ZPLYŇOVÁNÍ V EXPERIMENTÁLNÍM REAKTORU S PEVNÝM LOŽEM

Rozměr: px
Začít zobrazení ze stránky:

Download "ZPLYŇOVÁNÍ V EXPERIMENTÁLNÍM REAKTORU S PEVNÝM LOŽEM"

Transkript

1 ZPLYŇOVÁNÍ V EXPERIMENTÁLNÍM REAKTORU S PEVNÝM LOŽEM Jan Najser, Miroslav Kyjovský V příspěvku je prezentováno využití biomasy dřeva a zbytků ze zemědělské výroby jako obnovitelného zdroje energie k výrobě elektrické energie zplyňováním. Je zde popsána technologie zplyňování ve zplyňovači s pevným ložem, vlastnosti produkovaného plynu. Cílem je použití vyrobeného plynu v kogenerační jednotce s pístovými spalovacími motory k výrobě elektrické energie a tepla. Klíčová slova: biomasa, zplyňování, spalování, kogenerace, kogenerační jednotky ÚVOD Biomasa představuje v podmínkách nejen České republiky a dalších středoevropských států jeden z nejperspektivnějších obnovitelných zdrojů energie. Biomasa je organická hmota rostlinného nebo živočišného původu a má obnovitelný charakter. Je záměrně získávána jako výsledek výrobní činnosti nebo se jedná o využití odpadů ze zemědělské, potravinářské a lesní výroby nebo z komunálního hospodářství. Efektivní a ekologické využití biomasy má minimální negativní vliv na životní prostředí. Z hlediska lokální produkce má biomasa nejatraktivnější použití u malých a středních zdrojů. Při klasickém spalování je produkováno pouze teplo. Pro kombinovanou výrobu elektrické energie a tepla je nutné biomasu zplynit a produkovaný plyn lze použít pro pohon spalovacího motoru, malých plynových turbín. Podobným způsobem lze zpracovat tříděný odpad obsahující spalitelné materiály [1]. Plyn ze zplyňování však obsahuje nečistoty zabraňující jeho přímému použití. V rámci projektu grantové agentury ČR č.101/04/1278 a projektu MPO-TANDEM FT-TA2/061 byly zkoumány vlastnosti plynu vyrobeného zplyňováním biomasy ve zplyňovacích technologiích různé konstrukce. Kvalita vyrobeného plynu byla sledována s ohledem na předpokládané použití v kogeneračních jednotkách s pístovým spalovacím motorem. ZPLYŇOVÁNÍ BIOMASY Proces zplyňování je termochemický pochod, při kterém postupně dochází k oxidaci uhlovodíků a vodní páry z paliva, a k jejich následné bezprostřední redukci na hořlavé plyny, destilační produkty a minerální zbytek. Proces probíhá za přístupu kontrolovaného množství okysličovadla (obvykle vzduchu nebo vodní páry) a potřebného reakčního tepla. Hlavní snahou při zplyňování je transformovat co největší podíl energie paliva do co nejvyššího energetického obsahu plynu. Zplyňování je z několika hledisek výhodnější než klasické spalování. Proces umožňuje transformaci špatně manipulovatelného, málo hodnotného paliva (odpadní biomasa, tříděný organický odpad) v plynnou formu jednoduše použitelnou pro další výrobu energie [2]. U malých a středních zdrojů umožňuje nejen produkci tepla, ale i výrobu elektrické energie, kdy produkovaný plyn pohání plynový spalovací motor napojený na elektrický generátor. V blízké budoucnosti je možná i výroba elektrické energie pomocí palivových článků, které by dosahovaly větší účinnosti. K podstatným výhodám zplyňování patří také snižování emisí škodlivých látek, a to nejen sloučenin síry, chlóru a dusíku, ale i pečlivě sledovaných organických perzistentních látek (POP). TYPY ZPLYŇOVACÍCH REAKTORŮ Pro zplyňování biomasy je nejrozšířenější sesuvný reaktor, přičemž jako zplyňovací médium je nejčastěji používán vzduch. Podle směru proudění zplyňovacího media rozlišujeme souproudý a protiproudý typ. Další typ zplyňovače používaný zejména pro velké výkony je reaktor s fluidním ložem. Hlavní typy zplyňovacích reaktorů jsou na Obr.1. Ing. Miroslav Kyjovský, VŠB TU Ostrava, VEC, 17. listopadu 15/2172, Ostrava Poruba, miroslav.kyjovsky@vsb.cz / 147 /

2 Obr. 1 Hlavní typy zplyňovacích reaktorů Protiproudý reaktor V protiproudém reaktoru proudí plyn v protisměru k palivu a prochází spalovacím, redukčním, pyrolýzním a sušícím pásmem. Jeho konstrukce je jednoduchá a navíc je schopen zplyňovat i materiál z vysokou relativní vlhkostí. Jeho nedostatkem však je, že vyrobený plyn má vysoký obsah dehtu, což zabraňuje přímému využití ve spalovacích motorech. Plyn se musí čistit, většinou na bázi vodní pračky, kde se většina primárních pyrolýzních produktů oddělí ve formě olejové vrstvy. Vyčištěný plyn však obsahuje značné množství lehčích nenasycených uhlovodíků, které způsobují u dlouhodobého provozu spalovacích motorů problémy technického charakteru [3]. Souproudý reaktor V souproudém reaktoru proudí plyn stejným směrem jako palivo. Výpusť plynu má na dně reakční nádoby a redukční zóna je pod spalovací zónou. Dehet tvořící se v pyrolýzně-oxidační zóně musí projít horkou spalovací zónou dříve než opustí zplyňovač, zúčastní se tak spalování nebo se rozkládá na lehčí uhlovodíky. Uhlíkaté lože za redukčním pásmem částečně zachycuje prachové částice. Přestože je stupeň využití paliva menší (30-70% nedopal), výhřevnost plynu je dostatečně vysoká (až 6,5 MJ.m -3 ). Vycházející plyn má nízký obsah dehtu, a je možno ho přímo využít pro malou kogenerační jednotku se spalovacím motorem [3]. Fluidní reaktor Dalším reaktorem pro zplyňování biomasy je reaktor fluidní. U tohoto typu dochází ke zplyňování ve fluidním loži a složení produkovaného plynu řadí tento typ někam mezi souproudý a protiproudý reaktor. Díky neomezené konstrukční velikosti a flexibilitě je hlavním kandidátem na průmyslové použití. Obsah dehtu v produkovaném plynu je minimálně pětkrát větší než u souproudého reaktoru, je možné však dosáhnout snížení obsahu dehtu seřízením poměru primárního, sekundárního a terciálního vzduchu. Použitím vhodného materiálu fluidního lože, které má katalytické účinky a adsorpční vlastnosti, lze dosáhnout nejen další snížení obsahu dehtu, ale i snížit koncentraci nežádoucích sloučenin síry a chlóru v plynu. To je hlavní výhodou fluidního reaktoru [4]. / 148 /

3 Tab. 1 Vlastnosti produkovaného plynu Složení plynu / reaktor Protiproudý Souproudý Fluidní H 2 [% vol] CO 2 [% vol] CO [% vol] CH 4 [% vol] ,5 1 3 C + 2 [% vol] 5 < N 2 [% vol] Prach [g.m -3 ] Dehet [g.m -3 ] > 100 0, Výhřevnost [MJ.m -3 ] 5, ,5 4,5 5 Výstupní teplota [ C] POŽADAVKY NA ÚPRAVU SUROVINY Úprava suroviny je požadována u téměř všech druhů biomasy z důvodu velkého rozptylu fyzikálních, chemických a tvarových vlastností. Rozdílné vlastnosti biomasy mají za následek nezbytnost biomasu upravovat, a to zvláště v případě, kdy chceme použít biomasu jako palivo do zplyňovače. Potřeba systému úpravy biomasy je dobře známa, ale je špatně chápána. Požadavky na paliva pro různé druhy zplyňovačů ukazuje následující tabulka. Tab. 2 Požadované vlastnosti na palivo u jednotlivých zplyňovačů [6] Typ zplyňovače Souproudý Protiproudý Fluidní Unášivý Velikost mm < 1 Vlhkost % < 20 < 50 < 40 < 15 Obsah popela % < 5 < 15 < 20 < 20 Zrnitost - stejnorodá téměř stejnorodá stejnorodá stejnorodá Sypná hmotnost kg.m -3 > 500 > 400 > 100 > 400 Teplota tavení popela C > 1250 > 1000 > 1000 > 1250 Postup úpravy záleží na vlastnostech biomasy a na požadavcích na zplyňované palivo. Následující hlediska ovlivňují postup úpravy: hrubé materiály jako okenní rámy potřebují být rozděleny ve dvou nebo více krocích, mokré materiály, jako je biomasa z údržby veřejných prostor, vyžadují více energie na sušení než suchá biomasa, jakou je demoliční dřevo, sušení materiálu vyžaduje mnohem více času ve srovnání s rozdrcením materiálu, mokrá biomasa má obvykle částice o malé velikosti, třídění mokré biomasy má obvykle nižší účinnost než třídění suché biomasy, kladívkové mlýny mohou být užity pouze pro suchou biomasu, pro mokrou biomasu musí být použity sekačky. Charakteristika plynu PLYN VYROBENÝ ZPLYŇOVÁNÍM BIOMASY Při zplyňování dochází za přítomnosti zplyňovacího média a vhodně zvolených reakčních podmínek k tvorbě generátorového plynu. Výhřevnost generátorového plynu je typická 4-7 MJ.m -3, při zplyňování kyslíkem lze dosáhnout hodnot od 14 do 18 MJ.m -3. Surový generátorový plyn obsahuje především CO, CO 2, H 2,CH 4 a N 2, jeli použit vzduch jako zplyňovací médium. Vedle těchto složek jsou v něm obsaženy i další, vesměs nežádoucí složky, kterými jsou prach, dehty, alkálie, sloučeniny síry a dusíku, chlorovodík, fluorovodík aj. Vyšší obsah prchavé hořlaviny je při zplyňování příčinou vyššího množství uhlovodíků a to ve formě permanentních plynů jako / 149 /

4 ethylen, acetylen, benzen, toluen, xylen. Vysoký obsah vody zapříčiňuje vysokou tvorbu dehtů. Z hlediska spalování v motorech nebo turbínách jsou ethylen, benzen a toluen látkami žádoucími zvyšují celkovou výhřevnost plynu a zlepšují jeho spalovací vlastnosti. Pro palivové články jsou tyto látky nežádoucími. Před použitím plynu ve spalovacích motorech, respektive turbínách, je třeba tento plyn vyčistit [4]. Nároky na čistotu produkovaného plynu stoupají v řadě od spalovacích motorů přes spalovací turbínu až k extrémně nízkým hodnotám potřebným pro bezproblémový provoz palivových článku. Viz Tab.3. Tab. 3 Provozní požadavky na obsah nežádoucích látek v plynu [5] Sloučenina Spalovací motor Spalovací turbína Palivové články Dehet < 50 [mg.m -3 ] < 5 [mg.m -3 ] < 1 [mg.m -3 ] Prach < 5 [ppm] < 1 [ppm] < 0,1 [ppm] H 2 S n. d. < 1 [ppm] 0,06 [ppm] 1 HCl n. d. < 0,5 [ppm] <0,01 [ppm] 2 Alkálie (Na, K, Li) n. d. < 0,1 [ppm] n. d. NH 3 3 Není limitována Není limitována n. d. 1 celková síra 2 celkový chlór 3 zvyšuje emise NOx n.d.-není definována Při srovnání těchto požadavků se složením typického plynu ze zplyňování biomasy lze konstatovat, že bez efektivního čištění nelze dosáhnout požadované kvality plynu. Pro použití plynu ve spalovacím motoru je potřeba sledovat zejména obsah prachu a dehtu. Množství těchto látek v plynu lze efektivně ovlivnit již při jejich vzniku, a to volbou vhodného zplyňovacího reaktoru [5]. Popis zařízení EXPERIMENTÁLNÍ ZPLYŇOVACÍ REAKTOR NA VÝZKUMNÉM ENERGETICKÉM CENTRU Jedná se o zplyňovací generátor s pevným ložem (obr. č. 2, 3). Ze zásobníku paliva je automaticky dopravováno palivo do zplyňovače pomocí šnekového dopravníku. Vyrobený plyn je veden do cyklonu, kde dochází k odstranění části prachových částic. Dále je plyn veden do chladiče plynu, kde se ochladí a v dopalovacím zařízení je spálen. Celá technologie (obr. č. 4) pracuje v podtlaku, který vyvozuje odtahový ventilátor. Do budoucna se předpokládá celou technologii doplnit o další čištění plynu a vyčištěný plyn využívat v kogenerační jednotce, kde bude vyráběna elektrická energie a teplo. Experimentální zařízení je osazeno potřebnou měřicí a řídící technikou (měření teplot, tlaků, řízení otáček šnekového dopravníku a odtahového ventilátoru ap.). Obr. 2 Zplyňovací reaktor pohled zezadu Obr. 3 Zplyňovací reaktor / 150 /

5 Provoz zařízení Zařízení lze provozovat ve dvou režimech. První režim je spalovací, používá se pro najíždění zplyňovacího zařízení tak dlouho, dokud nedojde k natemperování provozních dílů. Druhý režim je pak režim zplyňovací. Oba režimy jsou automatické, a proto zařízení vyžaduje jen minimální obsluhu. Obr. 4 Technologické schéma zplyňovací jednotky Vstupní surovina Jako palivo je použito dřevních pelet (Obr. č. 5), jejichž vlastnosti jsou uvedeny v Tab. 1, uvažuje se však i o jiných formách vstupní suroviny. Obr. 5 Použité palivo dřevní pelety / 151 /

6 Tab. 4 Vlastnosti paliva dřevních pelet Výsledky zkoušky Veličina Jednotka Pelety velikost (š x d) mm 6x10-30 sypná hmotnost kg.m (>650*) spalné teplo, Q s MJ.kg -1 18,86 (>17,5*) Průměrné složení paliva vlhkost vzorku,w a % hm. 7,0 (>10*) obsah popele, A d % hm. 0,7 (<0,6*) prchavá hořlavina, V d % hm. 77,2 fixní uhlík % hm. 22,1 Elementární složeni paliva (daf) C % hm. 47,87 H % hm. 6,41 O % hm. 45,62 N % hm. 0,1 S % hm. 0,01 Při zplyňování dřevních pelet byly provedeny čtyři odběry plynu a jeden odběr pro zjištění množství dehtů v plynu. Odběry plynů i dehtu byly provedeny při teplotě 1000 C v reaktoru zplyňovače. Složení nejdůležitějších složek plynu je uvedeno v Tab. 5, množství dehtů v plynu je uvedeno v Tab. 6. Tab. 5 Zastoupení nejdůležitějších složek v plynu (čtyři odběry). Tab. 6 Množství dehtů v plynu Složka Jednotka Odběr vzorků při teplotě v reaktoru 1000 C O 2 [%] 0,11 0,11 0,11 0,10 CO 2 [%] 11,50 11,13 11,27 11,22 H 2 [%] 12,71 13,49 12,54 13,41 CO [%] 19,60 21,03 19,62 20,59 CH 4 [%] 1,73 2,22 1,46 2,09 N 2 [%] 53,20 50,67 53,97 51,31 Q s [MJ.m -3 ] 5,27 5,92 5,05 5,73 Množství dehtů ve vzorku Jednotka Teplota v reaktoru 1000 C benzen [mg.m -3 ] 3745 toluen [mg.m -3 ] 38 m+p+o-xylen+ethylbenzen+phenylethyn [mg.m -3 ] 13 styren [mg.m -3 ] 15 C3-benzen suma (nas+nenas) [mg.m -3 ] 0 BTX suma [mg.m -3 ] 3811 kyslíkaté suma [mg.m -3 ] 4 dusíkaté suma [mg.m -3 ] 0 DEHET (mimo BTX) [mg.m -3 ] 1881 / 152 /

7 ZÁVĚR Jedná se o novou technologii, která je zkoušena. Při prvních zkouškách byly jako palivo použity pelety vyrobené ze dřeva. Provoz s tímto palivem je bezproblémový jak ve spalovacím, tak i ve zplyňovacím režimu a zařízení pracuje automaticky. Byly vyzkoušeny různé režimy zplyňování, kdy byla měněna teplota v reaktoru od 750 C do 1100 C. Tímto se zjišťuje vliv teploty v reaktoru na kvalitu plynu a množství dehtů. V článku jsou uvedeny hodnoty pro 1000 C v reaktoru, další hodnoty se v současné době zpracovávají. Další zkoušky byly provedeny za účelem získání hmotnostní a energetické bilance zplyňovacího zařízení. Cílem projektu je vyrobit plyn, který bude svou kvalitou a čistotou vyhovovat podmínkám, které požadují výrobci kogeneračních systémů. Další část výzkumu bude zaměřena na zvýšení čistoty vzniklého plynu pomocí dolomitového reaktoru a na možnosti využití jiných druhů a forem paliv. POUŽITÁ LITERATURA [1] PASTOREK, Z., JEVIČ, P.: Biomasa: obnovitelný zdroj energie, Praha, 2004 [2] CHRZ a kol.: Zplyňování dřevního odpadu pro náhradu ušlechtilých paliv a pro výrobu elektrické energie, ČEA 1997 [3] SKOBLIA, S., RISNER, H., HUSTAD, J., KOUTSKÝ, B., MALECHA, J.: Sesuvný zplyňovací reaktor, VUT Brno, 2003 [4] VOSECKÝ, M., SKOBLJA, S., MALECHA, J., PUNČOCHÁŘ M.: Experimentální atmosférický fluidní zplyňovací generátor, VŠCHT Praha, 2003 [5] SKOBLIA, S., KOUTSKÝ, B., MALECHA, J., VOSECKÝ, M.: Perspektivy zplyňování a produkce čistého plynu, VŠCHT Praha, 2003 [6] KNOEF H.A.M.: Handbook Biomass Gasification, BTG biomass technology group BV, The Nederlands, 2005, ISBN: / 153 /

8 / 154 /

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY Jan Škvařil Článek se zabývá energetickými trendy v oblasti využívání obnovitelného zdroje s největším potenciálem v České republice. Prezentuje výzkumnou práci prováděnou

Více

SESUVNÝ ZPLYŇOVAČ S ŘÍZENÝM PODÁVÁNÍM PALIVA

SESUVNÝ ZPLYŇOVAČ S ŘÍZENÝM PODÁVÁNÍM PALIVA SESUVNÝ ZPLYŇOVAČ S ŘÍZENÝM PODÁVÁNÍM PALIVA Jan Najser Základem nové koncepce pilotní jednotky zplyňování dřeva se suvným ložem je systém podávání paliva v závislosti na zplyňovací teplotě. Parametry

Více

Přehled technologii pro energetické využití biomasy

Přehled technologii pro energetické využití biomasy Přehled technologii pro energetické využití biomasy Tadeáš Ochodek Seminář BIOMASA JAKO ZDROJ ENERGIE 6. - 7.6. 2006, Hotel Montér, Ostravice Z principiálního hlediska lze rozlišit několik způsobů získávání

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

Kombinovaná výroba elektrické energie, tepla a biosorbentu z biomasy. Michael Pohořelý & Siarhei Skoblia. Zplyňování

Kombinovaná výroba elektrické energie, tepla a biosorbentu z biomasy. Michael Pohořelý & Siarhei Skoblia. Zplyňování ÚSTAV CHEMICKÝCH PROCESŮ AV ČR VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Kombinovaná výroba elektrické energie, tepla a biosorbentu z biomasy Michael Pohořelý & Siarhei Skoblia Zplyňování H 2 + CO +

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

SPALOVÁNÍ ENERGOPLYNU NA VUT BRNO

SPALOVÁNÍ ENERGOPLYNU NA VUT BRNO Energie z biomasy V. odborný seminář Brno 2006 SPALOVÁNÍ ENERGOPLYNU NA VUT BRNO Lukáš Pravda Článek se zabývá problematikou spalování energoplynu na VUT v Brně, Fakultě Strojního inženýrství, Odboru energetického

Více

Vliv energetických paramatrů biomasy při i procesu spalování

Vliv energetických paramatrů biomasy při i procesu spalování VLIV ENERGETICKÝCH PARAMETRŮ BIOMASY PŘI PROCESU SPALOVÁNÍ Pavel Janásek Vliv energetických paramatrů biomasy při i procesu spalování Pavel Janásek ŘEŠITELSKÁ PRACOVIŠTĚ ENERGETICKÉ PARAMETRY BIOMASY Energetický

Více

NÁVRH TECHNOLOGIE VYSOKOTEPLOTNÍHO ČIŠTĚNÍ ENERGOPLYNU

NÁVRH TECHNOLOGIE VYSOKOTEPLOTNÍHO ČIŠTĚNÍ ENERGOPLYNU NÁVRH TECHNOLOGIE VYSOKOTEPLOTNÍHO ČIŠTĚNÍ ENERGOPLYNU Jan Najser Široké uplatnění zplyňovacích procesů se nabízí v oblasti výroby elektrické energie v kogeneračních jednotkách. Hlavní překážkou bránící

Více

Technologie zplyňování biomasy

Technologie zplyňování biomasy Technologie zplyňování biomasy Obsah prezentace Profil společnosti Proces zplyňování Zplyňovací technologie Generátorový plyn Rozdělení technologií Typy zplyňovacích jednotek Čištění plynu Systém GB Gasifired

Více

Zplyňování. Ing. Martin Lisý, PhD. Energetický ústav VUT v Brně Fakulta strojního inženýrství

Zplyňování. Ing. Martin Lisý, PhD. Energetický ústav VUT v Brně Fakulta strojního inženýrství Zplyňování Ing. Martin Lisý, PhD. Energetický ústav VUT v Brně Fakulta strojního inženýrství Projekt je spolufinancován Evropským sociálním fondem a Statním rozpočtem ČR Technologie zpracování biomasy

Více

VLIV REAKČNÍ TEPLOTY NA SLOŽENÍ PLYNU Z FLUIDNÍHO ZPLYŇOVÁNÍ BIOMASY VODNÍ PAROU

VLIV REAKČNÍ TEPLOTY NA SLOŽENÍ PLYNU Z FLUIDNÍHO ZPLYŇOVÁNÍ BIOMASY VODNÍ PAROU VLIV REAKČNÍ TEPLOTY NA SLOŽENÍ PLYNU Z FLUIDNÍHO ZPLYŇOVÁNÍ BIOMASY VODNÍ PAROU M. Jeremiáš 1,2, M. Pohořelý 1,2, M. Vosecký 1, S. Skoblja 1,3, P. Kameníková 1,3, K. Svoboda 1 a M. Punčochář 1 Alotermní

Více

Zplyňování biomasy a tříděného tuhého odpadu s výrobou elektrické energie pomocí turbosoustrojí

Zplyňování biomasy a tříděného tuhého odpadu s výrobou elektrické energie pomocí turbosoustrojí Zplyňování biomasy a tříděného tuhého odpadu s výrobou elektrické energie pomocí turbosoustrojí Pilotní jednotka EZOB Programový projekt výzkumu a vývoje MPO IMPULS na léta 2008 2010 Projekt ev. č.: FI-IM5/156

Více

ENERGOPLYN PRODUKT ZPLYŇOVÁNÍ

ENERGOPLYN PRODUKT ZPLYŇOVÁNÍ ENERGOPLYN PRODUKT ZPLYŇOVÁNÍ Lukáš Pravda Článek se zabývá problematikou energoplynu, jako jednou z možností nahrazení zemního plynu. Zásoby zemního plynu, stejně jako ostatních fosilních paliv, nejsou

Více

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth KOTLE A ENERGETICKÁ ZAŘÍZENÍ 2011 BRNO 14.3. až 26.3. 2011 Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw Stanislav Veselý, Alexander Tóth EKOL, spol. s r.o., Brno Kogenerační jednotka se

Více

Zkušenosti s provozem vícestupňových generátorů v ČR

Zkušenosti s provozem vícestupňových generátorů v ČR VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÝCH PROCESŮ AV ČR Zkušenosti s provozem vícestupňových generátorů v ČR Siarhei Skoblia, Zdeněk Beňo, Jiří Brynda Michael Pohořelý a Ivo Picek Úvod

Více

Česká asociace pro pyrolýzu a zplyňování, o.s. Ing. Michael Pohořelý, Ph.D. Ing. Ivo Picek Ing. Siarhei Skoblia, Ph.D.

Česká asociace pro pyrolýzu a zplyňování, o.s. Ing. Michael Pohořelý, Ph.D. Ing. Ivo Picek Ing. Siarhei Skoblia, Ph.D. Česká asociace pro pyrolýzu a zplyňování, o.s. Ing. Michael Pohořelý, Ph.D. Ing. Ivo Picek Ing. Siarhei Skoblia, Ph.D. Důvod založení Asociace byla založena s posláním zvýšit v České republice důvěryhodnost

Více

Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem

Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav chemických procesů Akademie věd ČR Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem Michael

Více

Možnosti výroby elektřiny z biomasy

Možnosti výroby elektřiny z biomasy MOŽNOSTI LOKÁLNÍHO VYTÁPĚNÍ A VÝROBY ELEKTŘINY Z BIOMASY Možnosti výroby elektřiny z biomasy Tadeáš Ochodek, Jan Najser Žilinská univerzita 22.-23.5.2007 23.5.2007 Cíle summitu EU pro rok 2020 20 % energie

Více

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů

Vliv chemické aktivace na sorpční charakteristiky uhlíkatých materiálů VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA HORNICKO GEOLOGICKÁ FAKULTA Institut čistých technologií těžby a užití energetických surovin Vliv chemické aktivace na sorpční charakteristiky uhlíkatých

Více

Činnost klastru ENVICRACK v oblasti energetického využití odpadu

Činnost klastru ENVICRACK v oblasti energetického využití odpadu Činnost klastru ENVICRACK v oblasti energetického využití odpadu Pyrolýza jde o progresivní způsob získávání energie, přičemž nemalou výhodou je možnost likvidace mnohých těžko odstranitelných odpadů šetrným

Více

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická

Více

Termochemická konverze paliv a využití plynu v KGJ

Termochemická konverze paliv a využití plynu v KGJ Termochemická konverze paliv a využití plynu v KGJ Jan KIELAR 1,*, Václav PEER 1, Jan NAJSER,1, Jaroslav FRANTÍK 1 1 Vysoká škola báňská - Technická univerzita Ostrava, Centrum ENET, 17. listopadu 15/2172,

Více

Kombinovaná výroba elektrické energie a tepla z biomasy procesem zplyňování v ČR. Michael Pohořelý & Siarhei Skoblia. Zplyňování

Kombinovaná výroba elektrické energie a tepla z biomasy procesem zplyňování v ČR. Michael Pohořelý & Siarhei Skoblia. Zplyňování ÚSTAV CHEMICKÝCH PROCESŮ AV ČR VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Kombinovaná výroba elektrické energie a tepla z biomasy procesem zplyňování v ČR Michael Pohořelý & Siarhei Skoblia Zplyňování

Více

Stabilizovaný vs. surový ČK

Stabilizovaný vs. surový ČK VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÝCH PROCESŮ AV ČR Materiálové a energetické využití stabilizovaného čistírenského kalu výroba biocharu středněteplotní pomalou pyrolýzou Michael

Více

Vícestupňové zplyňovaní dlouhá cesta od myšlenky k realizaci

Vícestupňové zplyňovaní dlouhá cesta od myšlenky k realizaci Vícestupňové zplyňovaní dlouhá cesta od myšlenky k realizaci Skoblia Siarhei 2, Picek Ivo 1, Beňo Zdeněk 2, Pohořely Michael 3,4 1 TARPO s.r.o 2 Ústav plynárenství, koksochemie a ochrany ovzduší, VŠCHT

Více

POROVNÁNÍ KVALITY PLYNŦ PRODUKOVANÝCH SOUPROUDÝMI GENERÁTORY V ČESKÉ REPUBLICE

POROVNÁNÍ KVALITY PLYNŦ PRODUKOVANÝCH SOUPROUDÝMI GENERÁTORY V ČESKÉ REPUBLICE POROVNÁNÍ KVALITY PLYNŦ PRODUKOVANÝCH SOUPROUDÝMI GENERÁTORY V ČESKÉ REPUBLICE Zdeněk Beňo, Siarhei Skoblia Energetické využití biomasy se vzhledem k růstu cen fosilních paliv dostalo opět do popředí zájmu.

Více

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety PEVNÁ PALIVA Základní dělení: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety Biomasa obnovitelný zdroj energie u našich výrobků se týká dřeva a dřevních briket Složení

Více

Zplyňování biomasy možnosti uplatnění

Zplyňování biomasy možnosti uplatnění biomasy možnosti uplatnění Ing. Michael Pohořelý 1,, Ing. Michal Jeremiáš 1,, Ing. Siarhei Skoblia, Ph.D 3, Ing. Petra Kameníková 1, doc. Ing. Karel Svoboda, CSc. 1, Ing. Markéta Tošnarová 1, Ing. Michal

Více

Bioenergetické centrum pro měření parametrů tuhých biopaliv

Bioenergetické centrum pro měření parametrů tuhých biopaliv Výzkumný ústav zemědělské techniky, v.v.i. Bioenergetické centrum pro měření parametrů tuhých biopaliv Petr Hutla Petr Jevič Bioenergetické centrum bylo vybudováno v rámci projektu CZ.2.16/3.1.00/24502

Více

RENESANCE ZPLYŇOVACÍCH GENERÁTORŮ TYPU IMBERT V ČESKÉ

RENESANCE ZPLYŇOVACÍCH GENERÁTORŮ TYPU IMBERT V ČESKÉ RENESANCE ZPLYŇOVACÍCH GENERÁTORŮ TYPU IMBERT V ČESKÉ Zdeněk Beňo, Sergej Skoblja, Petr Buryan, Jiří Malecha Vysoká cena energií v dnešní době klade požadavky na efektivnější využití dostupných surovin.

Více

SPALOVÁNÍ KOMPOZITNÍCH BIOPALIV

SPALOVÁNÍ KOMPOZITNÍCH BIOPALIV SPALOVÁNÍ KOMPOZITNÍCH BIOPALIV Ondřej Vazda, Milan Jedlička, Martin Polák V tomto článku je řešena problematika spalování biopaliv a biopaliv kombinovaných s uhlím. Cílem je ověřit možnosti využití těchto

Více

INOVACE PRO EFEKTIVITU A ŢIVOTNÍ PROSTŘEDÍ

INOVACE PRO EFEKTIVITU A ŢIVOTNÍ PROSTŘEDÍ INOVACE PRO EFEKTIVITU A ŢIVOTNÍ PROSTŘEDÍ Doc. Dr. Ing. Tadeáš Ochodek Ing. Jan Koloničný, Ph.D. 23.5.2011 VŠB-TU Ostrava - 1 - Projekt Inovace pro efektivitu a ţivotní prostředí regionální výzkumně-vývojové

Více

HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ

HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ Radim Paluska, Miroslav Kyjovský V tomto příspěvku jsou uvedeny poznatky vyplývající ze zkoušek provedených za účelem vyhodnocení rozdílných režimů při

Více

Zkušenosti fy PONAST se spalováním alternativních paliv. Seminář Technologické trendy při vytápění pevnými palivy Blansko 2010

Zkušenosti fy PONAST se spalováním alternativních paliv. Seminář Technologické trendy při vytápění pevnými palivy Blansko 2010 Zkušenosti fy PONAST se spalováním alternativních paliv Seminář Technologické trendy při vytápění pevnými palivy Blansko 2010 1992 Strojírenství Elektrotechnika Vývoj Výroba Servis 2000 TERMO program 45

Více

MOŽNOSTI TERMICKÉHO VYUŽÍVÁNÍ ČISTÍRENSKÝCH KALŮ V KOTLI S CIRKULUJÍCÍ FLUIDNÍ VRSTVOU

MOŽNOSTI TERMICKÉHO VYUŽÍVÁNÍ ČISTÍRENSKÝCH KALŮ V KOTLI S CIRKULUJÍCÍ FLUIDNÍ VRSTVOU MOŽNOSTI TERMICKÉHO VYUŽÍVÁNÍ ČISTÍRENSKÝCH KALŮ V KOTLI S CIRKULUJÍCÍ FLUIDNÍ VRSTVOU Pavel Milčák Příspěvek se zabývá možnostmi termického využívání mechanicky odvodněných stabilizovaných kalů z čistíren

Více

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc.

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. OBSAH PRINCIPY POUŽÍVANÝCH TERMOCHEMICKÝCH PROCESŮ VELKOKAPACITNÍ REALIZACE TERMOCHEMICKÝCH PROCESŮ

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/

Více

Ekologická maziva a aspekty jejich použitelnosti v kogeneračních jednotkách Martin Kantor

Ekologická maziva a aspekty jejich použitelnosti v kogeneračních jednotkách Martin Kantor Ekologická maziva a aspekty jejich použitelnosti v kogeneračních jednotkách Martin Kantor 2007 Obsah Co je to kogenerace, jak vypadá kogenerační jednotka Motory kogeneračních jednotek Pístové motory Stirlingovy

Více

Martin Lisý, Marek Baláš, Přemysl Kohout, Zdeněk Skála

Martin Lisý, Marek Baláš, Přemysl Kohout, Zdeněk Skála ENERGETICKÉ PARAMETRY BIOMASY PŘI FLUIDNÍM ZPLYŇOVÁNÍ Martin Lisý, Marek Baláš, Přemysl Kohout, Zdeněk Skála Tento příspěvek se věnuje prezentaci dílčích výsledků projektu "Energetické parametry biomasy".

Více

Denitrifikace. Ochrana ovzduší ZS 2012/2013

Denitrifikace. Ochrana ovzduší ZS 2012/2013 Denitrifikace Ochrana ovzduší ZS 2012/2013 1 Úvod Pojem oxidy dusíku NO NO 2 Další formy NO x Vznik NO x 2 Vlastnosti NO Oxid dusnatý Vlastnosti M mol,no = 30,01 kg/kmol V mol,no,n = 22,41 m 3 /kmol ρ

Více

SESUVNÝ ZPLYŇOVACÍ REAKTOR A MOŽNOSTI JEHO POUŽITÍ PRO LOKÁLNÍ VÝROBU ENERGIE VYSOKOTEPLOTNÍ ČIŠTĚNÍ PLYNU

SESUVNÝ ZPLYŇOVACÍ REAKTOR A MOŽNOSTI JEHO POUŽITÍ PRO LOKÁLNÍ VÝROBU ENERGIE VYSOKOTEPLOTNÍ ČIŠTĚNÍ PLYNU SESUVNÝ ZPLYŇOVACÍ REAKTOR A MOŽNOSTI JEHO POUŽITÍ PRO LOKÁLNÍ VÝROBU ENERGIE VYSOKOTEPLOTNÍ ČIŠTĚNÍ PLYNU Skoblia S., Risner 1 H., Hustad 1 J., Koutský B., Malecha J. 1 Norwegian University of Science

Více

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO

Více

KATALYTICKÉ VYSOKOTEPLOTNÍ ODSTRAŇOVÁNÍ DEHTU Z PLYNU Z ALOTERMNÍHO ZPLYŇOVÁNÍ BIOMASY

KATALYTICKÉ VYSOKOTEPLOTNÍ ODSTRAŇOVÁNÍ DEHTU Z PLYNU Z ALOTERMNÍHO ZPLYŇOVÁNÍ BIOMASY Energie z biomasy X. odborný seminář Brno 9 KATALYTICKÉ VYSOKOTEPLOTNÍ ODSTRAŇOVÁNÍ DEHTU Z PLYNU Z ALOTERMNÍHO ZPLYŇOVÁNÍ BIOMASY M. Jeremiáš 1,, M. Pohořelý 1,, P. Kameníková 1, S. Skoblja 3, M. Vosecký

Více

SMART 150 500 kw. Čistota přírodě Úspora klientům Komfort uživatelům

SMART 150 500 kw. Čistota přírodě Úspora klientům Komfort uživatelům Čistota přírodě Úspora klientům Komfort uživatelům AUTOMATICKÉ KOTLE NA BIOMASU SMART 0 00 kw Plně automatické, ekologické kotle s vynikajícími vlastnostmi Flexibilita technického řešení Variabilita použitelných

Více

VÝZKUMNÉ ENERGETICKÉ CENTRUM

VÝZKUMNÉ ENERGETICKÉ CENTRUM VÝZKUMNÉ ENERGETICKÉ CENTRUM VŠB Technická univerzita Ostrava EMISNÉ ZAŤAŽENIE ŽIVOTNÉHO PROSTREDIA, 11. 12. 06. 2015 Ing. Jan Koloničný, Ph.D. Stručně o VEC Založeno roku 1999 pracovníky z Katedry energetiky

Více

VÝROBA ENERGIE Z BIOMASY A ODPADU PERSPEKTIVY ZPLYŇOVÁNI A PRODUKCE ČISTÉHO PLYNU

VÝROBA ENERGIE Z BIOMASY A ODPADU PERSPEKTIVY ZPLYŇOVÁNI A PRODUKCE ČISTÉHO PLYNU VÝROBA ENERGIE Z BIOMASY A ODPADU PERSPEKTIVY ZPLYŇOVÁNI A PRODUKCE ČISTÉHO PLYNU Skoblia S., Koutský B., Malecha J., Vosecký M. Vysoká Škola Chemicko Technologická v Praze, Ústav plynárenství, koksochemie

Více

REKONSTRUKCE UHELNÝCH KOTLŮ NA SPALOVÁNÍ BIOMASY

REKONSTRUKCE UHELNÝCH KOTLŮ NA SPALOVÁNÍ BIOMASY REKONSTRUKCE UHELNÝCH KOTLŮ NA SPALOVÁNÍ BIOMASY František HRDLIČKA Sněžné Milovy 2015 Czech Technical University in Prague, Czech Republic Faculty of Mechanical Engineering CHARAKTERISTIKA BIOMASY ODLIŠNOST

Více

Využití pyrolýzy ke zpracování stabilizovaných čistírenských kalů

Využití pyrolýzy ke zpracování stabilizovaných čistírenských kalů VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÝCH PROCESŮ AV ČR Využití pyrolýzy ke zpracování stabilizovaných čistírenských kalů Michael Pohořelý Stabilizovaný vs. surový ČK Surový kal nebezpečný

Více

VLIV TOPNÉHO REŽIMU NA EMISE KRBOVÝCH KAMEN SPALUJÍCÍCH DŘEVO

VLIV TOPNÉHO REŽIMU NA EMISE KRBOVÝCH KAMEN SPALUJÍCÍCH DŘEVO VLIV TOPNÉHO REŽIMU NA EMISE KRBOVÝCH KAMEN SPALUJÍCÍCH DŘEVO Jiřina Čermáková, Martin Vosecký, Jiří Malecha a Bohumil Koutský V této práci byl sledován vliv topného režimu na emise krbových kamen spalujících

Více

Výsledky z testovacích měření na technologiích Ostravské LTS

Výsledky z testovacích měření na technologiích Ostravské LTS TVIP 2015, 18. 20. 3. 2015, HUSTOPEČE - HOTEL CENTRO Výsledky z testovacích měření na technologiích Ostravské LTS Ing. Libor Baraňák, Ostravská LTS a.s. libor.baranak@ovalts.cz Abstrakt The paper describes

Více

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Paliva Paliva nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Dělení paliv podle skupenství pevná uhlí, dřevo kapalná benzín,

Více

ZPRACOVÁNÍ AGROTECHNICKÉHO ODPADU POMOCÍ POMALÉ NÍZKOTEPLOTNÍ PYROLÝZY

ZPRACOVÁNÍ AGROTECHNICKÉHO ODPADU POMOCÍ POMALÉ NÍZKOTEPLOTNÍ PYROLÝZY Energie z biomasy IX. odborný seminář Brno 28 ZPRACOVÁNÍ AGROTECHNICKÉHO ODPADU POMOCÍ POMALÉ NÍZKOTEPLOTNÍ PYROLÝZY Aleš Barger, Sergej Skoblja, Petr Buryan Energie z biomasy se dá získávat spalováním,

Více

MOŽNOSTI KOGENERACE S TURBOSOUSTROJÍM PŘI ZPLYŇOVÁNÍ BIOMASY

MOŽNOSTI KOGENERACE S TURBOSOUSTROJÍM PŘI ZPLYŇOVÁNÍ BIOMASY MOŽNOSTI KOGENERACE S TURBOSOUSTROJÍM PŘI ZPLYŇOVÁNÍ BIOMASY Martin Lisý, Skála Zdeněk, Baláš Marek, Moskalík Jiří Článek popisuje koncepčně zcela nové řešení kogenerace se zplyňováním biomasy. Na místo

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

Nízkoteplotní katalytická depolymerizace

Nízkoteplotní katalytická depolymerizace Nízkoteplotní katalytická depolymerizace Katalytická termodegradace bez přístupu kyslíku Výroba energie nebo paliva z odpadních plastů, pneumatik a odpadních olejů Témata prezentace Profil společnosti

Více

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Prof. Ing. Petr Stehlík, CSc. Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Ing.

Více

ŘÍZENÉ SPALOVÁNÍ BIOMASY

ŘÍZENÉ SPALOVÁNÍ BIOMASY WORKSHOP SLNKO V NAŠICH SLUŽBÁCH 5.4.2013 7.4.2013, OŠČADNICA, SK TENTO MIKROPROJEKT JE SPOLUFINANCOVANÝ EURÓPSKOU ÚNIOU, Z PROSTRIEDKOV FONDU MIKROPROJEKTOV SPRAVOVANÉHO TRENČIANSKYM SAMOSPRÁVNYM KRAJOM

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Palivová soustava Steyr 6195 CVT

Palivová soustava Steyr 6195 CVT Tisková zpráva Pro více informací kontaktujte: AGRI CS a.s. Výhradní dovozce CASE IH pro ČR email: info@agrics.cz Palivová soustava Steyr 6195 CVT Provoz spalovacího motoru lze řešit mimo používání standardního

Více

Nakládání s upotřebenými odpadními oleji

Nakládání s upotřebenými odpadními oleji Nakládání s upotřebenými odpadními oleji 1.11.2012 Ing. Martin Holek, Bc. Lada Rozlílková množství v t 210 000 180 000 150 000 120 000 90 000 60 000 30 000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008

Více

Moderní energetické stoje

Moderní energetické stoje Moderní energetické stoje Jedná se o zdroje, které spojuje několik charakteristických vlastností. Jedná se hlavně o tyto: + vysoká účinnost + nízká produkce škodlivých látek - vysoká pořizovací cena! -

Více

Možnost aplikace primárních opatření u generátorů s pevným ložem

Možnost aplikace primárních opatření u generátorů s pevným ložem Možnost aplikace primárních opatření u generátorů s pevným ložem Zdeněk BEŇO 1,*, Siarhei SKOBLIA 1, Michael POHOŘELÝ 2, 3 1 Ústav plynárenství, koksochemie a ochrany ovzduší, VŠCHT Praha, Technická 5,

Více

VLIV REAKČNÍCH PODMÍNEK NA FLUIDNÍ SPALOVÁNÍ MOKRÝCH STABILIZOVANÝCH ČISTÍRENSKÝCH KALŮ

VLIV REAKČNÍCH PODMÍNEK NA FLUIDNÍ SPALOVÁNÍ MOKRÝCH STABILIZOVANÝCH ČISTÍRENSKÝCH KALŮ VLIV REAKČNÍCH PODMÍNEK NA FLUIDNÍ SPALOVÁNÍ MOKRÝCH STABILIZOVANÝCH ČISTÍRENSKÝCH KALŮ Michael Pohořelý, Karel Svoboda, Petra Hejdová, Martin Vosecký, Otakar Trnka a Miloslav Hartman Stabilizované čistírenské

Více

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ Provoz automobilových PSM je provázen produkcí škodlivin, které jsou emitovány do okolí: škodliviny chemické (výfuk.škodliviny, kontaminace),

Více

technických prohlídkách Nová technická řešení a jiná opatření ke snížení výfukových emisí:

technických prohlídkách Nová technická řešení a jiná opatření ke snížení výfukových emisí: Emisní vlastnosti automobilů a automobilových motorů Ochrana životního prostředí: podíl automobilové dopravy na celkovém znečištění ovzduší Emisní předpisy: CARB, EPA, ECE (EHK), národní legislativa Emisní

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.1.10 Integrovaná střední škola technická

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

EMISNÍ VÝSTUPY NO X Z PECÍ MAERZ

EMISNÍ VÝSTUPY NO X Z PECÍ MAERZ EMISNÍ VÝSTUPY NO X Z PECÍ MAERZ Ing. Jiří Jungmann Výzkumný ústav maltovin Praha, s.r.o. Podstata procesu výpal uhličitanu vápenatého při teplotách mezi 900 a 1300 o C reaktivita vápna závisí zejména

Více

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (9)

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (9) 3. června 2015, Brno Připravil: Ing. Petr Trávníček, Ph.D. TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (9) Technika energetického využívání dřevních odpadů Inovace studijních programů AF a ZF MENDELU směřující k vytvoření

Více

STUDIUM PRODUKTŦ PYROLÝZY VZORKU DŘEVNÍCH PELET PŘI VSÁZKOVÉ PYROLÝZE V ROZMEZÍ TEPLOT 400 AŢ 800 C

STUDIUM PRODUKTŦ PYROLÝZY VZORKU DŘEVNÍCH PELET PŘI VSÁZKOVÉ PYROLÝZE V ROZMEZÍ TEPLOT 400 AŢ 800 C STUDIUM PRODUKTŦ PYROLÝZY VZORKU DŘEVNÍCH PELET PŘI VSÁZKOVÉ PYROLÝZE V ROZMEZÍ TEPLOT 400 AŢ 800 C Aleš Barger, Siarhei Skoblia Pyrolýza je termickým rozkladem organické hmoty za nepřítomnosti vzduchu,

Více

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel FLUIDNÍ KOTLE Osvědčená technologie pro spalování paliv na pevném roštu s fontánovou fluidní vrstvou. Možnost spalování široké palety spalování pevných paliv s velkým rozpětím výhřevnosti uhlí, biomasy

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP

Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP Právní základ ČR» zákon o ochraně ovzduší č. 86/2002 Sb. ve znění zákonů č. 521/2002 Sb., č. 92/2004 Sb., č. 186/2004 Sb., č.

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného

Více

ENplus Handbook, Part 3 - Pellet Quality Requirements. ENplus. Schéma certifikace kvality pro dřevní pelety

ENplus Handbook, Part 3 - Pellet Quality Requirements. ENplus. Schéma certifikace kvality pro dřevní pelety ENplus Schéma certifikace kvality pro dřevní pelety Příručka ENplus Část 3: Požadavky na kvalitu pelet Srpen 2015 1 Vydavatel: ENplus Handbook, Part 3 - Pellet Quality Requirements European Pellet Council

Více

SMART kw. Čistota přírodě Úspora klientům Komfort uživatelům

SMART kw. Čistota přírodě Úspora klientům Komfort uživatelům Čistota přírodě Úspora klientům Komfort uživatelům SMART 0 00 Plně automatické, ekologické kotle s vynikajícími vlastnostmi Flexibilita technického řešení Variabilita použitelných paliv Ekonomický a ekologický

Více

TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ

TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ TVORBA UHLÍKATÝCH PRODUKTŮ PŘI I PYROLÝZE UHLOVODÍKŮ Martin Hrádel 5. ročník Školitel: Doc. Ing. Zdeněk Bělohlav, CSc. Obsah Úvod Mechanismus vzniku a vlastnosti uhlíkatých produktů Provozního sledování

Více

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů 185 Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů doc. Ing. Josef Laurin, CSc., doc. Ing. Lubomír Moc, CSc., Ing. Radek Holubec Technická univerzita v Liberci, Studentská 2,

Více

FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB

FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Tvorba škodlivin při spalování

Tvorba škodlivin při spalování Tvorba škodlivin při spalování - Při spalování dochází ke vzniku řady škodlivin - Je třeba spalovací proces vést tak, aby se minimalizoval vznik škodlivin (byly dodrženy emisní limity) - Emisní limity

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE BAKALÁŘSKÁ PRÁCE Energetické využití dřevoplynu Ondřej Radina 2013 Abstrakt V bakalářské práci popisuji formou

Více

Ropa Kondenzované uhlovodíky

Ropa Kondenzované uhlovodíky Nejdůležitější surovina pro výrobu organických sloučenin Nejvýznamnější surovina světové ekonomiky Výroba energie Chemické zpracování - 15 % Cena a zásoby ropy (70-100 let) Ropné krize Nutnost hledání

Více

Škodliviny v ovzduší vznikající spoluspalováním komunálního odpadu v domácnostech

Škodliviny v ovzduší vznikající spoluspalováním komunálního odpadu v domácnostech Seminář Škodliviny v ovzduší vznikající spoluspalováním komunálního odpadu v domácnostech 18. 19.6.2015 hotel Duo, Horní Bečva 2 Představení projektu Název projektu: Oblast podpory: Zachování životního

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013 Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Využití biomasy pro výrobu biopaliva Bakalářská práce

Využití biomasy pro výrobu biopaliva Bakalářská práce Mendelova univerzita v Brně Agronomická fakulta Ústav zemědělské, potravinářské a environmentální techniky Využití biomasy pro výrobu biopaliva Bakalářská práce Vedoucí práce: Ing. Zdeněk Konrád, Ph.D.

Více

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace Upozornění: Tato prezentace slouží výhradně pro účely firmy TEDOM. Byla sestavena autorem s využitím citovaných zdrojů a veřejně dostupných internetových zdrojů. Využití této prezentace nebo jejich částí

Více

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw

Více

Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba

Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba R Vysoká škola báňská Technická univerzita Ostrava Výzkumné energetické centrum 17. listopadu 15/2172 708 33 Ostrava Poruba Zpráva č. 34/14 Výpočet emisních faktorů znečišťujících látek pro léta 2001 až

Více

VYSOKOTEPLOTNÍ ÚPRAVA SYNTÉZNÍHO PLYNU

VYSOKOTEPLOTNÍ ÚPRAVA SYNTÉZNÍHO PLYNU VYSOKOTEPLOTNÍ ÚPRAVA SYNTÉZNÍHO PLYNU Sergej Skoblja, Jiří Malecha, Bohumil Koutský Biomass and plant wastes gasification in small and medium units enables effective transformation of problematic fuels

Více

H4EKO-D ekologický zplyňovací kotel na dřevo malých rozměrů o výkonech 16, 20, 25kW v 5. emisní třídě a v Ekodesignu.

H4EKO-D ekologický zplyňovací kotel na dřevo malých rozměrů o výkonech 16, 20, 25kW v 5. emisní třídě a v Ekodesignu. H4EKO-D ekologický zplyňovací kotel na dřevo malých rozměrů o výkonech 16, 20, 25kW v 5. emisní třídě a v Ekodesignu. Kotle H4xx EKO-D jsou zplyňovací kotle určené pro spalování kusového dřeva. Uvnitř

Více

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Mgr.

Více

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ Energetické využití odpadů PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ komunální a průmyslové odpady patří do kategorie tzv. druhotných energetických

Více

Efektivní využití kogeneračních jednotek v sítích SMART HEATING AND COOLING NETWORKS

Efektivní využití kogeneračních jednotek v sítích SMART HEATING AND COOLING NETWORKS Efektivní využití kogeneračních jednotek v sítích SMART HEATING AND COOLING NETWORKS Pavel MILČÁK 1,2, Patrik UHRÍK 2 1 VÍTKOVICE ÚAM a.s., Ruská 2887/101, 703 00 Ostrava, Česká republika 2 VUT v Brně,

Více

autoři a obrázky: Mgr. Hana a Radovan Sloupovi

autoři a obrázky: Mgr. Hana a Radovan Sloupovi EKOLOGIE autoři a obrázky: Mgr. Hana a Radovan Sloupovi 1. Určitě jsi v nabídkových letácích elektroniky zaregistroval zkratku PHE. Jde o poplatek za ekologickou likvidaci výrobku. Částka takto uvedená

Více

VLASTNOSTI BIOPALIV VE VZTAHU K JEJICH SPALOVÁNÍ A ZPLYŇOVÁNÍ

VLASTNOSTI BIOPALIV VE VZTAHU K JEJICH SPALOVÁNÍ A ZPLYŇOVÁNÍ VLASTNOSTI BIOPALIV VE VZTAHU K JEJICH SPALOVÁNÍ A ZPLYŇOVÁNÍ Ing. Jiří KUBÍČEK This article in general recapitulates properties, that are important for biomass combustion and gasification and for biomass

Více

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013 Kogenerační jednotky a zařízení na úpravu plynu Dreyer & Bosse Kraftwerke GmbH, Streßelfeld 1, 29475

Více

Provozní charakteristiky kontaktní parní sušky na biomasu

Provozní charakteristiky kontaktní parní sušky na biomasu Provozní charakteristiky kontaktní parní sušky na biomasu Jan HAVLÍK 1,*, Tomáš DLOUHÝ 1 1 České vysoké učení technické v Praze, Fakulta strojní, Ústav energetiky, Technická 4, 16607 Praha 6, Česká republika

Více

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe Firemní profil Obsah prezentace Potenciál a možnosti využití Vybrané technologie Základní principy a vlastnosti Hlavní oblasti využití

Více