Počítačová geometrie I

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Počítačová geometrie I"

Transkript

1 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta

2 Osnova předmětu Pojem výpočetní geometrie, oblasti aplikací Analytické vyjádření zobrazovacích metod kótované promítání, Mongeovo promítaní, kosoúhlé promítání, axonometrie, středové promítání, cylindrická a sférická perspektiva Transformace roviny a prostoru analytické vyjádření Prostorové modelování zobrazování těles, určování viditelnosti Algoritmy počítačové geometrie lokalizace bodu mnoţinové operace hledání konvexního obalu Voronoi diagram Delaunay triangulace průsečíky a průniky základních geometrických útvarů Rovinné grafy

3 Literatura k přednášce Ţára J., Beneš B., Sochor J., Felkel P. (2005): Moderní počítačová grafika. Computer Press, Praha. Preparata F. P., Shamos M. I. (1985): Computational geometry. Springer- Verlag, New York, USA. Pelikán J. (1992): PC - Prostorové modelování. Grada, Praha. Farin G., Hoschek J., Kim M. (2002): Handbook of Computer Aided Geometric Design. Elsevier. Pottmann H, Asperl A., Hofer M., Kilian A. (2007). Architectural Geometry. Bentley Instute Press, USA. Foley J. D., van Dam A., Feiner S. K., Hughes J. F. (1995). Computer Graphics: principles and practice. Addison-Wesley Publishing Company, USA. Jeţek F. (2006). Geometrické a počítačové modelování. Západočeská univerzita v Plzni, Fakulta aplikovaných věd, (online).

4 Literatura ke cvičení Heringová B., Hora P. : Matlab I. díl práce s programem (online). Heringová B., Hora P. : Matlab II. díl popis funkcí (online). Daniš S. (2009): Základy programování v prostředí Octave a Matlab, Matfyzpress. Zaplatílek K., Doňar B. (2003): Matlab pro začátečníky, Nakladatelství BEN technická literatura. Kupka L. (2007): Matlab a Simulink: úvod do použití, SOŠ a SOU Lanškroun. Novák J., Pultarová I., Novák P. (2005): Základy informatiky Počítačové modelování v Matlabu, Česká technika nakladatelství ČVUT.

5 Pojem výpočetní geometrie (počítačové) analýza a návrh efektivních algoritmů pro určování vlastností a vztahů geometrických objektů řešení geometrických problémů navrţenými geometrickými algoritmy hlavním podnětem vzniku VG jako samostatné disciplíny rozvoj počítačové grafiky, CAD/CAM systémů (počítačem podporovaná výroba a projektování) řeší se transformace roviny a prostoru problémy geometrického vyhledávání, problém polohy bodu (v polygonu, mnohostěnu) dělení roviny či prostoru na oblasti, určení bodů v oblasti hledání nejmenší konvexní obálky mnoţiny bodů v d-rozměrném prostoru problém hledání blízkých bodů výpočet průniků polygonálních oblastí a poloprostorů triangulace, tetrahedronizace, Voronoiovy diagramy plánování pohybu, nalezení cesty v prostředí (s překáţkami) + algoritmizace úloh DG

6 y transformace roviny a prostoru y X [ x, y ] y S S S[ x, y ] X[ x, y] X[ x, y] x y X [ x, y ] X [ x, y ] S S S[ x, y ] X[ x, y] X [ x, y ] x x X[ x, y] x

7 problémy geometrického vyhledávání, problém polohy bodu M 2 M 1 M 3

8 hledání konvexní obálky mnoţiny bodů v d-rozměrném prostoru

9 výpočet průniků polygonálních oblastí a poloprostorů y x

10 triangulace

11 co je potřeba porozumění geometrickým vlastnostem problémů pouţívat vhodnou aplikaci algoritmů a datových struktur zvládat techniky tvorby efektivních algoritmů doporučení singulární případy zprvu ignorovat, zahrnout aţ dodatečně (v praxi jde o běţnou metodu), důleţité experimentování důležitá numerická stabilita algoritmus můţe být správný a přesto nerobustní (bod napravo nalevo od přímky, průnik přímky a roviny, ) těţké ošetřit hodnocení a porovnávání algoritmů nezávislé na typu počítače a na jazyku

12 Oblasti aplikací počítačová grafika lokalizace myši, řešení viditelnosti, průniky geometrických objektů, stíny,

13 Oblasti aplikací geografické informační systémy (GIS) digitální modely terénu, kartografie dem/index.html

14 Oblasti aplikací 3D skenování, 3D tisk, rekonstrukce ploch, reverzní inţenýrství, online marketing

15 Oblasti aplikací 3D skenování, 3D tisk, rekonstrukce ploch, reverzní inţenýrství, online marketing

16 Oblasti aplikací CAD/CAM systémy (computer aided design and manufacturing) návrh a výroba podporovaná počítačem 07.ibm.com/lenovoi nfo/thinkstation/bd/a pplications.html

17 Oblasti aplikací 2D, 3D konstrukce obrazová analýza počítačové modelování vizualizace, hry, simulátory virtuální realita editory dopravních sítí rozpoznávání textu GIF, Flash animace

Počítačová grafika 2 (POGR2)

Počítačová grafika 2 (POGR2) Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky Přednáška 1 Úvod do problematiky Význam počítačové grafiky Obrovský přínos masovému rozšíření počítačů ovládání počítače vizualizace výsledků rozšíření možnosti využívání počítačů Bouřlivý rozvoj v oblasti

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

Výpočetní geometrie Computational Geometry

Výpočetní geometrie Computational Geometry Datové struktury a algoritmy Část 11 Výpočetní geometrie Computational Geometry Petr Felkel 20.12.2005 Úvod Výpočetní geometrie (CG) Příklady úloh Algoritmické techniky paradigmata řazení - jako předzpracování

Více

Učitelství 1. stupně ZŠ tématické plány předmětů matematika

Učitelství 1. stupně ZŠ tématické plány předmětů matematika Učitelství 1. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematika I aritmetika (KMD/MATE1) 2 Matematika 3 aritmetika s didaktikou (KMD/MATE3) 3 Matematika 5 geometrie (KMD/MATE5)

Více

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky Přednáška 1 Úvod do problematiky Význam počítačové grafiky Obrovský přínos masovému rozšíření počítačů ovládání počítače vizualizace výsledků rozšíření možnosti využívání počítačů Bouřlivý rozvoj v oblasti

Více

Voroného konstrukce na mapě světa

Voroného konstrukce na mapě světa na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru).

Více

Malířův algoritmus. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15

Malířův algoritmus. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Malířův algoritmus 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Malířův algoritmus kreslení do bufferu video-ram, rastrová tiskárna s bufferem vyplňování

Více

Digitální rekonstrukce povrchů z mračna bodů

Digitální rekonstrukce povrchů z mračna bodů Digitální rekonstrukce povrchů z mračna bodů Petra Surynková, Šárka Voráčová Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 186 75 Praha 8, Czech Republic email: petra.surynkova@mff.cuni.cz,

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Minkowského operace a jejich aplikace

Minkowského operace a jejich aplikace KMA FAV ZČU Plzeň 1. února 2012 Obsah Aplikace Minkowského suma Minkowského rozdíl Minkowského součin v E 2 Minkowského součin kvaternionů Akce 22. 6. 1864-12. 1. 1909 Úvod Použití Rozmist ování (packing,

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1. 6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Učitelství 2. stupně ZŠ tématické plány předmětů matematika Učitelství 2. stupně ZŠ tématické plány předmětů matematika Povinné předměty: Matematická analýza I (KMD/MANA1)...2 Úvod do teorie množin (KMD/TMNZI)...4 Algebra 2 (KMD/ALGE2)...6 Konstruktivní geometrie

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

Geografické informační systémy GIS

Geografické informační systémy GIS Geografické informační systémy GIS Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

Multimediální systémy. 11 3d grafika

Multimediální systémy. 11 3d grafika Multimediální systémy 11 3d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Princip 3d objekty a jejich reprezentace Scéna a její osvětlení Promítání Renderování Oblasti využití

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová

INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová INFORMATIKA Jindřich Kaluža Ludmila Kalužová Recenzenti: doc. RNDr. František Koliba, CSc. prof. RNDr. Peter Mikulecký, PhD. Vydání knihy bylo schváleno vědeckou radou nakladatelství. Všechna práva vyhrazena.

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

MATLAB Úvod. Úvod do Matlabu. Miloslav Čapek

MATLAB Úvod. Úvod do Matlabu. Miloslav Čapek MATLAB Úvod Úvod do Matlabu Miloslav Čapek Proč se na FELu učit Matlab? Matlab je světový standard pro výuku v technických oborech využívá ho více než 3500 univerzit licence vlastní tisíce velkých firem

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

DMML, MMLS, TŘD, DP, DI, PSDPI

DMML, MMLS, TŘD, DP, DI, PSDPI Plán předmětu Název předmětu: Úvod do informačních technologií Školní rok: 2008/2009 Ročník: I. Studijní obor: DMML, MMLS, TŘD, DP, DI, PSDPI Forma studia: Kombinovaná Semestr: I. (zimní) Typ předmětu:

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Identifikační karta modulu v. 4. Forma výuky. Doporučený typ studia. Personální zabezpečení (vyplňte ve formátu Příjmení Jméno, bez titulů)

Identifikační karta modulu v. 4. Forma výuky. Doporučený typ studia. Personální zabezpečení (vyplňte ve formátu Příjmení Jméno, bez titulů) Identifikační karta modulu v. 4 Kód modulu Typ modulu volitelné Jazyk výuky čeština v jazyce výuky Média česky Média anglicky Media Způsob ukončení * zkouška Počet kreditů 10 Forma výuky Prezenční studium

Více

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1)

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 12 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Semestrální práce z předmětu KMA/MM. Voroneho diagramy

Semestrální práce z předmětu KMA/MM. Voroneho diagramy Semestrální práce z předmětu KMA/MM Voroneho diagramy Jméno a příjmení: Lenka Skalová Osobní číslo: A08N0185P Studijní obor: Finanční informatika a statistika Datum: 22. 1. 2010 Obsah Obsah... 2 1 Historie...

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

1. IT_0F1 Základní obsluha MS Office 2010 MS Word, MS Excel, MS PowerPoint, MS Windows

1. IT_0F1 Základní obsluha MS Office 2010 MS Word, MS Excel, MS PowerPoint, MS Windows 1. IT_0F1 Základní obsluha MS Office 2010 MS Word, MS Excel, MS PowerPoint, MS Windows Hlavní náplní kurzu je seznámit účastníky se základními a středně pokročilými technikami vybraných produktů MS Office.

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Vyplňování souvislé oblasti

Vyplňování souvislé oblasti Počítačová grafika Vyplňování souvislé oblasti Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU. Které z následujících tvrzení není pravdivé: a) Princip interpolace je určení

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 6

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 6 NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 2 SEMINÁŘ A CVIČENÍ ZE ZEMĚPISU... 2 KONVERZACE V RUSKÉM JAZYCE... 2 DĚJINY UMĚNÍ - PRAKTICKÉ... 2 SEMINÁŘ A CVIČENÍ

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Geografické informační systémy (GIS) Výukový materiál l pro gymnázia a ostatní středn ední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ 1357P2006

Více

Matematika a její aplikace Matematika- 1.období

Matematika a její aplikace Matematika- 1.období Vzdělávací oblast : Vyučovací předmět : Matematika a její aplikace Matematika- 1.období Charakteristika předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace,

Více

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL

Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Praktické využití Mathematica CalcCenter Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Obsah Popis Pojetí Vlastnosti Obecná charakteristika Ovladače

Více

MATEMATIKA. 1. 5. ročník

MATEMATIKA. 1. 5. ročník Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová

Více

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Státní zkouška aritmetika Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA Teoretická aritmetika 1. Prvky výrokové logiky - výrok, skládání výroků, abeceda výrokové logiky, výrokové formule,

Více

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev

Více

Technologie II. Strojní programování. Přednáška č. 7. Autor: doc. Ing. Martin Vrabec, CSc.

Technologie II. Strojní programování. Přednáška č. 7. Autor: doc. Ing. Martin Vrabec, CSc. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Projekt OPPA Systém elektronické podpory studia (SEPS) Řešen na FS ČVUT v Praze od 1. 4. 2011 Technologie II Strojní programování Přednáška

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 7. Výstup - modeluje a zapisuje zlomkem část celku - převádí zlom na des. čísla a naopak - porovnává zlom - zlomek

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Podmínky pro hodnocení žáků v předmětu informatika

Podmínky pro hodnocení žáků v předmětu informatika Podmínky pro hodnocení žáků v předmětu informatika Prima Prezentace jedna známka Textový editor automatické tvary - jedna známka Textový editor práce s textem- jedna známka Sekunda Grafika jedna známka

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Historie matematiky a informatiky 2 1. přednáška 24. září 2013. Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze

Historie matematiky a informatiky 2 1. přednáška 24. září 2013. Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze Historie matematiky a informatiky 2 1. přednáška 24. září 2013 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze Co je matematika? Obor, který se hojně používá v dalších oborech

Více

Vyšší odborná škola, Střední škola, Centrum odborné přípravy Budějovická 421, Sezimovo Ústí

Vyšší odborná škola, Střední škola, Centrum odborné přípravy Budějovická 421, Sezimovo Ústí ZKUŠEBNÍ PŘEDMĚTY SPOLEČNÉ ČÁSTI MATURITNÍCH ZKOUŠEK Jsou stanoveny a zakotveny v platných legislativních normách: Zákon č. 561/2004 Sb. o předškolním, základním, středním, vyšším odborném a jiném vzdělávání

Více

SOFTWARE NA ZPRACOVÁNÍ MRAČEN BODŮ Z LASEROVÉHO SKENOVÁNÍ. Martin Štroner, Bronislav Koska 1

SOFTWARE NA ZPRACOVÁNÍ MRAČEN BODŮ Z LASEROVÉHO SKENOVÁNÍ. Martin Štroner, Bronislav Koska 1 SOFTWARE NA ZPRACOVÁNÍ MRAČEN BODŮ Z LASEROVÉHO SKENOVÁNÍ SOFTWARE FOR PROCESSING OF POINT CLOUDS FROM LASER SCANNING Martin Štroner, Bronislav Koska 1 Abstract At the department of special geodesy is

Více

Aktuální seznam nabízených kurzů

Aktuální seznam nabízených kurzů Aktuální seznam nabízených kurzů Název akce číslo akreditace hodinová dotace cena 1 Moodle pro pokročilé 3320/10-25-22 30 2100 2 Lidová řemesla a tradice v práci učitelů a vychovatelů 3320/10-25-22 30

Více

Zřízení studijního oboru HPC (High performance computing)

Zřízení studijního oboru HPC (High performance computing) Zřízení studijního oboru HPC (High performance computing) Návrh oboru je koncipován tak, aby byl zajímavý pro široký okruh zájemců, kteří pak mohou později pracovat při využití HPC v projekčních a výzkumných

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

V tomto předmětu budou učitelé pro utváření a rozvoj klíčových kompetencí využívat zejména tyto strategie:

V tomto předmětu budou učitelé pro utváření a rozvoj klíčových kompetencí využívat zejména tyto strategie: Vyučovací předmět: ZEMĚPISNÁ PRAKTIKA Učební osnovy 2. stupně 5.3.2. ná praktika A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Časové vymezení vyučovacího

Více

BEZPEČNOST IS. Ukončení předmětu: Předmět je zakončen zkouškou sestávající z písemné a doplňkové ústní části.

BEZPEČNOST IS. Ukončení předmětu: Předmět je zakončen zkouškou sestávající z písemné a doplňkové ústní části. BEZPEČNOST IS Předmět Bezpečnost IS je zaměřen na bezpečnostní aspekty informačních systémů a na zkoumání základních prvků vytváření podnikového bezpečnostního programu. Má představit studentům hlavní

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka

Více

ŢELVÍ GRAFIKA VE VISUAL BASIC

ŢELVÍ GRAFIKA VE VISUAL BASIC ŢELVÍ GRAFIKA VE VISUAL BASIC TURTLE GEOMETRY IN THE VISUAL BASIC Jan LAVRINČÍK, ČR ÚVOD V současné době se stala výuka moderních informačních a komunikačních technologií standardním nástrojem a trendem

Více

Magisterský studijní program, obor

Magisterský studijní program, obor Ústav Automatizace a Informatiky Fakulta Strojního Inženýrství VUT v Brně Technická 2896/2, 616 69 Brno, Česká republika Tel.: +420 5 4114 3332 Fax: +420 5 4114 2330 E-mail: seda@fme.vutbr.cz WWW: uai.fme.vutbr.cz

Více

Možnosti integrace uměleckých postupů do vzdělávání na technicky zaměřených vysokých školách. Mgr. et MgA. Anna Ronovská

Možnosti integrace uměleckých postupů do vzdělávání na technicky zaměřených vysokých školách. Mgr. et MgA. Anna Ronovská Možnosti integrace uměleckých postupů do vzdělávání na technicky zaměřených vysokých školách Mgr. et MgA. Anna Ronovská Záměr Výzkum možností umělecké edukace v prostředí technicky zaměřených vysokých

Více

Tabulace učebního plánu

Tabulace učebního plánu Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Informační a výpočetní technika Ročník: 3. - 4. ročník (septima - oktáva) Tématická oblast DIGITÁLNÍ TECHNOLOGIE informatika hardware software

Více

Matematika úprava platná od 1. 9. 2009

Matematika úprava platná od 1. 9. 2009 Matematika úprava platná od 1. 9. 2009 Charakteristika vyučovacího předmětu Obsah vzdělávací oblasti Matematika a její aplikace se realizuje v předmětu Matematika po celou dobu školní docházky. Na 1. stupni

Více

KIS A JEJICH BEZPEČNOST-I

KIS A JEJICH BEZPEČNOST-I KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:

Více

Bedrich Beneš, Jirí Sochor, Petr Felkel. Moderní počítačová. Computer Press Brno 2004

Bedrich Beneš, Jirí Sochor, Petr Felkel. Moderní počítačová. Computer Press Brno 2004 r- I Jirí Žára, Bedrich Beneš, Jirí Sochor, Petr Felkel Moderní počítačová grafika Computer Press Brno 2004 . Obsah A ROVINNÁ GRAFIKA 1. Svetlo a barvy v počítačové grafice JS & JŽ 1.1 Vlastnosti lidskéhosystému

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

5.1.7 Informatika a výpočetní technika. Časové, obsahové a organizační vymezení. ročník 1. 2. 3. 4. hodinová dotace 2 2 0 0

5.1.7 Informatika a výpočetní technika. Časové, obsahové a organizační vymezení. ročník 1. 2. 3. 4. hodinová dotace 2 2 0 0 5.1.7 Informatika a výpočetní technika Časové, obsahové a organizační vymezení ročník 1. 2. 3. 4. hodinová dotace 2 2 0 0 Realizuje se vzdělávací obor Informatika a výpočetní technika RVP pro gymnázia.

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TECHNOLOGICKÉ POSTUPY S PODPOROU POČÍTAČA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

MOZAIKY GEOMETRICKOU SUBSTITUCÍ

MOZAIKY GEOMETRICKOU SUBSTITUCÍ 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE MOZAIKY GEOMETRICKOU SUBSTITUCÍ Abstrakt Příspěvek je věnován speciálnímu typu hierarchických mozaik, konstruovaných geometrickou substitucí vzoru. Klíčová

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

Geometrické vyhledávání

Geometrické vyhledávání mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či

Více

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ V příspěvku pojednáváme o použití počítačového modelování ve výuce geometrie. Naším cílem je zvýšit zájem o studium geometrie na všech

Více

Perspektiva jako matematický model objektivu

Perspektiva jako matematický model objektivu Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Semestrální práce z předmětu KMA/MM Perspektiva jako matematický model objektivu Martin Tichota mtichota@students.zcu.cz

Více