m e l e k t r o n i c k é h o b a n k o v n i c t v í M u l t i C a s h Naojení na účetní systémy ois exortních / imortních souborů OBSAH OBECNÉ 2 TUZEMSKÉ PLATEBNÍ PŘÍKAZY 3 ZAHRANIČNÍ PLATEBNÍ

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

o. elektronickou KOpli aoaatku č. 18, který obsahuje speciální ujednání pro období roku 2016.

o. elektronickou KOpli aoaatku č. 18, který obsahuje speciální ujednání pro období roku 2016. Vážený anena základě žádosti Vaší městské části ze dne 15.04.2016 o oskytnutí informace dle zákona č. 106/1999 Sb., o svobodném řístuu k informacím, ve znění ozdějších ředisů (dále jen "lnfz"), Vám sdělujeme,

Více

Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil

Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil Exerimentální identifikace teelného výměníku Bc Michal Brádil STOČ 9 UTB ve Zlíně, Fakulta alikované informatiky, 9 ABSTRAKT Cílem této ráce je senámení čtenáře s laboratorním aříením Armfield PCT 4 a

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Základní vzory. pro řešení spotřebitelských problémů. www.dtest.cz. Reklamace výrobků. Odstupování a rušení smluv. Telekomunikace.

Základní vzory. pro řešení spotřebitelských problémů. www.dtest.cz. Reklamace výrobků. Odstupování a rušení smluv. Telekomunikace. www.dtest.cz Reklamace výrobků Odstuování a rušení smluv Telekomunikace Energetika Základní vzory Dozorové orgány ro řešení sotřebitelských roblémů Sotřebitelský roblém? Volejte oradnu dtestu 299 149 009!

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Tabulka 1 Příklad dat pro kalibraci

Tabulka 1 Příklad dat pro kalibraci Kalibrace Menu: QCExpert Kalibrace Modul Kalibrace je určen především pro analytické laboratoře a metrologická pracoviště. Nabízí kalibrační modely pro lineární a nelineární kalibrační závislosti s možností

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

OPTIMALIZACE PLÁŠTĚ BUDOV

OPTIMALIZACE PLÁŠTĚ BUDOV OPTIMALIZACE PLÁŠTĚ BUDOV Jindřiška Svobodová Úvod Otimalizace je ostu, jímž se snažíme dosět k co nejlešímu řešení uvažovaného konkrétního roblému. Mnohé raktické otimalizace vycházejí z tak jednoduché

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot Rozdělení Náhodná veličina Náhodná veličina je vyjádření výsledku náhodného pokusu číselnou hodnotou. Jde o reálnou funkci definovanou na množině. Rozdělení náhodné veličiny udává jakých hodnot a s jakou

Více

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) B Měření secifického ovrchu sorbentů Vedoucí ráce: Doc. Ing. Bohumír Dvořák, CSc. Umístění ráce: S31 1 MĚŘENÍ SPECIFICKÉHO POVRCHU SORBENTŮ 1. CÍL PRÁCE

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

PRINCIPY ZPRACOVÁNÍ HLASU V KLASICKÉ A IP TELEFONII

PRINCIPY ZPRACOVÁNÍ HLASU V KLASICKÉ A IP TELEFONII PRINCIPY ZPRACOVÁNÍ HLASU V KLASICKÉ A IP TELEFONII Doc. Ing. Boris ŠIMÁK, CSc. racoviště: ČVUT FEL, Katedra telekomunikační techniky; mail: simak@feld.cvut.cz Abstrakt: Tento řísěvek si klade za cíl seznámit

Více

Porovnání dostupnosti různých konfigurací redundance pro napájení stojanů

Porovnání dostupnosti různých konfigurací redundance pro napájení stojanů Porovnán dostunosti různých konfigurac redundance ro naájen stojanů White Paer č. 48 Resumé K zvýšen dostunosti výočetnch systémů jsou ro zařzen IT oužvány řenače a duáln rozvody naájen. Statistické metody

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Přejímka jedním výběrem

Přejímka jedním výběrem Přejímka jedním výběrem Menu: QCExpert Přejímka Jedním výběrem Statistická přejímka jedním výběrem slouží k rozhodnutí, zda dané množství nějakých výrobků vyhovuje našim požadavkům na kvalitu, která je

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízení ro akademický rok 2007/08 na magisterský studijní rogram: Zde nalete své univerzitní číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (ísemný test) U každé otázky či odotázky v následujícím

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2 TECNICKÝ KATALOG GRUNDFOS UPS, UPSD série. Oběhová bezucávková čeradla (mokroběžná) ro toná zařízení Obsah UPS, UPSD série Obecné informace strana Výkonový rozsah Výrobní rogram Tyový klíč Použití 5 Otoné

Více

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova GEOMETRICKÉ PROJEKCE S VYUŽITÍM 3D POČÍTAČOVÉHO MODELOVÁNÍ Petra Surynková, Yulianna Tolkunova Článek ojednává o realizovaných metodách inovace výuky deskritivní geometrie na Matematicko-fyzikální fakultě

Více

BALISTICKÝ MĚŘICÍ SYSTÉM

BALISTICKÝ MĚŘICÍ SYSTÉM BALISTICKÝ MĚŘICÍ SYSTÉM UŽIVATELSKÁ PŘÍRUČKA Verze 2.3 2007 OBSAH 1. ÚVOD... 5 2. HLAVNÍ OKNO... 6 3. MENU... 7 3.1 Soubor... 7 3.2 Měření...11 3.3 Zařízení...16 3.4 Graf...17 3.5 Pohled...17 1. ÚVOD

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI Předmě t STATISTICKÁ ANALÝ ZA JEDNOROZMĚ RNÝ CH DAT (ADSTAT) Ú stav experimentá lní biofarmacie, Hradec

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

TECHNICKÝ KATALOG GRUNDFOS. Hydro Multi-E. Automatické tlakové stanice se dvěma nebo třemi čerpadly CRE

TECHNICKÝ KATALOG GRUNDFOS. Hydro Multi-E. Automatické tlakové stanice se dvěma nebo třemi čerpadly CRE TECNICKÝ KATALOG GRUNDFOS Automatické tlakové stanice se dvěma nebo třemi čeradly CRE 19 Obsah Údaje o výrobku Výkonový rozsah 3 4 Provozní odmínky 4 Nátoková výška 4 Výrobní rogram 5 Tyové označování

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Zákon o vyrovnání relativní mezní produktivity (MP) (týká se výrobce), pro výrobce užitek = produktivita, chová se jako viz výše MU

Zákon o vyrovnání relativní mezní produktivity (MP) (týká se výrobce), pro výrobce užitek = produktivita, chová se jako viz výše MU Úvod do ekonomické teorie (body k řednášce) zásadní konstatování (A + B): (A) Užitek (Utilita) vyjadřuje míru usokojení sotřebitele ři získání určitého statku (výrobku, služby) Užitek je určen ředevším:

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

2.6.6 Sytá pára. Předpoklady: 2604

2.6.6 Sytá pára. Předpoklady: 2604 .6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

ADC (ADS) AIR DATA COMPUTER ( AIR DATA SYSTEM ) Aerometrický počítač, Aerometrický systém. V současné době se používá DADC Digital Air data computer

ADC (ADS) AIR DATA COMPUTER ( AIR DATA SYSTEM ) Aerometrický počítač, Aerometrický systém. V současné době se používá DADC Digital Air data computer ADC (ADS) AIR DATA COPUTER ( AIR DATA SYSTE ) Aerometrický očítač, Aerometrický systém V současné době se oužívá DADC Digital Air data comuter Slouží ke snímání a komlexnímu zracování aerometrických a

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

1 ROZHODOVÁNÍ V ŘÍZENÍ

1 ROZHODOVÁNÍ V ŘÍZENÍ 1 ROZHODOVÁNÍ V ŘÍZENÍ Rozhodování je ovažováno za jednu ze základních aktivit ři racionálním řešení nejenom řídících roblémů, řitom kvalita rozhodování zásadním zůsobem ovlivňuje výslednou kvalitu řídícího

Více

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického

Více

Shewhartovy regulační diagramy

Shewhartovy regulační diagramy Shewhartovy regulační diagramy Menu: QCExpert Regulační diagramy Cílem všech regulačních diagramů je určit a neustále kontrolovat, zda je sledovaný proces v takzvaném statisticky zvládnutém stavu. Prakticky

Více

P Ř I Z N Á N Í k dani z příjmů právnických osob

P Ř I Z N Á N Í k dani z příjmů právnických osob Než začnete vylňovat tiskois, řečtěte te si, rosím, okyny. Finančnímu úřadu ro / Secializovanému finančnímu úřadu Plzeňský kraj Územnímu racovišti v, ve, ro Horažďovicích ovicích 0 Daňové identifikační

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí

ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí Měření růtou lynu rotametrem a alibrace ailárního růtooměru Úvod: Průtoy lynů se měří lynoměry, rotametry nebo se vyočítávají ze změřené tlaové diference v místech zúžení růřezu otrubí nař.clonou, Venturiho

Více