Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Rozměr: px
Začít zobrazení ze stránky:

Download "Způsobilost. Data a parametry. Menu: QCExpert Způsobilost"

Transkript

1 Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány související hodnoty řekročení secifikace a ARL. Modul umožňuje výočet indexů i ro jednostranné secifikace a ro data s asymetrickým (nenormálním) rozdělením. Data a arametry Vstuními daty jsou naměřené hodnoty sledovaného znaku jakosti. Tento modul očekává data v jednom slouci. V dialogovém anelu je dále nutno zadat cílovou hodnotu a alesoň jednu secifikační mez LSL (sodní secifikační mez, Lower Secification Limit) a USL (horní secifikační mez, Uer Secification Limit). V oli Slouce se vybere říslušný slouec s daty a říadně zvolíme výočet ro označená nebo neoznačená data v oli Data. V oli Grafy můžeme vybrat grafy, které chceme mít v grafickém výstuu, řehled grafů je uveden níže v odstavci 0. Je-li u sledovaného rocesu definována jen jedna secifikační mez, ať už sodní nebo dolní, zaíše se tato mez do dialogového anelu, druhá mez se onechá rázdná. Zadaná Hladina významnosti je oužita ro výočet intervalu solehlivosti jednotlivých indexů zůsobilosti a výkonnosti. Mezní je hodnota, indexu zůsobilosti, od kterou chceme ovažovat roces za nezůsobilý. V rotokolu se všechny hodnoty indexů i mezí jejich intervalů solehlivosti, které jsou menší než mezní, zvýrazní červeně. Obvyklá hodnota mezního bude zřejmě 1. Je-li zaškrtnuto olíčko Klasické indexy, vyočítají se a uvedou v rotokolu klasické indexy zůsobilosti a výkonnosti c, c k, c m,, k, m odle níže uvedených vztahů a k nim říslušné další arametry. okud je uvedena ouze jedna secifikační mez, klasické indexy se neočítají. V tom říadě je nutno zaškrtnout olíčko Obecné indexy a oužít index c * k. Je-li zaškrtnuto olíčko Obecné * indexy, vyočítají se a uvedou v rotokolu zobecněný index zůsobilosti c k založené na ravděodobnostním řístuu. Tento zobecněný index lze oužít i ro jednostrannou secifikační mez nebo ro asymetrická data, která nevyhovují ředokladu normálního rozdělení. (Test normality rozdělení dat je obsažen v modulu Základní statistika. Je-li zaškrtnuto olíčko Asymetrická data, * očítá rogram s možností asymetrického (sešikmeného) rozdělení dat a řisůsobí výočet c k skutečnému rozdělení dat za omocí exonenciální transformace dat, která je oužita k výočtu říslušné hodnoty kvantilové funkce F 1 ve vztahu ro c * k. ozor, není-li olíčko Asymetrická data zaškrtnuté, rogram oužije násilně model normálního rozdělení ro výočet c * k i v říadě, že data z normálního rozdělení neocházejí. okud si tedy nejsme jisti, necháme toto olíčko zaškrtnuté. Další odrobnosti o exonenciální transformaci viz modulu Transformace, říadně v Kuka: Statistické řízení jakosti, viz dooručená literatura. Nemají-li data normální rozdělení, klasické indexy jsou nerealistické, často silně nadhodnocené (avšak mohou být i odhodnocené) a není vhodné jich tedy oužívat.

2 Obrázek 1 Dialogový anel ro Zůsobilost c USL LSL min USL x, x LSL, c, 6 k 3 c m USL 2 LSL x 2 6 T USL LSL 6 1 d min USL x, x LSL 3, k, 2 n i2 x i x n1 i1 n 1, 2 xi x, d 2 = 1,128 n 1 i1 m 2 LSL x 2 USL 6 T zm F N x LSL 1 F N USL x ARL * c k F 1 ARL, 3 kde F -1 je inverzní distribuční funkce (neboli kvantilová funkce) normálního rozdělení. oznámka: rotože skutečná hodnota indexu zůsobilosti se nerovná vyočítanému odhadu, ale může ležet kdekoliv uvnitř intervalu solehlivosti, je jistější ovažovat za skutečnou hodnotu indexu sodní mez intervalu solehlivosti. Je nutno mít na aměti, že vyjde-li naříklad index c =1.001 s intervalem solehlivosti 0.8 až 1.2, je roces s 50% ravděodobností nezůsobilý (tedy c <1)! Vyjde-li však index c =1.2 s intervalem solehlivosti 1.0 až 1.4, je ravděodobnost (riziko), že roces je nezůsobilý, jen asi 2.5%. zm

3 rotokol Zůsobilost a výkonnost ro normální rozdělení Název úlohy : Výočty ro normální rozdělení se rovádějí ouze ři zadání obou secifikačních mezí. Je-li zadána jen jedna mez, oužijí se výsledky odstavce k ro asymetrická data. Název sešitu s daty. ílová hodnota: Zadaná ožadovaná hodnota arametru (cílová hodnota, target). Secifikační meze LSL Sodní secifikační mez, je-li zadána. USL Horní secifikační mez, je-li zadána. Mezní Nejnižší říustná hodnota zůsobilosti, res. výkonnosti. Hodnoty nižší než mezní budou v rotokolu označeny červeně a tučně. Indexy zůsobilosti Aritmetický růměr Aritmetický růměr dat. Směrodatná odchylka Směrodatná odchylka dat. +/- 3sigma Sodní a horní mez intervalu 3 kolem aritmetického růměru. Z-skore Hodnoty Z-skóre odovídající sodní a horní části rozdělení dat. Index Hodnota klasického indexu zůsobilosti c na základě. k Hodnota klasického indexu zůsobilosti c k na základě. m Hodnota klasického indexu zůsobilosti c m na základě. Dolní mez Dolní mez intervalu solehlivosti ro říslušné indexy. Udává nejnižší Horní mez Horní mez intervalu solehlivosti ro říslušné indexy. Udává nejvyšší Indexy výkonnosti Aritmetický růměr Aritmetický růměr dat. Směrodatná odchylka Směrodatná odchylka dat. +/- 3sigma Sodní a horní mez intervalu 3 kolem aritmetického růměru. Z-skore Hodnoty Z-skóre odovídající sodní a horní části rozdělení dat. Index Hodnota klasického indexu výkonnosti na základě. k Hodnota klasického indexu výkonnosti k na základě. m Hodnota klasického indexu výkonnosti m na základě. Dolní mez Dolní mez intervalu solehlivosti ro říslušné indexy. Udává nejnižší Horní mez Horní mez intervalu solehlivosti ro říslušné indexy. Udává nejvyšší ravd. řekročení ravděodobnost řekročení horní, res. sodní secifikační meze, zm. Toto číslo lze cháat jako ravděodobnost, že říští měření adne od sodní, res. nad horní secifikační mez ravd. řekročení % ravděodobnost řekročení horní, res. sodní secifikační meze (v rocentech). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích 100 měření, okud se v rocesu nic nezmění.

4 ravd. řekročení M ravděodobnost řekročení horní, res. sodní secifikační meze (v M). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích měření, okud se v rocesu nic nezmění. ravd. mimo SL ravd. mimo SL % ravd. mimo SL M ARL ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo lze cháat jako ravděodobnost, že říští měření adne mimo secifikační meze. ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích 100 měření, okud se v rocesu nic nezmění. ravděodobnost řekročení kterékoliv ze secifikačních mezí v rocentech. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích měření, okud se v rocesu nic nezmění. Střední (očekávaná) délka běhu (anglicky ARL = Average Run Length) mezi dvěma o sobě následujícími řekročeními secifikačních mezí. k ro asymetrická data 1) očet hodnot Oravený růměr ílová hodnota Mezní očet dat ro výočet Odhad střední hodnoty s ohledem na sešikmení dat. V říadě symetrických dat se rovná aritmetickému růměru, viz modul Transformace. Zadaná cílová hodnota (target). Nejnižší říustná hodnota zůsobilosti, res. výkonnosti. Hodnoty nižší než mezní budou v rotokolu označeny červeně a tučně. Secifikační meze Zadané secifikační meze. ravd. řekročení ravděodobnost řekročení horní, res. sodní secifikační meze, zm. Toto číslo lze cháat jako ravděodobnost, že říští měření adne od sodní, res. nad horní secifikační mez. ravd. řekročení % ravděodobnost řekročení horní, res. sodní secifikační meze (v rocentech). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích 100 měření, okud se v rocesu nic nezmění. ravd. řekročení M ravděodobnost řekročení horní, res. sodní secifikační meze (v M). Toto číslo lze cháat jako očet měření, která adnou od sodní, res. nad horní secifikační mez z říštích měření, okud se v rocesu nic nezmění. ravd. mimo SL ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo lze cháat jako ravděodobnost, že říští měření adne mimo secifikační meze. ravd. mimo SL % ravděodobnost řekročení kterékoliv ze secifikačních mezí. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích 100 měření, okud se v rocesu nic

5 nezmění. ravd. mimo SL M ravděodobnost řekročení kterékoliv ze secifikačních mezí v rocentech. Toto číslo se rovná součtu říslušných hodnot ro sodní a horní mez z ředchozího odstavce. Lze jej cháat jako očet měření, která adnou mimo secifikační meze z říštích měření, okud se v rocesu nic nezmění. ARL Střední (očekávaná) délka běhu (anglicky ARL = Average Run Length) mezi dvěma o sobě následujícími řekročeními secifikačních mezí. k Hodnota zobecněného indexu zůsobilosti c * k ro symetrická i asymetrická data latná ro oboustranné i jednostranné symetrické i asymetrické secifikační meze. Tato hodnota ck by se měla oužívat vždy v říadě rokazatelně asymetrických dat. Meze ro k Dolní a horní mez intervalu solehlivosti indexu zůsobilosti c * k. Udává nejnižší a nejvyšší 1) Výočty ro asymetrická data jsou založeny na transformované klasické směrodatné odchylce Grafy Modul Zůsobilost oskytuje čtyři grafy, z nichž tři mají charakter hustoty ravděodobnosti a jeden distribuční funkce. rvní tři grafy, tedy Histogram, Distribuční funkce a Hustoty ravděodobnosti se zobrazí ouze bylo-li zaškrtnuto olíčko Klasické indexy, oslední graf, Transformovaná hustota ravděodobnosti, se vytváří ouze bylo-li zaškrtnuto olíčko Obecné indexy. Orientační graf orovnávající data se secifikačními mezemi. Data jsou ředstavována histogramem, jádrovým odhadem hustoty ravděodobnosti (červeně) a křivkou hustoty normálního rozdělení (Gaussovou křivkou). Svislé čáry označují cílovou hodnotu, sodní a horní secifikační mez. Vrchol Gaussovy křivky (zeleně) odovídá aritmetickému růměru, který má být co nejblíže cílové hodnotě. Křivka distribuční funkce normálního rozdělení (neboli kumulativní hustota ravděodobnosti) vyočítaná z dat za ředokladu normálního rozdělení dat. Svisle jsou oět vyznačeny cílová hodnota (target) a secifikační meze. Vodorovná římka odovídá ravděodobnosti 0.5 a její růsečík s křivkou odovídá aritmetickému růměru dat. Z tohoto grafu lze římo odečítat ravděodobnosti ro odovídající hodnoty arametru. ro řesnější odečet oužijte funkci Detail v interaktivním režimu grafu. Křivky hustoty ravděodobnosti. Červeně je vyznačen jádrový odhad hustoty, zeleně je vyznačena Gaussova křivka hustoty normálního rozdělení. Odlišuje-li se výrazně tvar těchto dvou křivek může to svědčit o tom, že data neocházejí z normálního rozdělení. ro objektivní osouzení je však nutno oužít test normality, který je obsažen v modulu Základní statistika. řerušovanými svislými římkami jsou vyznačeny secifikační meze a cílová hodnota. Data jsou rerezentována černými body od osou x. Tyto body jsou náhodně roztýleny ve svislém směru ro leší řehlednost. V záhlaví grafu je uveden vyočítaný odhad klasických indexů c, c k a c m.

6 Transformovaná hustota ravděodobnosti. Jedná se o graf s obdobným významem jako graf ředchozí. Hustota ravděodobnosti je vyočtena metodou exonenciální transformace (další odrobnosti o exonenciální transformaci viz modulu Transformace). Není-li řed výočtem zaškrtnuto olíčko Asymetrická data, transformace se nerovádí a křivka v grafu ředstavuje hustotu normálního rozdělení. Křivka hustoty ravděodobnosti odráží říadné sešikmení rozdělení dat. V záhlaví je uvedena hodnota indexu c k * a v závorce (jsouli zadány obě secifikační meze) i klasického indexu c k. Liší-li se výrazně tyto hodnoty, je vhodnější oužít rvní hodnotu c k *. Ilustrace vlevo uvádí tvary grafu ro symetrická data a ro sešikmená data.

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@niax.cz Pravděodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, tyy dat, variabilita, frekvenční analýza

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )

Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Spojitá náhodná veličina

Spojitá náhodná veličina Lekce 3 Sojitá náhodná veličina Příad sojité náhodné veličiny je komlikovanější, než je tomu u veličiny diskrétní Je to dáno ředevším tím, že jednotková ravděodobnost jistého jevu se rozkládá mezi nekonečně

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Model tenisového utkání

Model tenisového utkání Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

Zahraniční platební styk CZA 3.2 CZ. 1. Popis/Instalace... 3

Zahraniční platební styk CZA 3.2 CZ. 1. Popis/Instalace... 3 Zahraniční latební styk CZA 3.2 CZ Obsah CZA 3.2 CZ: 1. Pois/Instalace... 3 1.1 Modul CZA... 3 1.2 Instalace... 3 1.3 Suštění rogramu... 3 1.4 Uživatelské rostředí... 3 1.4.1 Lišta menu... 4 1.4.2 Lišta

Více

1.1 Využití tabulkového procesoru jako laboratorního deníku. 1.3 Systém jakosti a počítačová kontrola jakosti

1.1 Využití tabulkového procesoru jako laboratorního deníku. 1.3 Systém jakosti a počítačová kontrola jakosti Semestrální práce Strana 1 Semestrální práce 1.1 Využití tabulkového procesoru jako laboratorního deníku 1.3 Systém jakosti a počítačová kontrola jakosti Ing. Ján Lengyel, CSc. Centrální analytická laboratoř

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Využití metody bootstrapping při analýze dat II.část Doc. Ing. Olga TŮMOVÁ, CSc. Obsah Klasické procedury a statistické SW - metody výpočtů konfidenčních

Více

MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů

MĚŘENÍ VÝKONU V SOUSTAVĚ MĚNIČ - MOTOR. Petr BERNAT VŠB - TU Ostrava, katedra elektrických strojů a přístrojů MĚŘENÍ VÝKONU V SOUSAVĚ MĚNIČ - MOOR Petr BERNA VŠB - U Ostrava, katedra elektrických strojů a řístrojů Nástu regulovaných ohonů s asynchronními motory naájenými z měničů frekvence řináší kromě nesorných

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

PRINCIPY ZABEZPEČENÍ KVALITY

PRINCIPY ZABEZPEČENÍ KVALITY (c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,

Více

Hledání parabol

Hledání parabol 7.5.1 Hledání arabol Předoklad: 751, 7513 Pedagogická oznámka: Studenti jsou o řekonání očátečních roblémů s aměti vcelku úsěšní, všichni většinou zvládnou alesoň rvních ět říkladů. Hodinu organizuji tak,

Více

P Ř I Z N Á N Í k dani z příjmů právnických osob

P Ř I Z N Á N Í k dani z příjmů právnických osob Než začte vylňovat tiskois, řečtěte te si, rosím, okyny. Finančnímu úřadu ro / Secializovanému finančnímu úřadu Pardubický kraj Územnímu racovišti v, ve, ro Moravské Třebové T 0 Daňové identifikační číslo

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež, statistika.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI

ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI ZÁKLADNÍ NÁSTROJE ŘÍZENÍ JAKOSTI SPŠ na Proseku 4-1 Ing. A. Styblíková, Ing. L. Procházka - pevně stanovený soubor grafických technik napomáhajících při řešení problémů s kvalitou - jedná se o 7 nástrojů

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Jak na nejistoty metodou Monte Carlo jednoduše a bez drahých programů

Jak na nejistoty metodou Monte Carlo jednoduše a bez drahých programů Rok / Year: Svazek / Volume: Číslo / Number: 214 16 2 Jak na nejistoty metodou Monte Carlo jednoduše a bez drahých rogramů How to calculate uncertainties by means of Monte Carlo method in an easy manner

Více

VYHODNOCENÍ MĚŘENÍ (varianta "soulodí")

VYHODNOCENÍ MĚŘENÍ (varianta soulodí) VYHODNOCENÍ MĚŘENÍ (varanta "soulodí") Měřl (Jméno, Příjmení, skuna):... Datum:... Vyhodnocení hydrometrckého měření na Berounce (soulodí) Z vyočtených rychlostí ve všech bodech svslce určíme střední svslcovou

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

STATISTICKÉ METODY A DEMOGRAFIE

STATISTICKÉ METODY A DEMOGRAFIE STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5., 7.6. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež,

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

ze dne 2016, Nejlepší dostupné technologie v oblasti zneškodňování odpadních vod a podmínky jejich použití

ze dne 2016, Nejlepší dostupné technologie v oblasti zneškodňování odpadních vod a podmínky jejich použití I I I. N á v r h N A Ř Í Z E N Í V L Á D Y ze dne 2016, kterým se mění nařízení vlády č. 401/2015 Sb., o ukazatelích a hodnotách říustného znečištění ovrchových vod a odadních vod, náležitech ovolení k

Více

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízení ro akademický rok 24/5 na magisterský studijní rogram PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (ísemný test) U každé otázky či odotázky v následujícím zadání vyberte srávnou odověď zakroužkováním

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) B Měření secifického ovrchu sorbentů Vedoucí ráce: Doc. Ing. Bohumír Dvořák, CSc. Umístění ráce: S31 1 MĚŘENÍ SPECIFICKÉHO POVRCHU SORBENTŮ 1. CÍL PRÁCE

Více

Řešený příklad: Přípoj příhradového vazníku na sloup čelní deskou

Řešený příklad: Přípoj příhradového vazníku na sloup čelní deskou Dokument: SX033a-CZ-EU Strana 1 z 7 Řešený říklad: Příoj říhradového vazníku na slou čelní Příklad ředstavuje výočet smykové únosnosti říoje střešního říhradového vazníku k ásnici slouu omocí čelní desky.

Více

Tabulka 1 Příklad dat pro kalibraci

Tabulka 1 Příklad dat pro kalibraci Kalibrace Menu: QCExpert Kalibrace Modul Kalibrace je určen především pro analytické laboratoře a metrologická pracoviště. Nabízí kalibrační modely pro lineární a nelineární kalibrační závislosti s možností

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

o. elektronickou KOpli aoaatku č. 18, který obsahuje speciální ujednání pro období roku 2016.

o. elektronickou KOpli aoaatku č. 18, který obsahuje speciální ujednání pro období roku 2016. Vážený anena základě žádosti Vaší městské části ze dne 15.04.2016 o oskytnutí informace dle zákona č. 106/1999 Sb., o svobodném řístuu k informacím, ve znění ozdějších ředisů (dále jen "lnfz"), Vám sdělujeme,

Více

S y s t é m e l e k t r o n i c k é h o b a n k o v n i c t v í. Napojení na účetní systémy popis exportních / importních souborů

S y s t é m e l e k t r o n i c k é h o b a n k o v n i c t v í. Napojení na účetní systémy popis exportních / importních souborů S y s t é m e l e k t r o n i c k é h o b a n k o v n i c t v í M u l t i C a s h Naojení na účetní systémy ois exortních / imortních souborů OBSAH OBECNÉ 2 TUZEMSKÉ PLATEBNÍ PŘÍKAZY 3 ZAHRANIČNÍ PLATEBNÍ

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Základní vzory. pro řešení spotřebitelských problémů. www.dtest.cz. Reklamace výrobků. Odstupování a rušení smluv. Telekomunikace.

Základní vzory. pro řešení spotřebitelských problémů. www.dtest.cz. Reklamace výrobků. Odstupování a rušení smluv. Telekomunikace. www.dtest.cz Reklamace výrobků Odstuování a rušení smluv Telekomunikace Energetika Základní vzory Dozorové orgány ro řešení sotřebitelských roblémů Sotřebitelský roblém? Volejte oradnu dtestu 299 149 009!

Více

Návrh a vyhodnocení experimentu

Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav

Více

Exploratorní analýza dat

Exploratorní analýza dat 2. kapitola Exploratorní analýza dat Řešení praktických úloh z Kompendia, str. 81. Načtení dat po F3. Načtená data úlohy B201 je možné v editoru ještě opravovat. Volba statistické metody v červeném menu.

Více

Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil

Experimentální identifikace tepelného výměníku. Bc. Michal Brázdil Exerimentální identifikace teelného výměníku Bc Michal Brádil STOČ 9 UTB ve Zlíně, Fakulta alikované informatiky, 9 ABSTRAKT Cílem této ráce je senámení čtenáře s laboratorním aříením Armfield PCT 4 a

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

PARALELNÍ PROCESY A PROGRAMOVÁNÍ

PARALELNÍ PROCESY A PROGRAMOVÁNÍ PARALELNÍ PROCESY A PROGRAMOVÁNÍ 6 Analýza složitosti algoritmů - cena, ráce a efektivita Ing. Michal Bližňák, Ph.D. Zlín 2013 Tento studijní materiál vznikl za finanční odory Evroského sociálního fondu

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

OPTIMALIZACE PLÁŠTĚ BUDOV

OPTIMALIZACE PLÁŠTĚ BUDOV OPTIMALIZACE PLÁŠTĚ BUDOV Jindřiška Svobodová Úvod Otimalizace je ostu, jímž se snažíme dosět k co nejlešímu řešení uvažovaného konkrétního roblému. Mnohé raktické otimalizace vycházejí z tak jednoduché

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

Rozšířené regulační diagramy

Rozšířené regulační diagramy Rozšířené regulační diagramy Menu: QCExpert Rozšířené Následující regulační diagramy jsou významným rozšířením možností nabízených Shewhartovými diagramy. Jsou doporučovány jako jejich alternativa nebo

Více

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY

ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 65. ročník Matematické olymiády Úlohy domácí části I. kola kategorie C. Najděte všechny možné hodnoty součinu rvočísel, q, r, ro která latí (q + r) = 637. Řešení. evou stranu dané rovnice rozložíme na

Více

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2 TECNICKÝ KATALOG GRUNDFOS UPS, UPSD série. Oběhová bezucávková čeradla (mokroběžná) ro toná zařízení Obsah UPS, UPSD série Obecné informace strana Výkonový rozsah Výrobní rogram Tyový klíč Použití 5 Otoné

Více