hledané funkce y jedné proměnné.

Rozměr: px
Začít zobrazení ze stránky:

Download "hledané funkce y jedné proměnné."

Transkript

1 DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální rovni nazývám řád njvšší driva hldané funk v uvažované rovnii Řšním DR rozumím každou funki jdné proměnné, ktrá má drivai až do řádu n a dosazná do dané DR ji přvádí na idntitu Rozznávám tři druh řšní DR : a obné řšní občjné DR n-tého řádu má tvar f,,,, n, kd i jsou konstant b partikulární řšní j řšní, ktré dostanm z obného řšní volbou konstant singulární řšní j řšní, ktré nní možné získat z obného řšní žádnou volbou konstant Difrniální rovni prvního řádu Jsou to rovni tvaru f, pliitní tvar nbo F,, impliitní tvar Njjdnodušší DR řádu j rovni tvaru : f Jjí obné řšní určím intgraí a má tvar f d+ Př : Určt obné řšní DR Řšní : Obné řšní má tvar d+ + Zvolím-li za konstantu libovolné číslo, dostanm partikulární řšní Např pro j + pro j + atd Graf partikulárního řšní DR nazývám intgrální křivkou Gomtrik td přdstavuj obné řšní DR řádu soustavu intgrálníh křivk, závislou na paramtru viz obr

2 Obr V praktikýh úloháh často potřbujm řšní, splňujíí určité podmínk Podmínka v tvaru s nazývá Cauhova počátční podmínka Určuj partikulární řšní, ktré prohází bodm, Př: Určt partikulární řšní DR sin splňujíí počátční podmínku Řšní : sin d+ + os + Po dosazní,, dostanm Td partikulární řšní, vhovujíí dané počátční podmín má tvar : + os + Něktré tp DR řádu a jjih řšní a Difrniální rovni s proměnnými sparovanými Df: Difrniální rovni tvaru f g, kd f a g jsou funk spojité na určitýh otvřnýh intrvalh s nazývá rovni s proměnnými sparovanými d Při jjím řšní drivai formálně nahradím podílm difrniálů a rovnii upravím na tvar d d d f d Obné řšní DR rovni pak dostanm intgraí této rovni : f d g g, přičmž intgrační konstantu napíšm jn na jdnu stranu rovni Pokud nní DR s proměnnými sparovanými v základním tvaru, musím ji upravit tak, ab s na každé straně rovni vsktovala pouz jdna z proměnnýh Při dělní rovni přdpokládám, ž výraz, ktrými dělím, jsou nnulové Položím-li j rovn nul, můžm dostat singulární řšní

3 Př : Řšt difrniální rovnii + 3 Řšní : Provdm sparai d / d d d d / :, kd, d d + Intgrál na lvé straně řším doplněním na čtvr a zbtk a pak základním vzorm d d d + + ln ln Obné řšní dané DR má tvar Použitím vztahu ln ln + A A ln pro úpravu pravé stran rovni j ln + ln + ln ln ln K, kd K j konstanta Epliitní tvar obného řšní dostanm postupně úpravou rovni ln ln K ln + K Na závěr vštřím případ,,, ktré jsm v přdhozím výpočtu vloučili nní řšní dané DR, ln K j řšním dané DR, protož po dosazní dostanm idntikou rovnost; j to al jdno z partikulárníh řšní, protož j dostanm z obného řšní volbou konstant K, 3 j řšním dané DR, protož po dosazní dostanm idntikou rovnost; jd o singulární řšní, protož ho nmůžm získat z obného řšní žádnou volbou konstant K K Příklad aplika difrniálníh rovni Probíhá-li růst nějaké vličin v čas t, můžm vjádřit tnto růst jako funki času, tj ht Funk ht, kd t, s nazývá růstová funk Jjí grafiké vjádřní s nazývá růstová křivka Přírůstk h t h t, růstové vličin za lmntární časový intrval t t j rhlost růstu : h t h t v lim h t t t t t

4 Mzi rhlostí růstu a vlikostí tohoto růstu, tj mzi funkmi h t a h t často istuj vzájmný 4 vztah Z tohoto vztahu můžm pak odvodit příslušnou růstovou funki h t řšním tzv difrniální rovni Z hldiska matmatik s jdná o řšní této základní úloh : Na intrvalu I j dána spojitá funk f Hldám funki, ktrá na intrvalu I splňuj vztah f Řšním této rovni jsou všhn funk f d F + C, kd F j primitivní funk k funki f na I a C intgrační konstanta Příslušná růstová křivka má často tvar ponniální křivk mluvím pak o ponniálním růstu nbo tvar protáhlého písmn S např u logistikého růstu ht t b Homognní difrniální rovni Df: Nhť f j spojitá funk Difrniální rovni tvaru f s nazývá homognní DR Homognní DR lz substituí u přvést na rovnii s proměnnými sparovanými Postup řšní : z substitu vjádřím funki a drivujm ji : dosadím za a u u + u do zadané rovni : u + u f u du získanou rovnii řším sparaí, přičmž drivai u nahradím podílm d du + u f u d

5 du + u d f u d 5 du f u u d du d f u u Př: Určt partikulární řšní homognní DR splňujíí počátční podmínku + Řšní : Rovnii přvdm vdělním výrazm na tvar f : + a po úpravě +, td jd skutčně o homognní rovnii Zavdním substitu u a driva u + u do této rovni dostanm u u + u + u Tuto rovnii řším sparaí u u + u u du u d u u u du d Po intgrai ln u ln + ln ln K u u K K u Dosazním substitu u dostanm obné řšní dané DR : K K K Dosazním počátční podmínk do obného řšní dostanm K, takž hldané partikulární řšní j

6 6 Linární difrniální rovni Df: Nhť a, b jsou funk spojité na intrvalu I Rovni tvaru + a b s nazývá linární difrniální rovni řádu J-li b na I, nazývá s rovni homognní, v opačném případě jd o rovnii nhomognní Řšní homognní linární DR řádu můžm určit sparaí Výsldkm tohoto postupu j vzor Odvozní : + a d d a /: / d kd d a d ln a d+ a d ln ln a d a d Řšní nhomognní linární DR řádu určujm mtodou varia konstant Postup : njprv vřším příslušnou homognní DR a řšní označím a d, obné řšní nhomognní rovni budm hldat v tvaru a d, td konstantu nahradím zatím nznámou funkí, do zadané rovni dosadím za a a vjádřím funki, intgraí získané rovni určím hldanou funki Uvdný postup lz vjádřit vzorm a d a d + b d Př : Určt řšní DR + tg Řšní : Jd o homognní linární rovnii, kd a tg Jjí obné řšní určím td pomoí vztahu a d tg d sin d os ln os os os

7 7 Př: Určt partikulární řšní DR pro počátční podmínku Řšní : Jd o nhomognní linární rovnii, ktrou njprv vdělím, abhom ji přvdli na základní 3 tvar Td a, f + + Řšní příslušné homognní rovni má tvar a d - d + d + ln + ln + + Obné řšní nhomognní rovni budm hldat v tvaru a d + Do zadané rovni dosadím za : + a za Z této rovni postupně vjádřím funki na lvé straně rovni obvkl vzniknou tři sčítani, z ktrýh s druhý a třtí odčtou Rovnii intgrujm, abhom určili hldanou funki Obné řšní nhomognní rovni má td tvar + d Pro výpočt partikulárního řšní dosadím do obného řšní počátční podmínku Hldané partikulární řšní dané difrniální rovni j + + +

8 3 Difrniální rovni druhého řádu 8 Df: Linární difrniální rovni řádu dál jn LDR řádu j rovni + p + q f, kd p, q, f jsou funk spojité na intrvalu I LDR řádu tvaru + p + q s nazývá homognní, LDR řádu tvaru + p + q f s nazývá nhomognní Obné řšní LDR řádu obsahuj nzávislé konstant, Počátční podmínk pro urční partikulárního řšní mají tvar, Df: Funk a s nazývají linárně závislé na intrvalu I, istuj-li rálné číslo k tak, ž pro všhna I platí k Pokud takové číslo nistuj, říkám, ž funk a jsou na intrvalu I linárně nzávislé Věta: Jsou-li funk a linárně nzávislá řšní homognní LDR řádu na intrvalu I, j funk + obné řšní této rovni na intrvalu I Funk a z přdhozí vět nazývám fundamntální sstém řšní homognní LDR ř Věta: Jsou-li funk a linárně nzávislá řšní homognní LDR řádu na intrvalu I a p j nějaké partikulární řšní odpovídajíí nhomognní LDR řádu na intrvalu I, pak funk + + j obné řšní nhomognní LDR řádu na intrvalu I p Z přdhozí vět vplývá, ž k urční obného řšní nhomognní LDR řádu stačí najít dvě linárně nzávislá řšní příslušné homognní LDR řádu a libovolné partikulární řšní nhomognní rovni Vštřování linární závislosti a nzávislosti funkí : Mají-li funk, drivai řádu, j možné o jjih linární závislosti či nzávislosti rozhodnout pomoí dtrminantu W,, ktrý nazývám wronskián Jsou-li totiž funk, LZ na intrvalu I, pak W, pro všhna I Pokud W, alspoň v jdnom bodě intrvalu I, jsou funk, LN Př : Rozhodnět, zda jsou funk Př : Ověřt, zda funk, 3 LZ nbo LN, tvoří fundamntální sstém řšní rovni + Linárně nzávislá řšní však umím najít pouz v něktrýh případh Jdn z nih bud v násldujíím odstavi podrobněji popsán

9 Homognní LDR řádu s konstantními kofiint 9 Jsou-li p a q konstantní funk, nazývá s LDR řádu rovnií s konstantními kofiint J to td rovni tvaru + p + q, kd p a q jsou konstant budm ji stručně značit [ ] L Hldjm řšní této rovni v tvaru r r r r Musí td platit + p + q r r + pr r + q r r r + pr+ q Funk r j td řšním rovni [ ], L pokud r + pr+ q Tuto rovnii s nznámou r nazý- vám haraktristikou rovnií pro rovnii L [ ] tím i obné řšní této rovni na základě násldujíí vět Věta: Nhť haraktristiká rovni + pr+ q r DR [ ] Jjí kořn r určují fundamntální sstém řšní a L má kořn r, r Potom a pro rálné různé kořn r r tvoří fundamntální sstém řšní funk r r, a obné řšní rovni L [ ] má tvar r r + b pro rálný dvojnásobný kořn r, r tvoří fundamntální sstém řšní funk r, r r a obné řšní rovni L [ ] má tvar r r + a pro komplní kořn r, a± bi tvoří fundamntální sstém řšní funk osb, a a sin b a obné řšní rovni L [ ] má tvar osb+ sin b Určování obného řšní homognní LDR řádu a podobně n-tého řádu s konstantními kofiint s td přvádí na řšní algbraiké rovni stupně n-tého stupně Př : Řšt difrniální rovnii + Řšní : Jd o homognní LDR řádu Příslušná haraktristiká rovni r + r má kořn r, r, td fundamntální sstém řšní tvoří funk, a obné řšní má tvar + Jd o rovni tvaru + p + q f Nhomognní LDR řádu s konstantními kofiint, ktré budm stručně značit [ ] f L Podl přdposldní vět j pro urční obného řšní této rovni potřba znát nějaké partikulární řšní této rovni a fundamntální sstém řšní příslušné homognní rovni Pak lz obné řšní napsat v tvaru : + + P

10 Partikulární řšní rovni [ ] f L j možné určit mtodou varia konstant Podobně jako v případě linární DR řádu ho budm hldat v tvaru, kd konstant v obném řšní příslušné homognní rovni nahradím funkmi,, td v tvaru P + Funk, lz určit řšním soustav : + + f Použijm-li přitom Cramrov vzor, kd dtrminant W, W f, W f nazvm wronskián, platí f, f Intgraí určím hldané funk, a obné řšní pak bud mít tvar + +, kd P + P Př: Určt řšní difrniání rovni + + Řšní : Příslušná homognní rovni má tvar +, Jjí haraktristiká rovni r r+ má řšní r, td fundamntální sstém řšní homognní rovni tvoří funk, a jjí obné řšní má tvar + Hldám-li partikulární řšní zadané rovni v tvaru P +, vhovují funk, soustavě Soustavu vřším Cramrovými vzori, přičmž W, W , W Potom W W + d d ln+, d Partikulární řšní zadané rovni j td tvar + W d artg W + P + P + + ln+ + ln+ + artg, a jjí obné řšní má artg

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TEHNIKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADEH VIČENÍ Č. Ing. Ptra Schribrová, Ph.D. Ostrava Ing. Ptra Schribrová, Ph.D. Vsoká škola báňská Tchnická univrzita

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A,

Přijímací zkoušky do NMS 2013 MATEMATIKA, zadání A, Přijímací zkoušk do NMS MATEMATIKA, zadání A, jméno: V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna správná. Zakroužkujt ji! Za každou správnou odpověď získát uvdné bod. Za nsprávnou

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH Ing. Ptra Schribrová, Ph.D. Ostrava Tnto studijní matriál vznikl za finanční podpor Evropského sociálního fondu

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1

1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1 DOMÁCÍ ÚLOHY z MATEMATIKY VT) Opakování SŠ matmatiky Pomocí intrvalů zapišt nrovnosti: a), b) + >, c), d) > a),, b), 5), + ), c),, d), + ) Zjdnodušt výraz: a) 5 a a a ), b) a 5 6 b b 5 ) a b a a) a, a

Více

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní...

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní... Sbírka úloh z mamaik 8. Občjné difrnciální rovnic 8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE... 94 8.. Difrnciální rovnic prvního řádu sparovalná homognní linární Brnoulliova akní... 94 8... Sparovalná difrnciální

Více

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

6 Řešení soustav lineárních rovnic rozšiřující opakování

6 Řešení soustav lineárních rovnic rozšiřující opakování 6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2 I Drivac jdnoduchých funkcí pomocí pravidl a vzorců Užitím P U druhého a třtího člnu použijm P Nní podl V a posldní čln podl V Použijm P Dál V a na drivaci trojčlnu v poldní závorc V a V Výsldk upravím

Více

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

U dx+v dy = y. f = (2x+3y,5x y 4) po obvodu ABC ve směru A B C, kde A = [1,0],B = [1, 3], C = [ 3,0].

U dx+v dy = y. f = (2x+3y,5x y 4) po obvodu ABC ve směru A B C, kde A = [1,0],B = [1, 3], C = [ 3,0]. E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (6) IV.6. Greenova věta Křivkový integrál vektorového pole po uzavřené křive nazýváme irkulaí vektorového pole f po křive a zapisujeme

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

1. Limita funkce - výpočty, užití

1. Limita funkce - výpočty, užití Difrnciální a intgrální počt. Limita funkc - výpočt, užití Vpočtět násldující it: +.8..cos +. + 5+. 5..5.. 8 sin sin.7 ( cos.9 + sin cos. + 5cos. + log( +... + + + 5 +.5..7.8.9.. 5+ + 9 + + + + 8 sin sin5

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

9.3. Úplná lineární rovnice s konstantními koeficienty

9.3. Úplná lineární rovnice s konstantními koeficienty Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme

Více

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ Intgrální počt funkc jdné proměnné. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ V kpitolách věnovných difrnciálnímu počtu jsm poznli, ž vypočítt drivci funkc j úloh vclku jdnoduchá. Stčí znát doř drivc lmntárních

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z 7. Polarizované světlo 7.. Polarizac 7.. Linárně polarizované světlo 7.3. Kruhově polarizované světlo 7.4. liptick polarizované světlo (spc.případ) 7.5. liptick polarizované světlo (obcně) 7.6. Npolarizované

Více

Konstrukce na základě výpočtu III

Konstrukce na základě výpočtu III 3.3.3 Konstruk n záklě výpočtu III Přpokly: 0303 Př. : J án oélník o strnáh,. Sstroj čtvr o stjném oshu. Řšní přhozíh příklů vyházlo z vzorů popíšm si zání vzorm. Osh oélníku: S =, osh čtvr S = hlám élku

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného

Více

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule. Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava

Více

Q(y) dy = P(x) dx + C.

Q(y) dy = P(x) dx + C. Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

4.3.7 Součtové vzorce. π π π π. π π π. Předpoklady: 4306

4.3.7 Součtové vzorce. π π π π. π π π. Předpoklady: 4306 .3.7 Součtové vzorce Předpoklad: 306 Pedagogická poznámka: Hodina obsahuje látku na přibližně jeden a půl vučovací hodin, první část kombinuji s písemkou. Pedagogická poznámka: Úspěch této hodin (a hodin

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z.

II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z. II.7.* Derivace složené funkce Necht jsou dán diferencovatelné funkce z = f(,), = (u,v), = (u,v). Pak u = u + u, v = v + v. Vpočítejte derivace daných diferencovatelných funkcí. Příklad 0. Jsou dán diferencovatelné

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924 5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého v čase i prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého v čas i prostoru pomalu proměnného stavu Linární rozvoj vličin a = a + a ( r, t) b= b + b ( r, t) a, b mohou obcně být funkcmi r, t

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

2 Reálné funkce jedné reálné proměnné

2 Reálné funkce jedné reálné proměnné 2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu

Vlny v plazmatu. Lineární vlny - malá porucha určitého stacionárního konstantního nebo v čase a/nebo v prostoru pomalu proměnného stavu Vlny v plazmatu linární nlinární Linární vlny - malá porucha určitého stacionárního konstantního nbo v čas a/nbo v prostoru pomalu proměnného stavu Linární rozvoj vličin a a+ a(,) rt b b+ b(,) rt a, b

Více

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Součtové vzorce. π π π π. π π π. Předpoklady: není možné jen tak roznásobit ani rozdělit:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Součtové vzorce. π π π π. π π π. Předpoklady: není možné jen tak roznásobit ani rozdělit: .3.5 Součtové vzorce Předpoklad: 30 Závorku ve výrazu sin ( ) + není možné jen tak roznásobit ani rozdělit: 0 = sin ( ) = sin + sin + sin = + =. Způsob, jakým goniometrické funkce vrábějí ze zadaných čísel

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

Obyčejné diferenciální rovnice

Obyčejné diferenciální rovnice Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH

Více

Polynomy a racionální lomené funkce

Polynomy a racionální lomené funkce Polnom a racionální lomené funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Polnom Definice a základní pojm Násobnost kořene Počet kořenů Kvadratický polnom Rozklad na součin kořenových

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova) Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF

Více

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R

h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R .4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..

Více

7.3. Diferenciální rovnice II. řádu

7.3. Diferenciální rovnice II. řádu Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE 8 Bc. Pavl Hájk ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavbní, Katdra spciální godézi Názv diplomové prác: Vbudování, zaměřní a výpočt bodového

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

1. Průchod optického záření absorbujícím prostředím

1. Průchod optického záření absorbujícím prostředím Mtody optiké spktroskopi v bioyzi Thnika absorpční spktroskopi / 1 TECHNIKA ABSORPČNÍ SEKTROSKOPIE 1. Průhod optikého zářní absorbujíím prostřdím Budm přdpokládat, ž absorbujíí prostřdí tvoří jdn druh

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).

Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině). . íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více