Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Rozměr: px
Začít zobrazení ze stránky:

Download "Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:"

Transkript

1 Truhlář Michl Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového prlelního zpojení ověřte pltnost vzthů pro sériové prlelní zpojené odporů Určete citlivost můstku Pomocí střídvého můstku normálu indukčnosti určete indukčnost dvou cívek jejich vzájemnou indukčnost Pomocí střídvého můstku změřte kpcitu kondenzátorů - Teplotní závislost pohyblivosti iontů elektrolytu Určete odporovou kpcitu elektrolytické cely pomocí nsyceného roztoku sádrovce o známé měrné vodivosti v teplotním intervlu 5 ž C Změřte teplotní závislost elektrické vodivosti 0,0n roztoku KCL v rozmezí teplot 5 ž 70 C Měření odporu provádějte lbortorním LCG mostem Z předpokldu stejné pohyblivosti obou iontů vypočítejte nkreslete do grfu teplotní závislosti vodivosti pohyblivosti Porovnejte s tbelovnými hodnotmi Teorie: Všechn měření byl zložen n využití můstků ke stnovení různých veličin, v tomto přípdě elektrického odporu indukčnosti cívek V první úloze byl určován odpor rezistorů Whetstonovým můstkem Jeho obecné zpojení je n obrázku Uprostřed schémtu je glvnoměr Pokud jím neprochází žádný proud, je mezi body B D nulové npětí, tedy U BD 0 Npětí mezi těmito body lze vyjádřit i tkto U BD U B U D U BC U DC 0 () Dostneme tk U B U D () U BC U DC () Neprochází-li mezi body B D proud, což je předpokládáno, prochází odpory stejný proud I odpory 3 proud I 3 Přepíšeme-li výše uvedené rovnosti npětí, vyjde I I 3 3 (3) I I 3 (3) Dělením rovnic dostneme 3 () Při vlstním měření byl určovný odpor neznámý, npř X jeden srovnávcí, N Odpory 3 byly nhrzeny odporovým drátem s délkovým měřidlem, pomocí něhož byly určeny délky ; b Potom pro odpor pltí: X N (5) b Byl určován odpor dvou rezistorů,, jejich sériového spojení 3 prlelního spojení (6) pomocí srovnávcí odporové dekády nstvené postupně n několik velikostí odporu T ϕ 3,6 C 39%

2 Měření: N b ,05 36,95 03, ,00,00 08, ,5 9,55 08, ,95 5,05 00, ,0 57,80 0, ,05 60,95 05, ,5 63,75 03,59 x 0,586 δ x n Σ i x ( n ) Odpor prvního rezistoru je ( 0,6 ±, ) s reltivní chybou 0,3% Výrobce udává hodnotu k N b 00 70,5 9,55 76, ,05 5,95 70, ,55 5,5 7, ,0 56,00 7, ,30 59,70 7, ,5 6,85 7,879 x 7,669 δ x n Σ i x ( n ) Odpor druhého rezistoru je ( 7,7 ± 0, 8) s reltivní chybou 0,7% Výrobce udává hodnotu 70

3 - sériové zpojení: N b 00 55,30,70 8, ,5 6,75 80, ,5 8,55 83, ,80 50,0 88, ,5 5,85 85, ,75 53,5 9,88 x 85,883 δ x n Σ i x ( n ) Odpor sériového zpojení rezistorů je ( 85,9 ±, 7) s reltivní chybou 0,% - prlelní zpojení: N P b 00 6,85 38,5 3, ,75 8,5 3, ,5 5,85 35,0 00,70 55,3 33, ,35 60,65 3,03 x 33,75 δ x n Σ i x ( n ) Odpor prlelního zpojení rezistorů je ( 33,8 ± 0, 6) s reltivní chybou 0,8% S dílky N 5 3,5 0 7,0 5,0 0,5 citlivost 0,7dílků - citlivost můstku N ,5 b 9,55 X 08,6 Ověření pltnosti měření: S 0,586 7,663 9,9 ( 0,3% ) ( 0,7% ) (, ) ( 0,8),36 0,% Teoretickým výpočtem jsem pro sériové zpojení získl S ( 9,3 ±, ) s reltivní chybou 0,% Měřením byl získán údj ( 85,9 ±, 7) s reltivní chybou 0,% P 3

4 P µ ˆ µ ˆ ( 0,586) ( 7,663) ( 0,3% ) ( 0,7% ) ( 0,586) 0,% (, ) p ( 7,663) 33,95 ( 0,8) 0,63 Teoretickým výpočtem jsem pro prlelní zpojení získl P ( 33,5 ± 0, 63) s reltivní chybou 0,% Měřením byl získán údj ( 33,8 ± 0, 6) s reltivní chybou 0,8% S - Měření indukčnosti V dlším měření bylo z úkol stnovit indukčnost dvou cívek včetně jejich vzájemné indukčnosti Při měření byl použit obdobný můstek, jko v předchozím úkolu, jen místo glvnoměru byl použit osciloskop, protože obvod byl npájen střídvým proudem o frekvenci f khz Srovnávcí cívk měl indukčnost L N 0, H Pro indukčnost měřené cívky LX pltí obdobný vzth jko v předešlém úkolu 3 (7) L N G D Zpojení cívek ) souhlsné b) nesouhlsné Zpojení můstku je podobné, jko n prvním obrázku, 3 jsou odporové dekády Místo odporů byly zpojeny cívky L N Jejich ohmický odpor byl vyrovnáván potenciometrem, který byl zpojen místo horního uzlu Tím bylo umožněno, by pltil výše uvedený vzorec Byl proveden třikrát čtyři měření s odporem rovným 000; pro dvě cívky L L se společným jádrem Cívky byly zpojovány jk zvlášť, tk dohromdy, jednou se souhlsným směrem vinutí (L 3 ), jednou s opčným (L ) Hodnoty jsou v tbulkách Měření: 3 mh , , , 3 S mh , , ,6 3 mh , , ,78 N 3 mh , , ,0 Schémt vedle tbulek symbolicky nznčují zpojení cívky (cívek) do obvodu Podle velikosti změřené indukčnosti L X pro zpojení dvou cívek série, lze určit, které z těchto zpojení je zpojení souhlsné (S) které nesouhlsné (N) To můžeme ověřit i podle následujících vzorců Pro změřené hodnoty tyto vzorce odpovídjí

5 L S L L L L n L L L L ( ) Z měření vychází indukčnost první cívky L (,8 ± 0,) H L S L n 0 s reltivní chybou 0,9% L 5, ± 0, 0 s reltivní chybou 0,5% Z měření vychází indukčnost souhlsného zpojení cívek L S ( 95,9 ± 0,3) 0 H s reltivní chybou 0,% Z měření vychází indukčnost nesouhlsného zpojení cívek L N 83,3 ± 0, 0 s reltivní chybou 0,5% Z měření vychází indukčnost druhé cívky ( ) H ( ) H s reltivní chybou,0% L se pk rovná L ( 3,5 ± 0,) H 0 5

6 Teorie: - Teplotní závislost pohyblivosti iontů v elektrolytu: Tto část měření se zbývl elektrolyty Nejprve měl být určen odporová kpcit nádobky se dvěm elektrodmi { elektrolytické cely Odpor nádobky s elektrolytem, odporová kpcit vodivost σ jsou svázány vzthem (8) σ Nádobk byl nplněn roztokem CSO byl postupně zhříván od 3 C do C Hodnoty vodivosti sádrovce uvedené v návodu nrůstjí v tomto rozpětí teplot lineárně, tkže je bylo možné přepočítt pro námi změřené teploty Byly zjištěny tyto hodnoty teploty odporu, to digitálním teploměrem lbortorním LCG mostem Dále se měření týklo roztoku KCl mol 5 c m 0,0N 0 mol m s koncentrcí l Nejprve byl určen závislost odporu roztoku v nádobce n teplotě Hodnoty jsou zznmenány jk v tbulce, tk v grfu Nkonec bylo z úkol vytvořit grf závislosti vodivosti pohyblivosti iontů K, Cl to z předpokldu, že ob ionty mjí pohyblivost stejnou Pohyblivost je dán vzthem σ σ µ (9) Fc N ec Ve vzthu vystupuje vodivosti σ, Frdyov konstnt F N e, vogdrov konstnt 3 9 N 6,03 0, elementární náboj elektronu e,60 0 C koncentrce KCl 5 c m 0 mol m Měření: T C m m Po doszení vodivosti dostneme µ (0) C p µ F p X Fc m 0σ m m,6 0,8 69,3 3,7 5,0 0,99 590, 39,8,73 67,9 3 6,9 0,95 58,0 385,7,83 70,6 8,0 0,98 57, 379,,880 7,33 5 9,0 0,0 56, 37,,98 7,80 6 0,0 0,06 55,0 367,6,976 7,6 7,0 0,070 57,7 363,3,0 73,53-7,3m σ σ X p ω p C p X σ ω 3 π 0 Dostneme tk odporovou kpcitu ( ) 7,3 ± 0,8 m s reltivní chybou,% 6

7 T C p C p µ F σ 3 0 µ 0,0 6, 350,0 0,66 0,037 5,79,0 05,6 3,6 0,68 0,08 53,9 3,0 397, 336,0 0,70 0, 5,99 3,0 388,0 38,5 0,750 0,7 56,9 5,0 380, 3,59 0,786 0,7 57,5 6 5,0 37,3 36,07 0,85 0,56 58,6 7 6,0 368,7 3,0 0,859 0,93 59,0 8 7,0 36, 30,7 0,897 0,30 60,63 9 8,0 35,6 98,97 0,936 0,385 6,80 0 9,0 39, 9, 0,97 0, 6,8 0,0 33,3 89,07 0,008 0,67 63,9,0 339, 85,8 0,038 0,98 6,7 3,0 333,0 79,97 0,080 0,57 65,99 3,0 37,3 7,86 0, 0,59 67, 5,0 3,6 7,03 0,5 0,63 68,7 6 5,0 38, 67,05 0,89 0,670 69,9 7 6,0 33,8 63,9 0, 0,709 70,0 8 7,0 30,9 60,30 0,57 0,70 70,98 9 8,0 305, 56,0 0,85 0,785 7,6 0 9,0 300,8 5,68 0,309 0,8 73, 30,0 98,5 9,95 0,350 0,853 73,9 ( 7,3 ± 0,8) m σ 5 c m 0 mol m N F N e 6,03 0 e,60 0 µ 3 9 X Fc m C Odpor / Nmerené hodnoty Polynomická regrese Teplot / C 7

8 Grf vodivosti 0,9 0,8 Vypoctené hodnoty Lineární regrese 0,7 0,6 Vodivost σ / - 0,5 0, 0,3 0, 0, 0, Teplot T / C Grf pohyblivosti 7 7 Vypoctené hodnoty Lineární regrese 70 Pohyblivost µ / 0 3 m V - s Teplot T / C 8

9 Závěr: První část měření týkjící se můstkové metody měření odporu byl úspěšná, to i pro některé nevhodné zvolené srovnávcí odpory 3 U měření indukčnosti nelze úspěšnost určit, protože nměřené hodnoty není s čím porovnt To, že vyšly pro kždé zpojení tři téměř shodné hodnoty, je způsobeno nízkou citlivostí použitého zpojení Podřilo se všk lespoň rozhodnout, které zpojení cívek bylo souhlsné (S), které nesouhlsné (N) Při měření pohyblivosti iontů v elektrolytu se vyskytlo několik potíží Z nměřených hodnot vyšl odporová kpcit závislá n teplotě Její vypočítné reltivní bsolutní střední chyby proto neodpovídjí skutečnosti, předpokld byl, že jde o konstntu Dlší chyby se objevily při odečtu teploty odporu při zhřívání roztoku KCl Chvílemi se hodnoty měnily velice rychle, přesný odečet tk nebyl možný Nměřil jsem tké pohyblivost roztoku KC ve vodě Pro t 8 C je pk vodivost 3 - µ 6,80 0 m V s což by odpovídlo docel dobře Hodnoty pohyblivosti pro K 8 µ 6,6 0 m V s pro Cl 8 µ 6,6 0 m V s při teplotě t C 8 9

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.:

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.: Potenciometrie Poločlánek (elektrod) je heterogenní elektrochemický systém tvořeny lespoň dvěm fázemi. Jedn fáze je vodičem první třídy vede proud prostřednictvím elektronů. Druhá fáze je vodičem druhé

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Pavel Brožek stud.

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

INSTITUT FYZIKY VŠB-TU OSTRAVA

INSTITUT FYZIKY VŠB-TU OSTRAVA Student Skupina/Osob. číslo Spolupracoval NSTTT FYZKY ŠB-T OST NÁZE PÁCE Měření elektrického odporu (definiční metodou, multimetrem a můstkem) Číslo práce 3 Datum Podpis studenta: Cíle měření: Zhodnotit

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Laboratorní cvičení č.11

Laboratorní cvičení č.11 aboratorní cvičení č.11 Název: Měření indukčnosti rezonanční metodou Zadání: Zjistěte velikost indukčnosti předložených cívek sériovou i paralelní rezonační metodou, výsledek porovnejte s údajem zjištěným

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Studium termoelektronové emise:

Studium termoelektronové emise: Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: X Název: Hallův jev Pracoval: Pavel Brožek stud. skup. 12 dne 19.12.2008 Odevzdal dne:

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

3.5 Ověření frekvenční závislosti kapacitance a induktance

3.5 Ověření frekvenční závislosti kapacitance a induktance 3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu

Více

Stanovení disociační konstanty acidobazického indikátoru

Stanovení disociační konstanty acidobazického indikátoru Stnovení disociční konstnty cidobzického indikátoru Teorie: cidobzické indikátory se chovjí buď jko slbé kyseliny nebo slbé báze disociují ve vodných roztocích omezeně. Kvntittivní mírou disocice je hodnot

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina:

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 7 Jméno: Třída:

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku. Přístroje: Úkol měření: Schéma zapojení:

Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku. Přístroje: Úkol měření: Schéma zapojení: Přístroje: Pracoviště 1. Vliv vnitřního odporu voltmetru na výstupní napětí můstku zdroj stejnosměrného napětí 24 V odporová dekáda 2 ks voltmetr 5kΩ/ V, rozsah 1,2 V voltmetr 1kΩ/ V, rozsah 1,2 V voltmetr

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet

Více

Oxidačně-redukční reakce (Redoxní reakce)

Oxidačně-redukční reakce (Redoxní reakce) Seminář z nlytické chemie idčně-redukční rekce (Redoxní rekce) RNDr. R. Čbl, Dr. Univerzit Krlov v Prze Přírodovědecká fkult Ktedr nlytické chemie Definice pojmů idce částice (tom, molekul, ion) ztrácí

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Obvod střídavého proudu s indukčností

Obvod střídavého proudu s indukčností Obvod střídavého proudu s indukčností Na obrázku můžete vidět zapojení obvodu střídavého proudu s indukčností. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu

b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu 1. Měření napětí a frekvence elektrických signálů osciloskopem Cíl úlohy: Naučit se manipulaci s osciloskopem a používat jej pro měření napětí a frekvence střídavých elektrických signálů. Dvoukanálový

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

2 Přímé a nepřímé měření odporu

2 Přímé a nepřímé měření odporu 2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ. Protokol o provedeném měření Druh měření Měření vodivosti elektrolytu číslo úlohy 2 Měřený předmět Elektrolyt Měřil Jaroslav ŘEZNÍČEK třída

Více

Úloha I.E... nabitá brambora

Úloha I.E... nabitá brambora Fyzikální korespondenční seminář MFF K Úloha.E... nabitá brambora Řešení XXV..E 8 bodů; průměr 3,40; řešilo 63 studentů Změřte zátěžovou charakteristiku brambory jako zdroje elektrického napětí se zapojenými

Více

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L.

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L. 1 Pracovní úkoly 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,1; 0,3; 0,5; 1,0; 3,0; 5,0 µf, R = 20 Ω). Výsledky měření

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).

Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor). Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: Bi-III-1 Síla stisku Spolupracovník: Hodnocení: Datum měření: Úkol: 1) Porovnejte sílu pravé a levé ruky. 2) Vyhodnoťte maximální sílu dominantní

Více

Stereometrie metrické vlastnosti

Stereometrie metrické vlastnosti Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

Teorie elektromagnetického pole Laboratorní úlohy

Teorie elektromagnetického pole Laboratorní úlohy Teorie elektromagnetického pole Laboratorní úlohy Martin Bruchanov 31. května 24 1. Vzájemná induktivní vazba dvou kruhových vzduchových cívek 1.1. Vlastní indukčnost cívky Naměřené hodnoty Napětí na primární

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Měření výkonu jednofázového proudu

Měření výkonu jednofázového proudu Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3 Cvičení.ročník rovnice, nerovnice, výrzy, funkce ) Vypočítejte: ) [0 (8. 0 7. 0 )] b) [ ( ). ( ) ( 7)]: ( ) c) (9 ): ( ) + [ 8 (0 )] d)[. ( 9 + 7) ( ). ( )]. e). 9. 9 f). 7 + 9 ) Vyjádřete jko jedinou

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IV Název: Měření malých odporů Pracoval: Matyáš Řehák stud.sk.: 13 dne: 10.10.2008 Odevzdal

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Hallův jev. stud. skup. FMUZV (73) dne 5.12.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Hallův jev. stud. skup. FMUZV (73) dne 5.12. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. 10 Název: Hallův jev Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 5.12.2013 Odevzdal dne: Možný počet

Více

TEPELNÉ ÚČINKY EL. PROUDU

TEPELNÉ ÚČINKY EL. PROUDU Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 1 TEPELNÉ ÚČINKY EL. POUDU Jméno(a): Mikulka oman, Havlíček Jiří Stanoviště: 6 Datum: 19.

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Měření rozlišovací schopnosti optických soustav

Měření rozlišovací schopnosti optických soustav F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti

Více

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA Transformátor Měření zatěžovací a převodní charakteristiky. Zadání. Změřte zatěžovací charakteristiku transformátoru a graficky znázorněte závislost

Více

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin. Číslo projektu CZ.107/1.5.00/34.0425 Název školy INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Elektrická měření Tematický okruh Měření elektrických veličin Téma Měření

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

Symbolicko - komplexní metoda I Opakování komplexních čísel z matematiky

Symbolicko - komplexní metoda I Opakování komplexních čísel z matematiky Symbolicko - komplexní metod I pkování komplexních čísel z mtemtiky Použité zdroje: Blhovec,.: Elektrotechnik II, Informtorium spol.s r.o., Prh 005 Wojnr, J.: Zákldy elektrotechniky I, Tribun EU s.r.o.,

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské.

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 1 Pracovní úkol 1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 2. Pomocí rotačního viskozimetru určete viskozitu newtonovské kapaliny. 3. Pro nenewtonovskou

Více

Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).

Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva). Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

TRANZISTOROVÝ ZESILOVAČ

TRANZISTOROVÝ ZESILOVAČ RANZISOROÝ ZESILOAČ 301-4R Hodnotu napájecího napětí určí vyučující ( CC 12). 1. Pro zadanou hodnotu I C 2 ma vypočtěte potřebnou hodnotu R C a zvolte nejbližší hodnotu rezistoru z řady. 2. Zvolte hodnotu

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-3

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-3 MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti, část Číslo projektu: Název projektu: Šablona: / novace a zkvalitnění výuky prostřednictvím CT Sada: 0 Číslo materiálu: VY_3_NOVACE_

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více