SPM (Scanning Probe Microscopies) - STM (Scanning Tunneling Microscope)

Rozměr: px
Začít zobrazení ze stránky:

Download "SPM (Scanning Probe Microscopies) - STM (Scanning Tunneling Microscope)"

Transkript

1 SPM (Scanning Probe Microscopies) - STM (Scanning Tunneling Microscope)

2 Mikroskopie skenovací sondou Mikroskopie skenující (rastrující) sondou (Scanning Probe Microscopy) je soubor experimentálních metod určených ke stanovování struktury povrchu se subatomárním rozlišením ve směru kolmém k povrchu.

3 Mikroskopie skenovací sondou Mikroskopie skenující (rastrující) sondou (Scanning Probe Microscopy) je soubor experimentálních metod určených ke stanovování struktury povrchu se subatomárním rozlišením ve směru kolmém k povrchu.

4 Historie První v řadě těchto technik byla skenující tunelovací mikroskopie (STM). Její teoretický popis je založen na kvantové fyzice, konkrétně na tunelovém jevu. Byla vyvinuta v laboratořích IBM pracovníky Binnigem a Rohrerem roku 1981, kterým za jejich objev byla v roce 1986 udělena Nobelova cena. Je to jedna z mála metod, která je schopna poskytnout až atomární rozlišení, přičemž je zároveň vcelku jednoduchá.

5 Historie - poznámka Historie metod v blízkém poli sahá do roku 1928, kdy Synge poprvé zavedl princip skenování ostrým skleněným hrotem velmi blízko povrchu. Tehdejší stav technologií však neumožňoval realizaci měření. První přístroj z této kategorii začal pracovat roku 1972, když R. Young sestrojil svůj Topografiner, zařízení schopné mapování povrchu ve vzdálenosti 100 nm. Atomárního rozlišení však zde nebylo dosaženo z důvodu značné nestability vzdálenosti hrotu od povrchu.

6 Výhody Oproti ostatním metodám (transmisní elektronová mikroskopie, autoemisní iontová mikroskopie) nevyžaduje náročnou přípravu vzorku, ale poskytuje jen informace o povrchu. Její nevýhodou je, že neposkytuje okamžitý a vizuální obraz, ale snímání je postupné a je nutno pro zobrazení využít počítače.

7 Skenovací tunelovací mikroskop STM Tato metoda je přímo založena na pravděpodobnosti průchodu částice energetickou bariérou. Energetická bariéra je vytvářena prostorem, v němž dochází k částečnému překrytí vlnových funkcí atomů hrotu a povrchu.

8 Elektrony v pevné látce Elektrony v kovu mají menší energii než elektrony ve vakuu mezi nimi, čímž se vytvoří bariéra. Jsou-li oba kovy shodné, je bariéra naprosto symetrická, oběma směry přecházejí elektrony a celkový proud je nulový. Přiložíme-li napětí, symetrie zmizí a celkový proud bude nenulový. Velikost proudu je ovlivňována i přítomností prázdných hladin v jednom kovu a obsazených v druhém (tj. tvarem vlnových funkcí).

9 Co vlastně měříme Z toho plynou dva poznatky: 1. není určována přímo topografie povrchu vzorku, ale jen rozložení vlnové funkce atomu (resp. metoda je citlivá na obsazení energetických hladin v blízkosti Fermiho energie, přičemž citlivý energetický rozsah určuje přiložené napětí), 2. pravděpodobnost přechodu (a tím velikost proudu) lze ovlivnit oddálením či přiblížením hrotu k povrchu.

10 Fermiho energie Fermiho energie je jednou z charakteristik pevných látek. Jak je známo, při vytváření pevné látky se původní energetické hladiny plynných atomů rozštěpí v téměř plynulé pásy. Tento jev je důsledkem Pauliho pravidla, podle kterého žádné dva elektrony v systému nemohou zaujmout stejný stav, vzhledem ke dvěma hodnotám spinu elektronů mohou tedy stejnou energii mít pouze dva elektrony. Pásy, takto vzniklé, mohou se buď překrývat, jako je tomu u kovů, nebo je mezi nimi mezera, takzvaný zakázaný pás jako u polovodičů.

11 Fermiho energie Uvažujeme-li pevnou látku z N atomů, bude mít každý pás právě N podhladin, na něž je možno umístit 2N elektronů (díky spinu). Protože ale máme pouze N elektronů, je možno mít i neobsazené stavy. To, s jakou pravděpodobností bude daná hladina obsazena, závisí na její energii E dle vztahu T teplota, EF Fermiho energie

12 Význam F.E. takže pro T = 0K budou obsazeny stavy pouze pod Fermiho energií (černě) pro vyšší teplotu (žlutě) bude Fermiho energie na hladině s pravděpodobností obsazení 50 % energie pro vyjmutí elektronu z pevné látky je rovna energie vakua a Fermiho energie tj. výstupní práce spojme dva kovy, rozdíl Fermiho energií bude

13 Tunelový jev Tunelový jev (též kvantové tunelování) je kvantový jev známý z kvantové mechaniky, při němž částice porušuje principy klasické fyziky tím, že prochází potenciálovou bariérou, která je vyšší než energie částice. Například vezměme že, máme několik kuliček a házíme jimi na zeď. Ze zákonů Newtonovské mechaniky je jasné, že se kuličky budou od zdi odrážet a za zeď se nemohou žádným mechanismem dostat. Přesto by se malá část kuliček, pokud by se chovaly jako mikroskopické částice s uplatněním kvantových efektů, objevila na druhé straně zdi. Kuličky tedy mají malou pravděpodobnost výskytu za bariérou.

14 Model Ve fyzice mikrosvěta si zeď představujeme jako potenciálový val pro částici pohybující se v prostoru (například v blízkosti jádra). Uvažujme pro jednoduchost jednorozměrný model. Čím vyšší je směrnice křivky U(x), tím větší síla na částici působí (podle 3. Newtonova zákona působí i částice na zdroj pole, ten ale považujeme za mnohokrát hmotnější než částici, takže se toto působení neprojeví).

15 Potenciálový val

16 Energie částice V oblasti potenciálového valu se částice podle klasické fyziky vyskytovat nemůže. Potenciálová křivka v místě valu totiž značí velikost potenciální energie částice a na přímce E vidíme celkovou mechanickou energii částice. Je daná součtem potenciální a kinetické podle vzorce E=U+T.

17 Kvantová mechanika Vlnová funkce ψ je řešením Schrodingerovy rovnice d2ψ/dx2 + k2ψ = 0 2 Pro praktické použití je lépe hovořit o ψ, které vyjadřuje pravděpodobnost výskytu částice částice v daném místě a čase.

18 Potenciálová bariéra popis a řešení: A Schrodingerovu rovnice lze psát takto:

19 Řešení Kde vlnové vektory jsou A řešení v z < 0 Vz>L V0<z<L

20 Koeficient prostupu bariérou Závislost T je exponenciální, koeficient je velmi citlivý na změnu proměnných: hmotnosti m, rozdílu (U(x) - E) a tloušťky bariéry l.

21 Tunelování z povrchu kovu Počítáme-li tunelování elektronů při povrchu kovu zjistíme, že se dle Sommerfeldova modelu vyskytují pod hladinou Fermiho energie (E) elektrony podle určité rozdělovací funkce a k tunelování nedochází. Bariéra je nekonečné tloušťky

22 Tunelování z povrchu kovu Pokud však ke kovu přiložíme homogenní elektrické pole, získá rázem povrchová bariéra vůči vakuu konečnou délku a elektrony mohou z hladiny E tunelovat.

23 Tunelování Nyní si představme, že k takovému povrchu přiblížíme jiný atom. Nutně tím změníme průběh potenciálu a tím i ovlivníme pravděpodobnost tunelování elektronů z povrchu. Právě tohoto efektu využívá STM.

24 STM Přiblížíme hrot na takovou vzdálenost, že dojde k praktickému překryvu elektronových orbitalů. Tím se dramaticky zvyšuje pravděpodobnost tunelování a můžeme pozorovat tok tunelového elektrického proudu.

25 STM Průchod rovinné vlny bariérou při přidaném předpětí.

26 STM měření Vlastní měření probíhá tak, že nejprve se provede hrubý posuv vzorku k hrotu ve směru z (hrot je zde tvořen zaostřeným drátkem, např. wolframovým), mechanický posun. Poté dojde k přiložení napětí mezi hrot a vzorek, aby mohl procházet proud (je tedy zapotřebí vodivý vzorek) Jemným posuvem (piezo) se přiblíží vzorek k hrotu tak, aby procházející proud byl měřitelný, pak se přibližování zastaví.

27 STM měření Získání obrazu (skenování) se provádí posuvem ve dvou směrech (x, y) po příslušné matici měřicích bodů, zpravidla se pohybuje po řádcích a v jednom směru (zpětný pohyb je bez měření). Výstupem měření je matice aij, jejíž indexy označují polohu bodu a příslušná hodnota je velikost proudu.

28 Schéma STM

29 Piezoelektrika - poznámka U některých speciálních pevných látek, které nemají strukturu se středem souměrnosti, může docházet k piezoelektrickému jevu. Podstata tohoto jevu je následující: v klidovém stavu jsou polohy kladných a záporných nábojů po vystředění přes objem buňky shodné a materiál nevykazuje elektrické projevy. Je-li však mechanicky stlačen, polohy nábojů se rozposunou a na krajích látky se objeví náboj - látka se začne chovat elektricky. Pro SPM je však důležitější chování opačné, tedy změna rozměrů po přiložení elektrického napětí. Právě tato délková změna umožňuje využití piezoelektrik jako polohových manipulátorů. Důležitým rysem obou jevů je závislost efektu na vzájemné poloze krystalografických os látky a směru přiloženého pole (elektrického či mechanického). Mezi nejznámější látky s piezoelektrickým chováním patří křemen, LiNbO3 a LiTaO3, PZT a je tvořen tuhým roztokem PbZrO3 a PbTiO3).

30 Problémy skenerů Konstrukce

31 Příklad měření5 nm x 5 nm STM obrázek grafitu.

32 Příklad měření 40 nm x 40 nm Ag 4 atomové terasy

33 Příklad měření povrch Cu

34 Co vlastně měříme? Jak tomu rozumět. Co kdybychom zkusili měnit předpětí? Pokud bychom udělali detailní studii tak bychom došli k závěru, že proud je úměrný integrálu přes všechny stavy. Takže můžeme měřit také hustotu stavů (DOS) ρs na povrchu, d tunel. vzdálenost Hustota stavů je základ pro fyziku pevných látek.

35 Příklad A povrch Ag 111 tedy 2D elektronový plyn, B DOS na povrchu Ag dle teorie jednotkový skok C přidány self-assembled methionine mřížka, D Van Hove singularyty na 1D objektech E přidány Fe rezonátory, F hustota stavů pro 0D objekty - quantum corral

36 Povrchové stavy elektronů na Cu (111) po přidání bariéry z atomů Fe uzavřená struktura podobný korálovému útesu přidáno 48 Fe atomů do kruhu průměru 7.1 nm pomocí hrotu STM stojaté vlnění v hustotě stavů kvantová mech.

37 Další možnosti spin polarized STM hrot musí být pokryt tenkou vrstvou magnetického materiálu epitaxní Cr na Au

38 Další možnosti Skenovací tunelovací potenciometrie (STP) Mikroskopie balisticky emitovaných elektronů (BEEM) Skenovací kapacitní mikroskopie a asi i další metody

39 Nanotechnologie Možnost zobrazovat atomy a přesné polohování lze využít také k manipulaci s atomy. Tímto způsobem je možno vytvářet struktury na atomární úrovni obvykle na vakuu na dokonale čistých površích. pomocí STM hrotu, který nastavíme nad přemísťovaný atom a přiložíme napětí vhodné polarity. Tím dojde k přechodu atomu na hrot, který posléze oddálíme a přesuneme na žádané místo a přiložíme napětí opačné polarity, čímž dojde k depozici atomu na povrch vzorku. pomocí jakéhokoliv hrotu je možno manipulovat také tak, že hrot přiblížíme k povrchu za zvoleným atomem a v blízkosti povrchu atom tlačíme před hrotem na

40 Nanolitografie Další formou zpracování povrchu může být např. vytváření čar v povrchových vrstvách rytím hrotem či nanolitografie. Při ní je na povrch nanesen citlivý film, který hrot STM v požadovaných místech "vyvolá" pomocí emitovaných elektronů. Velkou výhodou uvedených metod je přesnost zpracování a možnost přetvořený povrch ihned zobrazit (týmž hrotem). Nevhodné pro hromadnou výrobu.

41 Nano povrchové modifikace Jinou formou povrchových modifikací je přímý přenos materiálu. Je možno např. při použití zlatého hrotu jeho přiblížením a použitím intenzivního napěťového pulsu vytvořit na povrchu zlatou "hromádku", tzv. kvantovou tečku. Vytvářet kopečky lze i zatlačováním hrotu do povrchu. Je-li hrot dokonale čistý, dojde po jeho odtažení k vytvoření kopečku (materiál povrchu se jakoby táhne za hrotem).

42 Jak měřit povrchy s výškovou strukturou? tohle jsme vlastně ještě nijak nevyřešili asi nebude stačit jen vzorkem posouvat v rovině.

43 Režim s konstantní výškou při němž se udržuje jednou nastavená hodnota z0 a měří se velikost tunelového proudu. Tento režim umožňuje rychlé snímání obrazu, protože není nutné výškově pohybovat vzorkem, ale je méně přesný, neboť při velkých vzdálenostech hrotu od povrchu se proud dostává pod dobře měřitelnou úroveň.

44 STM - režim s konstantním proudem při němž se pomocí zpětné vazby udržuje konstantní úroveň proudu. Měřenou veličinou je napětí přikládané k piezokeramickým pohybovým prvkům. Tento režim je pomalejší, umožňuje ale sledovat větší změny profilu povrchu, je však závislý na převodním vztahu přiloženého napětí a změně rozměru piezoprvku. Tato závislost může být odstraněna vnějším měřičem polohy, např. laserovým. Pozor - nevýhodou může být poškození povrchu, přejde-li hrot nad oblast s výrazně odlišnými elektrickými vlastnostmi (např. zoxidovaná místa) - aby byl udržen nastavený proud, dojde k velkému přiblížení hrotu až kontaktu.

45 Jak to tedy vypadá Který je který režim?

46 Požadavky na vzorky vzorky musí být maximálně hladké dobrý substrát je grafit, slída, křemen, křemík. pozor na prach prachové zrníčko ve násobně větší než vzdálenost hrot vzorek samozřejmě je nutná el. vodivost vzorku

47 Literatura Mikroskopie skenující sondou - Libor Machala, Milan Vůjtek, Roman Kubínek, Miroslav Mašláň, Univerzita Palackého Olomouc, 2003 VELMI DOBRÉ A ČTIVÉ

48 Jak nahradit měření tunelovacího proudu? Mikroskopie AFM je založena na mapování rozložení atomárních sil na povrchu vzorku. Tyto síly jsou mapovány těsným přiblížením hrotu k povrchu, čímž vzniká přitažlivá nebo odpudivá síla, která způsobí ohnutí nosníku, na němž je upevněn hrot. Toto ohnutí je snímáno citlivým, zpravidla laserovým snímačem. Výhodou této metody je možnost studovat jak nevodivé, tak i vodivé vzorky.

49 Je to opravdu možné? Síly ohýbající nosník mohou být různé fyzikální podstaty, především se však uplatňuje přitažlivá van der Waalsova síla působící mezi dvěma atomy na větší vzdálenosti a odpudivá síla plynoucí z Pauliho principu, která působí na menších vzdálenostech. Celková síla může být jak odpudivá, tak i přitažlivá v závislosti na vzdálenosti hrotu.

50 Je to opravdu možné?

51 Hrot základní požadavky Musí být dostatečně ostrý, obvyklé poloměry zaoblení měřícího konce hrotu jsou 10 20nm. Musí být hrot dostatečně dlouhý, aby dosáhl na dna nerovností měřeného vzorku.

52 Nosník základní požadavky Pružný element musí zajišťovat dostatečnou měkkost, tak aby byl schopen reagovat na změny působících sil od povrchu. Popišme si hrot rovnicí F = k z, kde F je působící síla, z polohová změna a k konstanta pružnosti elementu. Pro pružný element tvaru kvádru lze přibližně psát, k ~ Ewt3l-3, kde E je Youngův modul pružnosti, w,t,l jsou šířka, tloušťka a délka pružného elementu.

53 Nosník základní požadavky Pokud dosadíme typické hodnoty pro hliníkový pružný element o velikosti w,t,l = 1µm, 10µm, 4µm, pak k ~ 1Nm-1. Vypočtenou tuhost pružného elementu můžeme srovnat s tuhostí jednotlivých meziatomárních vazeb k(c-c) ~ 500 Nm-1 a k(c-c-h bend) ~ 50Nm-1. Porovnáním je zřejmé, že uvažovaný pružný element bude reagovat na působící meziatomární síly bez zásadního ovlivnění povrchu analyzovaného vzorku.

54 Nosník základní požadavky Element také musí odolávat vibracím z vnějších zdrojů, které na něj budou během měření působit. To je dostatečně splněno, pokud frekvence vlastních kmitů soustavy pružného elementu je mnohem vyšší než frekvence externích (rušivých) vibrací. Pro pružný element tvaru kvádru platí, že 1/2 frekvence vlastních kmitů je úměrná f0 = (k/m) kde k je konstanta pružnosti elementu a m je hmotnost.

55 Nosník základní požadavky Z rovnice je zřejmé, že hmotnost pružného elementu musí být minimalizována. Pokud tedy vyrobíme pružný element pomocí mikrolitografických metod z Si nebo Si3N4 o rozměrech w,t,l = 40µm, 1.5µm, 140µm. Pak k ~ 0,7Nm-1 a f0 ~ 60kHz, což jsou dostatečné parametry. Tedy lze vyrobit pružný element s parametry vhodnými pro měření meziatomárních sil.

56 Jak detekovat výchylku? T he er ror signa l: 1) 2) T he static cantilever def lection in contact mode, T he amplitude of vibrations in a semicontact mode L azer A B O. Wolter et al; JVST B9 (1991), P hotodiode (2 or 4 sectioned) C antilever d Sample Scanner F eedback loop F=kd

57 Základní režim měření vzdálenost hrotu a povrchu tak malá, že výsledná síla je odpudivá a snaží se ohýbat nosník od povrchu tj. kontakt s povrchem kontaktní mod měření Bude-li tuhost nosníku menší než efektivní tuhost držící pohromadě atomy povrchu, lze ohnutí nosníku použít k měření sil. V opačném případě se nosník neohne, ale může způsobit poškození vzorku.

58 Kontaktní měření Do ohnutí nosníku se však ještě promítají i jiné síly, které brání kvalitnímu zobrazení. Jde především o kapilární síly vznikající v kapičkách vody zkondenzované na povrchu vzorku z okolní vlhkosti. Další působící veličinou může být vlastní pružnost nosníku. V této oblasti působí na vzorek zpravidla síla řádově 10-7 N. Tento režim lze rovněž provozovat ve dvou modifikacích, a to sice:

59 Varianty s konstantní výškou, při níž je udržována určená hodnota výšky z0 a měří se ohnutí nosníku; s konstantní silou, kdy se udržuje konstantní ohnutí nosníku a posunuje se vzorkem (či hrotem) ve směru osy z. Tato modifikace je častěji používaná, protože se vyvarujeme závislosti prohnutí na kapilárních silách a pružnosti nosníku, je ovšem pomalejší (potřeba pohybu vzorku, závisí na odezvě zpětné vazby).

60 Poznámka Při dotykovém měření se zpravidla projevuje hystereze. Při přibližování k povrchu je nejprve síla konstantní, při určité vzdálenosti d1 prudce vzroste a přitáhne hrot skokově k povrchu, pak zvolna narůstá odpudivá síla. Při oddalování nejprve klesá odpudivá síla, zvolna přechází v rostoucí přitažlivou a v jisté vzdálenosti d2> d1 prudce klesne a nosník odskočí.

61 Hroty pro kontaktní měření Ostrý, dlouhý viz dříve, ale také musí být odolný, aby vydržel přímý kontakt s měřeným povrchem. Z toho plyne, že pro různé vzorky je vhodné použít různé hroty podle předpokládaných parametrů povrchu. Také si je třeba uvědomit, že ostřejší hrot vytváří větší tlak na měřený povrch a tím zvyšuje riziko poškození (vzorku i hrotu) a následně výskyt artefaktů ve výsledné topologické mapě. To může být velmi problematické zvláště u biologických vzorů.

62 Příklad měření Excimer laser-treated Polymer blend thin film

63 Problémy kontaktního měření na vzduchu je každý povrch za běžných podmínek silně kontaminován kapalnou vrstvou tvořenou adsorbovanou vodou, uhlíkem a podobně. typicky je taková vrstva na všech površích za normálních podmínek tlustá několik nanometrů. Pokud tedy nyní přiblížíme hrot k reálnému kontaminovanému povrchu, tak v okamžiku kontaktu hrotu s povrchem kapalné vrstvy kapilární síly začnou působit na hrot (přitahovat ho k povrchu) a vytvoří se meniskus. Případný elektrostatický náboj povrchu vzorku může ještě přidat dodatečné silové působení na hrot. Tyto přídavné přitažlivé síly mohou zkreslit měřená data a nebo společně s laterálními silami vznikajícími při pohybu měřeným vzorkem posouvat částmi povrchu. pro některé vzorky můžeme řešení měření AFM provádět přímo v kapalině, kdy je celková síla působící mezi měřeným povrchem a hrotem menší.

64 Kontaktní mod - limity Limit vertikálního rozlišení pro tupý hrot R = r

65 Kontaktní mod - limity limit vertikálního rozlišení pro ostrý hrot

66 Kontaktní mod - limity Limit horizontálního rozlišení d

67 Artefakty Interference povrch vzorku byl hladký

68 Příklad měření grafit

69 Šlo by měřit i bezdotykově?

70 Bezdotyková měření Jak snímat tak malé síly, to už prohnutím nosníčku nepůjde. Jiná metoda? Co je citlivé na malé změny působících sil? No přece resonanční kmity. Takže nosník rozkmitáme na resonanční frekvenci a pak snímáme působení povrchu na kmitající hrot.

71 Pro jaké vzorky při níž je vzdálenost mezi hrotem a vzorkem udržována v strmé části vzestupné závislosti van der Waalsových sil mají velikost řádově N, desítky až stovky nm. Výhodou této metody je měření bez mechanického kontaktu, což umožňuje měřit i měkké a elastické vzorky a zabraňuje možnému znečištění.

72 Poznámka výsledky měření pro obě metody se výrazně liší v případech, kdy je zkoumaný povrch částečně pokryt zkondenzovanou vodou. Bezdotyková metoda bude snímat reliéf odpovídající povrchu vodní kapky, ale dotyková metoda bude sledovat povrch vzorku (samozřejmě se zde může nepříznivě projevit vliv kapilarity).

73 Jak měření provést? Hooke s force, k the cantilever spring constant md 2z/dt 2 = -kz (mω0/q)dz/dt + F ts + F d cosωt Energy dissipation term (mainly due to the friction of the cantilev er beam in air), Q cantilev er quality f actor T he driv ing (d) piezoelement term F ts- the force betw een the tip and the sample. It is thi s force that determi nes the cantilever dynamics and phase contrast ω0 = k/m Resonance f requency of free (undamped, i.e. Q= ) cantilever Q - quality f actor describing the number of osci llation cycles af ter w hich the damped oscil lation amplitude decays to 1/e of the initial ampl itude w it h no external excitation (F d =0)

74 Amplituda a fáze volných kmitů Řešení bez vzorku : F ts= 0 Na nosníku hrotu je umístění piezo element a amplitudou kmitů A d o frekvenci ω. Obecné řešení diferencální rovnice je lineární kombinací dvou režimů: Steady-state (ss): zss(t) = A sscos(ωt+ φss) (konstantní amplituda) T r ansient (t): zt(t) = A texp(- ω0 t/2q )* sin(ω0 t+ φt ) (tlumené kmity) Q - jakostní faktor, počet oscilací po kterých se aplituda sníží na 1/e z původní amplitudy bez vnější síly (F d= 0).

75 Tlumené kmity 1 Q = 25 1/e 0 1 (exp( -0,04x) ) cos(6,28x) x = ω/ω0 0 x 50

76 Amplituda a fáze volných kmitů ω0 * = ω0 1-1/(2Q2 ) Známý vztah pro steady state solution zss(t) amplitudy a fáze kmitů v závislosti na frekvenci vnější budící síly : Ass = Q Ad /[x2+q2(1-x2)2]1/2 φss = arctan [x/q(1-x2)] A ss Δω/ω0 = 1/Q x = ω/ω 0 x = ω/ω0 Tlumení dz/dt způsobuje posun frekvence oscilací z ω 0 na ω 0* v závislosti na Q. Největší změna amplitudy a fáze je v úzké oblasti frekvencí Δω/ω0 = 1/Q kolem ω0* Poznámka! Rezonanční frekvence oscilací na pevném a volném konci se liší právě o 90 о π φ ss π/2 0 x = ω/ω0

77 Amplituda a fáze v přitažlivém poli Rezonanční pík v přitažl ivém poli k* = k + < df attr /dz>, k* < k, f attr < f 0 Rezonanční f rekvence se posouvá doleva. Fáze roste. Rezonanční pík volné oscilace

78 Amplituda a fáze v odpudivém poli Rezonanční pík v odpudivém pol i Rezonanční pík volné osci lace k* = k + < df attr /dz>, k* > k, f rep > f 0 Rezonanční f rekvence se posouvá doleva, amplituda klesá. Fáze klesá.

79 Lze snímat dvě veličiny Výška Fáze Poly(cyclohexylmethacrylate-comethylmethacrylate-b-isooctylacrylate-bcyclohexylmethacrylate-comethylmethacrylate) Kuličky v matici (φ = 17±2nm, d = 38±2nm)

80 Co je vlastně fázový kontrast

81 Jak rozumět fázovému kontrastu

82 Jak rozumět fázovému kontrastu Fáze je úměrná Vizkoelastickým vlastnostem Frikci Adhezi a dalším podobným vlastnostem

83 Rezonanční křivka Velmi dobrý nosník Špatný nosník

84 Kalibrace Pomocí standardů Horizontální Vertikální Přírodní nebo umělé vzorky Nutné tlumení kmitů Často i teplotní kompenzace (druhý skener)

85 Poklepové (Tapping) měření je velmi podobný předchozím, jen rozkmit - cca 20nm ve volném prostoru je tak velký, že dochází k dotyku hrotu s povrchem Povrch je zde opět mapován ze změny rezonanční frekvence (50kHz 500kHz). Tato modifikace je výhodnější než dotyková v případech, kde by hrozilo poškození povrchu třením nebo tažením a je rovněž vhodnější než bezdotyková, je-li nutno snímat větší plochy zahrnující větší rozpětí v ose z.

86 Tapping mode Tapping režim lze používat i při měření v kapalinách, jen je obvykle redukována frekvence oscilací. Tapping režim měření je zvláště vhodný pro měkké a křehké vzorky jako jsou polymery, nevytvrzený fotorezist, DNA. Mimo jiné při frekvencích kontaktů od 50kHz do 500kHz vykazuje mnoho materiálů vizkoelastické chování, tedy jejich poškození se tím dále minimalizuje.

87 Příklad - Epitaxial Si film Kontaktní mod 1 μm scans Tapping mod

88 Měření frikčního koeficientu pomocí AFM Pokud v kontaktním režimu s vzorkem posouváme ve směru kolmém na delší osu pružného elementu s hrotem, tak dochází ke tření mezi hrotem a vzorkem. Z toho lze určit frikční koeficient. Měření provádíme v kontaktním režimu konstantní síly.

89 Měření frikčního koeficientu pomocí AFM Pak pomocí čtyř zónového detektoru výchylky laseru můžeme měřit torzní natočení hrotu a tím určit lokální frikční koeficient jako signál z oblastí (A+C) (B+D), vyhodnocení frikčního koeficientu je zřejmé, větší natočení, silnější signál vyšší tření. Pro úplnost můžeme zároveň určit i topologii povrchu jako výsledek (A+B) (C+D) operací s intenzitou signálu.

90 Pri velkých zvetšeních se obcas v signále objevují nesymetrie, které by tam dle ocekávání nemely být, zvlášte v prípade dobre usporádaných hrotu. Mechanismem, který nesymetrie zpusobuje, muže být prilepování. Ackoliv se nosník posunuje ve smeru skenování, hrot zustává v míste energeticky výhodném a bocní síla narustá. Až dosáhne kritické hodnoty, dojde k odtržení a preskoku do nové polohy (stick slip proces). Do bocních sil se rovnež promítají sklony na povrchu, které užitecný signál zašumují. Zpravidla se predpokládá, že nezávisí na smeru skenování a odectením obrazu v inverzních smerech se vliv topografie odstraní, což ale neplatí zcela, protože hrot je pri stejném normálovém zatížení (daném nastavení zpetné vazby) vystaven ruzným silám pri stoupání a klesání a pri vzestupu pusobí ješte kolizní síla (hrot do povrchu muže narážet). Pri odectení obrazu proto nedojde k úplnému odstranení topografie, ale jen ke korekci.

91 Vliv topograe na síly tření. lutá oblast vykazuje vyąąí tření, vyznačeny jsou zkruty nosníku. První graf odpov ídá průběhům třecí síly (projevuje se i sklon povrchu), druhý pak topogra ckému ohybu. Po odečtení obou křivek prvního grafu stále zůstává vliv topograe (červená křivka).

92 Nano-kompozit PEO-CNT LF H 5 um PEO lamellae H topografie LF laterální síly

93 Chemické mapy pomocí AFM Můžeme ale změřit i síly chemické vazby působící mezi reaktanty? Pokud se nám podaří nějakým pevných (chemickou vazbou) připojit na měřici hrot molekuly obsahující jeden z reaktantů a na povrchu vzorku máme distribuován druhý reaktant, pak lze měřit chemickou interakci mezi reaktanty jako sílu působící na hrot AFM.

94 Funkcionalizovaný hrot Patrick Boisseau, Philippe Houdy, Marcel Lahmani, Nanoscience: Nanobiotechnology and Nanobiology, Springer, 2009

95 Magnetické vlastnosti povrchů Stejně jako u chemické mapy postupu lze snadno použít magnetický hrot a měřit mapu magnetický vlastností na povrchu vzorku.

96 AFM na živých buňkách v roztoku Human lung cancer cell. Scan size: 45 µm. Straphylococcus aureus. Scan size: 15 μm. Escherichia coli. Scan size: 15 μm. Agilent Technologies

97 AFM + další technika The Agilent 5500 AFM combined with an inverted optical microscope (ILM). CHO fluorescence + optický mikroskop nebo fluorescenční mikroskop,

98 Literatura

Přednáška 5. SPM (Scanning Probe Microscopies) - STM (Scanning Tunneling Microscope) - AFM (Atomic Force Microscopy) Martin Kormunda

Přednáška 5. SPM (Scanning Probe Microscopies) - STM (Scanning Tunneling Microscope) - AFM (Atomic Force Microscopy) Martin Kormunda Přednáška 5 SPM (Scanning Probe Microscopies) - STM (Scanning Tunneling Microscope) - AFM (Atomic Force Microscopy) Mikroskopie skenovací sondou Mikroskopie skenující (rastrující) sondou (Scanning Probe

Více

Přednáška 6. SPM (Scanning Probe Microscopies) - AFM (Atomic Force Microscopy) Martin Kormunda

Přednáška 6. SPM (Scanning Probe Microscopies) - AFM (Atomic Force Microscopy) Martin Kormunda Přednáška 6 SPM (Scanning Probe Microscopies) - AFM (Atomic Force Microscopy) Jak nahradit měření tunelovacího proudu? Mikroskopie AFM je založena na mapování rozložení atomárních sil na povrchu vzorku.

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Optická a elektronová mikroskopie stručné shrnutí Mikroskopie skenovací sondou

Optická a elektronová mikroskopie stručné shrnutí Mikroskopie skenovací sondou Optická a elektronová mikroskopie stručné shrnutí Mikroskopie skenovací sondou TEM, SEM viz výše STM AFM Optická skenovací mikroskopie (SNOM) Konfokální mikroskopie Srovnání mikroskopů http://www.paru.cas.cz/lem/book/podkap/pic/7.1/1.gif

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

Skenovací tunelová mikroskopie a mikroskopie atomárních sil

Skenovací tunelová mikroskopie a mikroskopie atomárních sil Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Zobrazovací metody v nanotechnologiích

Zobrazovací metody v nanotechnologiích Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší

Více

Mikroskop atomárních sil

Mikroskop atomárních sil Mikroskop atomárních sil ÚVOD, VYUŽITÍ Patří do skupiny nedestruktivních metod se skenovacím čidlem Ke zobrazení není zapotřebí externí zdroj částic Zobrazuje strukturu povrchu v atomárním rozlišení ve

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

Mikroskopie skenující sondou: teorie a aplikace

Mikroskopie skenující sondou: teorie a aplikace Mikroskopie skenující sondou: teorie a aplikace Úvod SPM scanning probe microscopy mikroskopie skenující sondou Soubor experimentálních metod určených ke studiu struktury povrchu s atomárním rozlišením

Více

Mikroskopie atomárních sil

Mikroskopie atomárních sil Mikroskopie atomárních sil Roman Kubínek, Milan Vůjtek, Renata Holubová Katedra experimentální fyziky přírodovědecké fakulty Univerzity Palackého v Olomouci 1 Úvod V řadě oblastí vědy a techniky se usiluje

Více

Studentská tvůrčí a odborná činnost STOČ 2012

Studentská tvůrčí a odborná činnost STOČ 2012 Studentská tvůrčí a odborná činnost STOČ 2012 MIKROVLNNÁ SKENOVACÍ MIKROSKOPIE Josef KUDĚLKA, Tomáš MARTÍNEK Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Nad Stráněmi 4511 760 05 Zlín

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi

Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi Studium vybraných buněčných linií pomocí mikroskopie atomárních sil s možným využitím v praxi Petr Kolář, Kateřina Tománková, Jakub Malohlava, Hana Kolářová, ÚLB Olomouc 2013 atomic force microscopy mikroskopie

Více

Základem AFM je velmi ostrý hrot, který je upevněn na ohebném nosníku (angl. cantilever, tento termín se používá i v češtině).

Základem AFM je velmi ostrý hrot, který je upevněn na ohebném nosníku (angl. cantilever, tento termín se používá i v češtině). AFM mikroskop Obsah: AFM mikroskop... 1 Režimy snímání povrchu... 1 Konstrukce AFM... 3 Vlastnosti AFM... 3 Rozlišení AFM... 3 Historie AFM... 4 Využití AFM... 4 Modifikace AFM... 5 Závěr... 5 Literatura

Více

Morfologie částic Fe 2 O 3. studium pomocí AFM

Morfologie částic Fe 2 O 3. studium pomocí AFM Morfologie částic Fe 2 O 3 studium pomocí AFM 25. 1. 2001 Plán přednášky Mikroskopie atomárních sil Artefakty důležité pro studium částic Oxidy železa, příprava vzorků Výsledky Diskuze Mikroskopie atomárních

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů

Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

MĚŘENÍ V SEMIKONTAKTNÍM REŽIMU POMOCÍ MIKROSKOPU SOLVER NEXT

MĚŘENÍ V SEMIKONTAKTNÍM REŽIMU POMOCÍ MIKROSKOPU SOLVER NEXT MĚŘENÍ V SEMIKONTAKTNÍM REŽIMU POMOCÍ MIKROSKOPU SOLVER NEXT Teoretická část: 1. Co je podstatou měření v Semikontaktním režimu. Na křivce zobrazující průběh silového působení mezi hrotem a povrchem vzorku

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

Stručný popis metod SPM

Stručný popis metod SPM Stručný popis metod SPM str. 1 Stručný popis metod SPM Mikroskopie skenující (rastrující) sondou (Scanning Probe Microscopy) je soubor experimentálních metod určených ke stanovování struktury povrchu se

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Elektřina a magnetizmus - elektrické napětí a elektrický proud

Elektřina a magnetizmus - elektrické napětí a elektrický proud DUM Základy přírodních věd DUM III/2-T3-03 Téma: Elektrické napětí a elektrický proud Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus

Více

Elektrostatické pole. Vznik a zobrazení elektrostatického pole

Elektrostatické pole. Vznik a zobrazení elektrostatického pole Elektrostatické pole Vznik a zobrazení elektrostatického pole Elektrostatické pole vzniká kolem nepohyblivých těles, které mají elektrický náboj. Tento náboj mohl vzniknout například přivedením elektrického

Více

Vakuová fyzika 1 1 / 40

Vakuová fyzika 1 1 / 40 Měření tlaku Měření celkových tlaků Měření parciálních tlaků Rozdělení měřících metod Vakuová fyzika 1 1 / 40 Absolutní metody - hodnota tlaku je určena přímo z údaje měřícího přístroje, nebo výpočtem

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTRICKÝ NÁBOJ Mgr. LUKÁŠ FEŘT

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

MĚŘENÍ V KONTAKTNÍM REŽIMU POMOCÍ MIKROSKOPU SOLVERNEXT

MĚŘENÍ V KONTAKTNÍM REŽIMU POMOCÍ MIKROSKOPU SOLVERNEXT MĚŘENÍ V KONTAKTNÍM REŽIMU POMOCÍ MIKROSKOPU SOLVERNEXT Teoretická část: 1. Vysvětlete piezoelektrický jev, kde nejvíce a proč je využíván v SPM mikroskopii. 2. Co je podstatou měření v Kontaktním režimu.

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

4.1.7 Rozložení náboje na vodiči

4.1.7 Rozložení náboje na vodiči 4.1.7 Rozložení náboje na vodiči Předpoklady: 4101, 4102, 4104, 4105, 4106 Opakování: vodič látka, ve které se mohou volně pohybovat nosiče náboje (většinou elektrony), nemohou ji však opustit (bez doteku

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla Teorie chromatografie - III Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 4.3.3 Teorie dynamická Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2012/2013 8.8 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Mikroskopické techniky

Mikroskopické techniky Mikroskopické techniky Světelná mikroskopie Elektronová mikroskopie Mikroskopie skenující sondou Zkráceno z přednášky doc. RNDr. R. Kubínka, CSc. Zdroj informací: http://apfyz.upol.cz/ucebnice/elmikro.html

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028

Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028 Mikro a nano vrstvy 1 Co je nanotechnolgie? Slovo pochází z řečtiny = malost, trpaslictví. Z něj n j odvozen termín n nanotechnologie. Jako nanotechnologie je označov ována oblast vědy, jejímž cílem je

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice)

Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice) Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

JIŘÍ HÁJEK, ANTONÍN KŘÍŽ

JIŘÍ HÁJEK, ANTONÍN KŘÍŽ SLEDOVÁNÍ TRIBOLOGICKÝCH TENKÝCH VRSTEV JIŘÍ HÁJEK, ANTONÍN KŘÍŽ VLASTNOSTÍ MOTIVACE EXPERIMENTU V SOUČASNÉ DOBĚ: PIN-on-DISC velmi důležitá analýza z hlediska správného využití příslušného typu systému

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více