Příloha pro metrologii času

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příloha pro metrologii času"

Transkript

1 Příloha pro metrologii času Čas z filozofického hlediska Staří Řekové rozlišovali dva druhy času Chronos a Kairos. Chronos odpovídal asi našemu času, který běží lineárně konstantní rychlostí - nekonečně. Naproti tomu Kairos představoval čas. který běží cyklicky, např. den a noc, čtvero roční období v roce, fáze měsíce, lidský život od narození do smrti, tento čas - cyklus měl vždy konečnou hodnotu. Čas je kromě fyzikální veličiny také filozofickou kategorií. Čas má z tohoto hlediska dvojí charakter, vyjadřuje jednak trvání, např. zákony zachování hmoty a pohybu, ale také vyjadřuje posloupnost změn, střídání stavů a stadií. Časem se zabývá kromě filozofie, fyziky a metrologie také kosmologie, astronomie, geologie, biologie, psychologie a také speciální obor chronometrie, zabývající se měřením a etalonáží času. Vývoj definice sekundy a měření času Galileo Galilei ještě měřil krátký časový interval podle frekvence svého tepu. Na základě těchto časových měření objevil zákonitosti pohybu, volného pádu a zákonitosti doby kyvu kyvadla. Ale starověké kultury mohly podle pohybu hvězd určovat kalendářní datum velmi přesně a na tomto základě organizovat život a sezónní práce. Původně se definice jednotky času opírala o zdánlivý pohyb Slunce po obloze, způsobený otáčením Země kolem vlastní osy (sluneční čas). Doba jedné otáčky je sluneční den, který se dělí na 24 hodin, každá hodina na 60 minut a každá minuta na 60 sekund. Základní jednotka času byla definována jako díl středního slunečního dne. Pravý sluneční čas neplyne rovnoměrně, protože rychlost pohybu Země kolem Slunce není konstantní, mění se podle Keplerových zákonů. Proto se v definici vychází ze středního slunečního dne vztahujícího se na myšlený rovnoměrný pohyb. Rozdíl pravého a středního slunečního času udává časová rovnice. Pojem časová rovnice má tři různé významy. Jednak je to skutečně rovnice (P-1), dále je to rozdíl odpovídající levé straně uvedené rovnice a konečně je to i graf závislosti tohoto rozdílu během roku, obr. P-1. Podle zeměpisné délky je třeba dále rozlišovat místní čas (platí jen pro určitý poledník) a pásmový čas (teoreticky pro poledníkový pás 15, platí však pro určitou zeměpisnou a politickou oblast). A tak u nás máme středoevropský čas (SEČ), který je za světovým časem posunut o hodinu a v jarním a letním období přecházíme na středoevropský letní čas (SELČ), který je za světovým časem posunut o dvě hodiny. Světový čas je pak pásmový čas kolem nultého poledníku. U nás je pásmový čas shodný s místním časem např. v Jindřichově Hradci, tedy na poledníku 15 východní délky. časová rovnice = střední čas - pravý čas (P-1) Důležitým bodem na obloze je jarní bod. Je ve znamení Berana (nikoliv souhvězdí!), je to průsečík rovníku s ekliptikou. V jarním bodě je Slunce při jarní rovnodennosti. Doba mezi dvěma za sebou jdoucími průchody Slunce jarním bodem je tropický rok. Tropický rok 1900 měl 365, slunečních dní a 366, hvězdných dní. Hvězdný den je doba mezi dvěma po sobě jdoucími průchody jarního bodu poledníkem (hvězdný čas). Hvězdný den je vzhledem ke slunečnímu dni kratší asi o 4 minuty. 1

2 Obr. P-1: Graf tzv. časové rovnice, vyjadřuje rozdíl mezi středním a pravým časem během roku Později se ukázalo, že vzhledem k nepravidelnostem rotace Země nebyla sekunda definována přesně. Proto byla v roce 1960 zavedena přesnější definice sekundy, jakožto ,974 7 tý díl tropického roku 1900, což jest efemeridový čas (TE). Nerovnoměrnost efemeridového času je Takto byla sekunda definovaná přesněji, ale její určení bylo velmi nesnadné. Hledaly se proto jiné cesty, jak definovat jednotku času, později se přešlo na kvantový princip. Z hlediska přístupu k definici jednotky času rozlišujeme dva rozdílné směry. V prvním případě jde o astronomický způsob určování jednotky času plynoucí z rotace Země. Příslušný čas je označován názvem univerzální čas (značka TU). Používal se ve třech modifikacích ještě v padesátých letech minulého století a jeho nerovnoměrnost byla V druhém případě jde o využití kvantového principu, příslušný čas je označován jako atomový čas (TA). Univerzální čas je důležitý v těch disciplinách, pro něž je Země a její poloha rozhodující, např. v astronomii, geodézii a při navigaci. Pro jiné fyzikální discipliny je však výhodnější čas atomový bez ohledu k rotaci Země, jehož jednotka je přesněji reprodukovatelná. Tyto rozdíly jsou příčinou těžkostí, s nimiž se setkává snaha o zavedení jednotného času. Jako kompromisní řešení bylo proto zavedení koordinovaného univerzálního času (TUC). Časová stupnice je stejně rovnoměrná jako časová stupnice atomová, je však u ní provedena taková korekce, aby se časy TUC a TU co nejvíce shodovaly. Rozdíl se připouští do 0,6 s, jinak se do času TUC vkládá (nebo vyjímá) přestupná sekunda. Tato sekunda se může vložit (nebo vyjmout) jen v 0:00 k 1.lednu nebo v 0:00 k 1.červenci, ukáže-li se potřeba. Pro fyzikální měření se jevil TUC málo vyhovující a proto se od roku 1971 ve fyzikálních měřeních používá mezinárodní atomový čas (TAI). 2

3 Systém GPS (Global Positioning System) GPS je družicový navigační systém pro určování polohy a času. Přístroje využívající tohoto systému přijímají signály z navigačních družic, vyhodnocují je a jsou schopny v reálném čase určit polohu běžného uživatel s přesností 30 až 100 m, pro preferované uživatele pak s přesností 10 až 15 m. K určení polohy je třeba zachytit signál alespoň 3 družic, zachytí-li se signál z více družic, je možno určit i nadmořskou výšku, přesný čas, rychlost a směr pohybu. Systém pracuje po celé zeměkouli, 24 hodin denně a nezávisle na počasí. Systém je založen na využití velmi přesných kmitočtových a časových informací, vysílaných družicemi v podobě složitého signálu. Základní kmitočet je udržován soustavou palubních oscilátorů s přesností lepší než Data o celkové délce 1500 bitů se vysílají každých 30 s. Vysílání dat probíhá ve dvou kódech, C/A pro přibližné určení polohy (a volný přístup) a P pro přesnou navigaci. Protože jsou všechny vysílané kmitočty a kódy odvozeny ze základního kmitočtu, tvoří každý bit dat obou kódů časovou značku systému času GPS. Pro vyhodnocení a eliminaci vlivu ionosféry na výsledky měření vysílají družice GPS na dvou nosných kmitočtech L1 = 1575,42 MHz a L2 = 1227,60 MHz. Zakódované signály spolu s nosnými frekvencemi vytvářejí vysílaný a přijímaný signál, umožňující celou řadu měření. Systém GPS NAVSTAR se skládá ze tří segmentů: První segment, kosmický, se skládá ze 24 družic na 6 oběžných drahách rovnoměrně rozložených se sklonem dráhy k rovníku 55, výškou nad povrchem Země km, s dobou oběhu 12 hvězdných hodin. Druhý segment, řídicí, monitoruje funkci družic, předává údaje o poloze, tzv. efemeridy, údaje o chodu družicových hodin a další data. Systém má 15 stanic rozložených po světě, které zajišťují pozorování družic a určení jejich poloh. Hlavní řídicí stanice pak data zpracovává a předává na družice. Pro přesné určování polohy se zabývá přesným určováním drah družic Mezinárodní služba GPS pro geodynamiku (IGP), která produkuje polohy družic s přesností kolem 15 až 30 cm. Polohy jsou určovány na základě rozsáhlé celosvětové sítě permanentních stanic, které zasílají naměřené údaje pomocí sítě Internet do 7 zpracovatelských center, výsledky jsou pak dostupné na síti Internet do 7 dní. Třetí segment je uživatelský, je tvořen pozorovacími přístroji, staničními nebo přenosnými. Používané přístroje jsou buď jednofrekvenční (L1) nebo dvoufrekvenční (L1 + L2). Podle možností příjmu jsou přijímače bez kódu, přijímače s kódem C/A a přijímače s kódem C/A+P. Podle počtu kanálů (tj. podle počtu současně přijímaných družic) jsou jednokanálové a vícekanálové. Výše uvedené přesnosti určení polohy jsou podle specifikace a pro případ, že v době válečného nebezpečí je signál pro běžné uživatele z důvodů možného zneužití poněkud upraven. V posledních letech dostávají i běžní uživatelé signál bez dodatečné (zhoršující) úpravy, takže přesnost i pro běžné uživatele dosahuje 6 až 50 m v určení polohy (podle počtu přijatých družic). Pro přesnější určení polohy (nikoliv ovšem v reálném čase) a při zpracování geodetickým softwarem s eliminací značného počtu systematických chyb lze dosáhnout fantastické přesnosti v určení relativních souřadnic se střední chybou 1 až 2 cm (centimetry!) v prostoru na vzdálenost stovek až tisíce kilometrů. Vlastníkem systému GPS je ministerstvo obrany USA, které jej na nátlak Kongresu částečně uvolnilo pro obecné použití. Použití systému je bezplatné. 3

4 Podobný systém GLONASS vlastní také Rusko, ovšem není přístupný. Podobný ovšem novější a tím i dokonalejší systém ASTRIUM GALILEO buduje také Evropská unie, který bude podle předpokladů spolupracovat se systémem GPS Navstar. Historie přesnosti měření času Měření času a zvyšování jeho přesnosti souvisí s rozvojem společnosti, který se projevoval nejenom v hospodářské sféře, ale také ve vědě, ve vzdělanosti a ve schopnostech technologií. Historické přehledy jsou na obr. P-2 a P-3. Obr. P-2: Historický vývoj přesnosti měření času Přesnost měření času úzce souvisí s generováním a měřením krátkých časových intervalů. Toto úzce souvisí s fyzikální otázkou, zda je čas jevem spojitým, nebo zda vykazuje také kvantové chování, čili zda se mění po kvantech. Pro druhý názor zatím nejsou experimentální poznatky. Historický vývoj schopnosti měřit krátké časové intervaly, tedy i schopnost studovat rychlé děje především optickými metodami je graf na obr. P-4, je ukázkou vývoje vědy a technologií, kde se střídají skoky způsobené zásadně novými principy s obdobími postupného zdokonalování. Skok v první polovině 19. století vyvolalo využití elektrických zdrojů a přístrojů. Druhý skok nastal s objevením laseru. Na přelomu tisíciletí byl nejkratší generovaný časový 4

5 interval 15 fs (femtosekund, s), dnes (2008) s použitím optického frekvenčního hřebene se posouvá tato hranice k hodnotě 100 as (attosekund, s). Obr. P-3: Historický vývoj přesnosti v měření času 5

6 Obr. P-4: Vývoj měření a generování krátkých časových intervalů Předpokládaný technický pokrok v metrologii času Pulsary jako hodiny Poprvé byly objeveny v roce 1967, pulsary jsou považovány za kompaktní, rychle rotující neutronové hvězdy. Jak pulsar rotuje, vyzařuje paprsky ve směru dvou magnetických pólů hvězdy. Astronomové zachycují tyto pulsy záření jako z kosmického majáku, viz obr. P-5. Pro speciální třídu pulsarů, zvanou mikrosekundové pulsary, jsou časové intervaly mezi těmito pulsy záření vysoce stabilní. Tato jejich stabilita může být použita pro získání časové základny přesných hodin přinejmenším srovnatelných s některými atomovými hodinami na Zemi. Cesiová fontána Běžné cesiové atomové hodiny jsou vyhřívány na teplotu 100 C. To způsobuje, že atomy se pohybují přes mikrovlnnou komoru rychle a různými rychlostmi, což omezuje stabilitu kmitočtu. V NPL ve Velké Británii a v Německu je ve vývoji nový typ atomových hodin známý jako cesiová fontána. Fontána využívá laserové paprsky pro chlazení atomů pro překonání tohoto problému. V těchto hodinách je oblak atomů vrhán nahoru do mikrovlnné komory a může padat dolů působením gravitace. Pomalý pohyb atomů umožňuje mnohem přesnější měření rezonanční frekvence atomů, tj. hodinového signálu. V budoucnosti, umístěním tohoto typu hodin do vesmíru, kde je gravitace redukována, bude možné další zvýšení přesnosti. Viz obr. P-6. 6

7 Obr. P-5: Pulsar jako kosmický maják a etalon časových intervalů Obr. P-6: Cesiová fontána jako etalon času 7

8 Iontová past Hodiny budoucnosti budou vyvíjeny ve formě iontových pastí. Ionty jsou nabité atomy, které mohou být zachyceny elektromagnetickými poli téměř trvale. Zachycený ion, laserovým svazkem ochlazený téměř k absolutní nule se stává nehybný. V NPL ve Velké Británii se používá pro vývoj hodin založených na iontových pastích prvek ytterbium, protože jeho ionty mohou být ve velmi stabilních stavech. Takové hodiny mohou dosahovat přesností 1000 krát vyšších než současné atomové hodiny. To je ekvivalentní zpoždění ne více než jednu sekundu v dosavadním trvání vesmíru. Obr. P-7: Iontová past jako předpokládaný etalon času Optický frekvenční hřeben (viz obr. P-8) 100 as (r. 2008) atto je10-18 Theodor Hänsch, nositel Nobelovy ceny za fyziku v r Nalezl způsob, jak měřit počet kmitů světelného vlnění a generování velmi krátkých světelných pulsů. Laser vyzařuje pravidelné pulsy světla (podobají se hřebenu). Vlnovou délku světla umožňuje měřit přístroj velikosti videopřehrávače. Je zde možnost a snaha vyrobit optické atomové hodiny, které by byly tisíckrát přesnější než mikrovlnné. Tím se naskýtá možnost zlepšení časování (internet, mobilní telefony). Dále je zde možnost měření změn zemské gravitace, změny tvaru zeměkoule, předpověď zemětřesení a prospekce minerálů. Zatímco ještě v roce 1995 byl nejkratší generovaný puls 15 fs, objev optického hřebene umožňuje vytvářet pomocí laserů časové pulsy v délce 100 as (sto attosekund), tj s. 8

9 Obr. P-8: Femtosekundový generátor hřebene optických frekvencí v ČMI-LPM 9

10 Kosmologická časová měřítka: May, Moore, Lintott (2007) čas po velkém třesku událost před/za 0 velký třesk -13,7 miliardy let až s období inflace s vznik kvarků a atikvarků jež navzájem anihilovaly, po anihilaci zůstal mírný přebytek kvarků 10-5 s kvarky se spojují do neutronů 10-3 s vznik atomů vodíku a helia 1 až 3 minuty vznik lehkých prvků až po bor let vznik reliktního záření - vesmír zprůhledněl 200 milionů let vznik prvních hvězd, deionizace -13,5 miliardy let 3 miliardy let vznik galaxií, kvasarů a nejstarších hvězd naší -10,4 miliardy let Galaxie 9,1 miliardy let vznik naší sluneční soustavy včetně Země -5,6 miliardy let 9,9 miliardy let vznik prvních zkamenělin -3,8 miliardy let 13,4 miliardy let první plazi -320 milionů let 13,5 miliardy let Afrika se oddělila od Ameriky, objevují se -200 milionů let dinosauři 13,64 miliardy let vyhynutí dinosaurů, vystřídali je malí savci -65 milionů let 13,695 miliardy let vyvinuli se první primáti včetně opic -5 milionů let 13,6998 miliardy let Homo sapiens let 13,6999 miliardy let konec poslední doby ledové let 13,7 miliardy let současnost 14,7 miliardy let Země se stává neobyvatelnou + 1 miliarda let 18,7 miliardy let Slunce se stává červeným obrem, Země je + 5 miliard let zničena 23,7 Slunce se stává bílým trpaslíkem + 10 miliard let let galaxie a hvězdná seskupení se rozpadají miliard let let 50 % všech protonů se rozpadlo let všechny protony jsou pryč, převládají černé díry let černé díry se rozpadly let fotonový věk: vesmír dosáhl stavu extrémně nízké energie 10

11 A nakonec otázka ze všeobecného kulturně-historického vzdělání. Kolik hodin a jaké datum ukazuje Pražský orloj? Obr. P-9: Ciferník pražského orloje 11

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře OPT/AST L08 Čas a kalendář důležitá aplikace astronomie udržování časomíry a kalendáře čas synchronizace s rotací Země vzhledem k jarnímu bodu vzhledem ke Slunci hvězdný čas definován jako hodinový úhel

Více

Principy GPS mapování

Principy GPS mapování Principy GPS mapování Irena Smolová GPS GPS = globální družicový navigační systém určení polohy kdekoliv na zemském povrchu, bez ohledu na počasí a na dobu, kdy se provádí měření Vývoj systému GPS původně

Více

Globální polohové a navigační systémy

Globální polohové a navigační systémy Globální polohové a navigační systémy KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci I NVESTICE DO ROZVOJE V ZDĚLÁVÁNÍ Environmentální vzdělávání

Více

Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II

Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví Ing. Hana Staňková, Ph.D. Ing. Filip Závada GEODÉZIE II 8. Technologie GNSS Navigační systémy

Více

ČAS, KALENDÁŘ A ASTRONOMIE

ČAS, KALENDÁŘ A ASTRONOMIE ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Globáln lní navigační a polohové družicov icové systémy Výukový materiál pro gymnázia a ostatní střední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM Hynčicová Tereza, H2IGE1 2014 ČAS Jedna ze základních fyzikálních veličin Využívá se k určení časových údajů sledovaných jevů Časovou škálu

Více

Historie sledování EOP (rotace)

Historie sledování EOP (rotace) Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.

Více

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 20 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 21.06.2014 Ročník: 4B Anotace DUMu: Prezentace je zaměřena na základní popis a charakteristiky

Více

Global Positioning System

Global Positioning System Písemná příprava na zaměstnání Navigace Global Positioning System Popis systému Charakteristika systému GPS GPS (Global Positioning System) je PNT (Positioning Navigation and Timing) systém vyvinutý primárně

Více

FISCHL-PROSSLINEROVÁ C., VOCETKOVÁ B.: ČAS

FISCHL-PROSSLINEROVÁ C., VOCETKOVÁ B.: ČAS Čas Caroline Fischl-Prosslinerová a Barbora Vocetková 3.A, Gymnázium Na Vítězné pláni 1160 Abstrakt. Rozhodly jsme se, že vám povíme něco víc o času. Toto téma jsme si vybraly už jen z toho důvodu, že

Více

Astronomie. Astronomie má nejužší vztah s fyzikou.

Astronomie. Astronomie má nejužší vztah s fyzikou. Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: ZEMĚPIS Ročník: 6. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby organizuje a přiměřeně hodnotí geografické informace a zdroje dat z dostupných kartografických

Více

7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Planeta Země 7.Vesmír a Slunce Planeta Země Vesmír a Slunce Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí se

Více

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE

VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE Jiří GRYGAR Fyzikální ústav Akademie věd ČR, Praha 17.4.2012 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESK opravdu za všechno může 10-43

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

Nabídka. nových vzdělávacích programů. Hvězdárny Valašské Meziříčí, p. o.

Nabídka. nových vzdělávacích programů. Hvězdárny Valašské Meziříčí, p. o. Nabídka nových vzdělávacích programů Hvězdárny Valašské Meziříčí, p. o. Ballnerova hvězdárna Sluneční analematické hodiny Vážení přátelé, příznivci naší hvězdárny, kolegové, jsme velmi potěšeni, že Vám

Více

1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje.

1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje. 1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje. I. 2. Doplň: HOUBY Nepatří mezi ani tvoří samostatnou skupinu živých. Živiny čerpají z. Houby

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK,

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11. 2011 VZDĚL. OBOR, TÉMA: Fyzika, Planetárium

Více

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 25 b) B I: (max. 20 b) B

Více

Astronomie a astrofyzika

Astronomie a astrofyzika Variace 1 Astronomie a astrofyzika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www. jarjurek.cz. 1. Astronomie Sluneční soustava

Více

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009

Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009 2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve

Více

Astronomie jako motivační prvek ve výuce fyziky

Astronomie jako motivační prvek ve výuce fyziky Astronomie jako motivační prvek ve výuce fyziky Ivana Marková Hvězdárna a planetárium J. Palisy VŠB-Technická univerzita Ostrava ivana.markova@vsb.cz 2. Česko-slovenská konference o vzdělávání v astronomii

Více

VESMÍR Hvězdy. Životní cyklus hvězdy

VESMÍR Hvězdy. Životní cyklus hvězdy VESMÍR Hvězdy Pracovní list HEUREKA! aneb podpora badatelských aktivit žáků ZŠ v přírodovědných předmětech ASTRONOMIE Úloha 1. Ze života hvězdy. Úloha 1a. Očísluj jednotlivé fáze vývoje hvězdy. Následně

Více

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy Ing. Jiří Fejfar, Ph.D. GNSS Globální navigační satelitní systémy Kapitola 1: Globální navigační systémy (Geostacionární) satelity strana 2 Kapitola 1: Globální navigační systémy Složky GNSS Kosmická složka

Více

Zeměpis - 6. ročník (Standard)

Zeměpis - 6. ročník (Standard) Zeměpis - 6. ročník (Standard) Školní výstupy Učivo Vztahy má základní představu o vesmíru a sluneční soustavě získává základní poznatky o Slunci jako hvězdě, o jeho vlivu na planetu Zemi objasní mechanismus

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ

Více

Vzdělávací oblast: ČLOVĚK A JEHO SVĚT Předmět: ZEMĚPIS Ročník: 6.

Vzdělávací oblast: ČLOVĚK A JEHO SVĚT Předmět: ZEMĚPIS Ročník: 6. Vzdělávací oblast: ČLOVĚK A JEHO SVĚT Předmět: ZEMĚPIS Ročník: 6. Výstupy dle RVP Školní výstupy Učivo Žák: - zhodnotí postavení Země ve vesmíru a srovnává podstatné vlastnosti Země s ostatními tělesy

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Kategorie EF pondělí 26. 1. 2015

Kategorie EF pondělí 26. 1. 2015 Kategorie EF pondělí 26. 1. 2015 téma přednášky časová dotace přednášející Zatmění Slunce a Měsíce 1 vyučovací hodina (45 minut) Lumír Honzík Podobnost trojúhelníků 2 v. h. Ivana Štejrová Keplerovy zákony

Více

Venuše druhá planeta sluneční soustavy

Venuše druhá planeta sluneční soustavy Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

4.9.61. Zeměpisný seminář

4.9.61. Zeměpisný seminář 4.9.61. Zeměpisný seminář Seminář je koncipován jako dvouletý, pro žáky 3. ročníku a septim. Je určený pro žáky s hlubším zájmem o zeměpis. Navazuje na předmět Zeměpis, prohlubuje zeměpisné poznatky 1.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny 1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou

Více

Galileo evropský navigační družicový systém

Galileo evropský navigační družicový systém Galileo evropský navigační družicový systém Internet ve státní správě a samosprávě Hradec Králové, 12. 13. duben 2010 1 Navigační systém Galileo je plánovaný autonomní evropský Globální družicový polohový

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

ŠVP Gymnázium Jeseník Zeměpis prima 1/6

ŠVP Gymnázium Jeseník Zeměpis prima 1/6 ŠVP Gymnázium Jeseník Zeměpis prima 1/6 žák charakterizuje na elementární úrovni vesmír a sluneční soustavu objasní postavení Slunce a planet sluneční soustavy ve vesmíru srovnává podstatné vlastnosti

Více

HVĚZDÁRNA FRANTIŠKA KREJČÍHO

HVĚZDÁRNA FRANTIŠKA KREJČÍHO HVĚZDÁRNA FRANTIŠKA KREJČÍHO WWW.ASTROPATROLA.CZ hvezdarna.kv@gmail.com telefon 357 070 595 JAK VYUŽÍT HVĚZDÁRNU FRANTIŠKA KREJČÍHO V KARLOVÝCH VARECH JAKO DOPLNĚK SOUČASNÉ ŠKOLNÍ VÝUKY Programy hvězdárny

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT ZŠ a MŠ Slapy, Slapy 34, 391 76 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Vzdělávací materiál: Powerpointová prezentace ppt. Jméno autora: Mgr. Soňa Růžičková Datum vytvoření: 9. červenec 2013

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

GPS Manuál. Tato příručka je vánoční dárkem Orlíků pro oddíl.

GPS Manuál. Tato příručka je vánoční dárkem Orlíků pro oddíl. GPS Manuál Tato příručka je vánoční dárkem Orlíků pro oddíl. Obsah Co je to GPS... 3 Jak to funguje GPS... 4 HOLUX FunTrek 132... 6 Základní ovládání... 6 Jak vyhledat GPS bod... 7 Hledání uložené kešky...

Více

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb Trochu astronomie v hodinách fyziky Jan Dirlbeck Gymnázium Cheb Podívejte se dnes večer na oblohu, uvidíte Mars v přiblížení k Zemi. Bude stejně velký jako Měsíc v úplňku. Konec světa. Planety se srovnají

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ vyplňuje žák Identifikace práce Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město PSČ jiný kontakt (např. e-mail) A. Přehledový test

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

Tělesa sluneční soustavy

Tělesa sluneční soustavy Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661

Více

VY_32_INOVACE_06_III./19._HVĚZDY

VY_32_INOVACE_06_III./19._HVĚZDY VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír

Více

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012

Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Astronomie Sluneční soustavy I. PřF UP, Olomouc, 6.4.2012 Osnova přednášek: 1.) Tělesa Sluneční soustavy. Slunce, planety, trpasličí planety, malá tělesa Sluneční soustavy, pohled ze Země. Struktura Sluneční

Více

VY_12_INOVACE_115 HVĚZDY

VY_12_INOVACE_115 HVĚZDY VY_12_INOVACE_115 HVĚZDY Pro žáky 6. ročníku Člověk a příroda Zeměpis - Vesmír Září 2012 Mgr. Regina Kokešová Slouží k probírání nového učiva formou - prezentace - práce s textem - doplnění úkolů. Rozvíjí

Více

Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach

Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach Sluneční soustava Sonnensystem Sluneční soustava (podle Pravidel českého pravopisu psáno s malým

Více

Mezipředmětové vztahy při výuce F na SŠ. Jiří Tesař

Mezipředmětové vztahy při výuce F na SŠ. Jiří Tesař Mezipředmětové vztahy při výuce F na SŠ Jiří Tesař Vymezení vztahů RVP - průřezová témata (viz přednáška č.1): napříč vzdělávacími oblastmi, umožňují propojení vzdělávacích obsahů oborů, přispívají ke

Více

VY_32_INOVACE_08.Fy.9. Slunce

VY_32_INOVACE_08.Fy.9. Slunce VY_32_INOVACE_08.Fy.9. Slunce SLUNCE Slunce je sice obyčejná hvězda, podobná těm, které vidíme na noční obloze, ale pro nás je velmi důležitá. Bez ní by naše Země byla tmavá a studená a žádný život by

Více

VÝUKA ASTRONOMIE NA ZŠ A SŠ S VYUŽITÍM STRÁNEK ASTRONOMIA.ZCU.CZ

VÝUKA ASTRONOMIE NA ZŠ A SŠ S VYUŽITÍM STRÁNEK ASTRONOMIA.ZCU.CZ VÝUKA ASTRONOMIE NA ZŠ A SŠ S VYUŽITÍM STRÁNEK ASTRONOMIA.ZCU.CZ Miroslav Randa, Ota Kéhar Oddělení fyziky Katedry matematiky, fyziky a technické výchovy ZČU v Plzni Abstrakt: V příspěvku se zabýváme,

Více

Kamenné a plynné planety, malá tělesa

Kamenné a plynné planety, malá tělesa Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 6. 2. 2013 Pořadové číslo 12 1 Země, Mars Předmět: Ročník: Jméno autora: Fyzika

Více

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami Jak se nazývá soustava, ve které se nachází planeta Země? Sluneční soustava Která kosmická tělesa tvoří sluneční soustavu? Slunce, planety, družice,

Více

Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup

Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup Kód: Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup Název vzdělávacího materiálu Souhrnné opakování podstatných jmen Anotace Pracovní listy k procvičování podstatných jmen prostřednictvím

Více

ZEMĚPIS 6.ROČNÍK VESMÍR-SLUNEČNÍ SOUSTAVA 27.3.2013

ZEMĚPIS 6.ROČNÍK VESMÍR-SLUNEČNÍ SOUSTAVA 27.3.2013 Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_ZE69KA_15_02_04

Více

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ -tíhové zrychlení je cca 9,81 m.s ² -určuje se z doby kyvu matematického kyvadla (dlouhý závěs nulové hmotnosti s hmotným bodem na konci) T= π. (l/g) takže g=π².l/(t²)

Více

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA Ota Kéhar Oddělení fyziky Katedry matematiky, fyziky a technické výchovy ZČU v Plzni Abstrakt: V příspěvku představím několik webových online aplikací

Více

Orbit TM Tellerium Kat. číslo 113.4000

Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium s velkým glóbusem Země pro demonstrování ročních období, stínů a dne a noci Orbit TM Tellerium s malou Zemí pro demonstrování fází Měsíce a zatmění

Více

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou

Více

10. GPS. 10.1 Základní pojmy. 10.2 Plánování trasy. Kapitola 10: GPS 1

10. GPS. 10.1 Základní pojmy. 10.2 Plánování trasy. Kapitola 10: GPS 1 Kapitola 10: GPS 1 10. GPS GPS Určování pozice Složky přijímačů Účely použití Další funkce přístrojů Doplňky k přístrojům Sledování polohy 10.1 Základní pojmy GPS (Global Positioning System) je systém

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Cesta od středu Sluneční soustavy až na její okraj

Cesta od středu Sluneční soustavy až na její okraj Cesta od středu Sluneční soustavy až na její okraj miniprojekt Projekt vznikl podpory: Projekt vznikl za podpory: Projekt vznikl za za podpory: Jméno: Jméno: Škola: Škola: Datum: Datum: Cíl: Planeta Země,

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná VESMÍR za počátek vesmíru považujeme velký třesk před 13,7 miliardami let dochází k obrovskému uvolnění energie, která se rozpíná vznikají první atomy, jako první se tvoří atomy vodíku HVĚZDY první hvězdy

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Fyzikální korespondenční škola 2. dopis: experimentální úloha

Fyzikální korespondenční škola 2. dopis: experimentální úloha Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela

Více

11 Manipulace s drobnými objekty

11 Manipulace s drobnými objekty 11 Manipulace s drobnými objekty Zpracování rozměrově malých drobných objektů je zpravidla spojeno s manipulací s velkým počtem objektů, které jsou volně shromažďovány na různém stupni uspořádanosti souboru.

Více

Pracovní list Název projektového úkolu VESMÍRNÉ OTÁZKY A ODPOVĚDI Třída V. Název společného projektu MEZI NEBEM A ZEMÍ

Pracovní list Název projektového úkolu VESMÍRNÉ OTÁZKY A ODPOVĚDI Třída V. Název společného projektu MEZI NEBEM A ZEMÍ Pracovní list Název projektového úkolu VESMÍRNÉ OTÁZKY A ODPOVĚDI Třída V. Název společného projektu MEZI NEBEM A ZEMÍ Název pracovního týmu Členové pracovního týmu Zadání úkolu Jsme na začátku projektu

Více

Název: Druhy elektromagnetického záření

Název: Druhy elektromagnetického záření Název: Druhy elektromagnetického záření Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie, Chemie) Tematický celek:

Více

Geografie, geografové na internetu.

Geografie, geografové na internetu. Geografie, geografové na internetu. Chceš vědět nejnovější poznatky o oteplování planety nebo kácení amazonských pralesů, popř. o satelitním snímkování. Zajímá tě kolik se vyrobí cyklistických kol, během

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

Inovace výuky Fyzika F6/ 04. Čas

Inovace výuky Fyzika F6/ 04. Čas Inovace výuky Fyzika F6/ 04 Čas Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Fyzika Látky a tělesa 6. ročník Jednotky času, převody

Více

Velká data a moderní optické sítě

Velká data a moderní optické sítě J.Radil, M.Hažlinský, S.Šíma, R.Vohnout, J.Vojtěch Toto povídání bude trochu technické. Pokud mluvíme o optických sítích tak je těžké se technickým tématům vyhýbat. Nebudeme se zabývat detaily (alespoň

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více