Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:"

Transkript

1 1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = <U,V,S,R> je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y U V y, x R, tzn. levá strana libovolného pravidla je tvořena jedním neterminálním symbolem. Syntaktická analýza shora, zdola syntaktickou analýzu (analýzu toho, zda předložený řetěz je či není generován gramatikou typu 2) lze provádět pomocí zásobníkového automatu ZA (obdoba KNA), nebo přímo, bez sestrojení ZA, analýzou shora či zdola: analýza shora z počátečního symbolu se pomocí zadaných pravidel gramatiky snažíme získat předložený řetěz analýza zdola v předloženém řetězu hledáme podřetěz, který je pravou stranou nějakého pravidla a ten nahradíme levou stranou tohoto pravidla. Tento postup opakujeme pro takto získané řetězy. Pokud je po konečném počtu opakování získán počáteční symbol, je předložený řetěz generován gramatikou Derivační strom Př. 1.: Nechť G = <{a,+,*,),(,a,,},{a,+,*,),(},{a},p> P = {(A,A+), (A,), (,*), (,), (,(A)), (,a)} očíslujme zadaná pravidla, tedy: (A,A+) (A,) (,*) (,) (,(A)) (,a) Zjisti, zda řetěz a*(a+a) je generován L(G). Čísla značí použité pravidlo, šipka směr postupu Analýza shora Analýza zdola A 2 3 * a * ( a + a ) ( A ) A a A + A a 6 a 3 2 A Derivace zleva: Derivace zleva: Derivace zprava: Derivace zprava: Poznámka: Derivace je posloupnost použitých pravidel při dané analýze. Např. derivaci zprava analýzy zdola sepíšu takto: Modrá šipka (pravidla 6,4), narazili jsme na společný proud, musím se vrátit do druhé větve; zelená šipka (pravidla 6,4,2); nyní mohu zpracovat společný proud tedy oranžová šipka (pravidla 1,5); opět narážím na společný proud, vracím se do počátku druhého ramena, což představuje hnědá šipka (pravidla 6,4) a nakonec sepíši společný proud červená šipka (pravidla 3,2). Výsledná derivace: 6,4, 6,4,2, 1,5, 6,4, 3,2. 1/6

2 Kanonická derivace provedeme na příkladu 1: kanonická derivace zleva Kontrola písmen v zadaném řetězu Pravidlo, které užijeme Stádium vývoje derivačního stromu Pravý zbytek derivačního stromu a*(a+a) posun na první znak A A 2 3 * * 4 * * čtení a*(a+a) posun na a*(a+a) 6!!! a* a* čtení a*(a+a) posun na a*(a+a)!!! a* * čtení a*(a+a) posun na a*(a+a) 5!!! a*(a) (A) a* a*(a) A) 1 a*(a+) A+) 2 a*(+) +) 4 a*(+) +) čtení a*(a+a) posun na a*(a+a) 6!!! a*(a+) a+) čtení a*(a+a) posun na a*(a+a)!!! a*(a+) +) a*(a+) ) 4 a*(a+) ) čtení a*(a+a) posun na a*(a+a) 6!!! a*(a+a) a) čtení a*(a+a) posun na a*(a+a)λ!!! a*(a+a) ) a*(a+a)λ čtení a*(a+a)λ a*(a+a)λ Úspěch!!!!!!! - objeví-li se v derivačním stromě terminál, načte se aktuální písmeno v zadaném řetězu a provede se porovnání; pokud jsou shodná pokračuje se, pokud nejsou, ukončí se proces zadaný řetěz není generovaný jazykem L(G) 2) Zásobníkový automat (ZA) s jedním stavem (souvislost činnosti jeho komponent s průběhem kanonické derivace řetězu) λ ZA = ({s},v,u,δ,s,q,r) {s} množina všech stavů V terminální znaky U všechny znaky δ přechodová funkce s stav jednotky Q počáteční symbol v zásobníku R množina akceptačních stavů Páska se zadaným řetězem Přečtená část řídící jednotka (Automat) S Nepřečtená část W Čtecí hlava Situace automatu (s,w,ξ): s aktuální stav řídící jednotky (automatu) w V* nepřečtená část slova (řetěz) ξ U* symboly (řetěz) v zásobníku Zásobník ξ (LIFO) 2/6

3 ZA s jedním stavem předveden na příkladu 1. ZA = ({s},v,u,δ,s,a,ø) {s} množina všech stavů V = {a,+,*,),(} - terminální znaky U = V {A,,} všechny znaky δ přechodová funkce s stav jednotky A počáteční symbol v zásobníku Ø akceptačních stav Zásobníkový automat pracuje takto: Čtecí hlava je nastavena na první symbol zadaného řetězu, zásobník obsahuje počáteční symbol A. Postupně se provádí vyhodnocování situace automatu a následná akce (substituce či výmaz ze zásobníku) pomocí přechodové funkce. Přechodová funkce δ δ: {s} x (V {λ}) x u P({s} x u*) V závislosti na aktuálním stavu řídící jednotky (s {s}), aktuálního přečtené znaku (w {V {λ}}) a aktuálního znaku v zásobníku (u) je provedena náhrada takto: stav s je změněn na stav s a znak z vrcholu zásobníku u je zaměněn za nový znak u, případně řetěz u*. Obecně mohou nastat dvě situace: a) čtecí jednotka se nepohybuje, provádí se substituce a uložení substituovaných znaků do zásobníku (nastává při příchodu neterminálu tedy znaků A, či ), nebo b) čtení znaku čtecí jednotkou, ověření (zda je shodný načtený znak se znakem na vrcholu zásobníku), posun hlavy a výmaz znaku na vrcholu zásobníku. a) δ(s,λ,y) = {(s,x);y x je pravidlo} b) δ(s,α,α) = {(s,λ)} Pozn.: ad a) (s,λ,y): λ nenačtený znak (hlava je připravena číst, ještě nenačetla, jen se posunula) ad b) (s,λ): jedná se o výmaz znaku z vrcholu zásobníku ukončení: δ(s,λ,λ) = úspěch! Slovo patří do jazyka. Jedná se o konečný nedeterministický automat Konkrétně pro náš příklad: a) δ(s,λ,a) = {(s,a+),(s,)} δ(s,λ,) = {(s,*),(s,)} δ(s,λ,) = {(s,(a)),(s,a)} b) δ(s,a,a) = δ(s,+,+) = δ(s,*,*) = δ(s,),)) = δ(s,(,() = {(s,λ)} δ(s,λ,λ) = úspěch! Slovo patří do jazyka. 3/6

4 Ukázka vztahující se ke kanonické derivaci (řetěz a*(a+a) z příkladu 1.) Načtený znak zadaného řetězu Znak na vrcholu zásobníku Situace automatu (stav,zbytek_zadaného_řetězu, zásobník) Přechodová funkce Znaky vložené do zásobníku (od vrcholu dolů v tomto pořadí) λ A (s,a*(a+a),a) Počáteční stav A λ A (s,a*(a+a),a) δ(s,λ,a) = {(s,)} λ (s,a*(a+a),) δ(s,λ,) = {(s,*)} * λ (s,a*(a+a),*) δ(s,λ,) = {(s,)} * λ (s,a*(a+a),*) δ(s,λ,) = {(s,a)} a* a a (s,*(a+a),a*) δ(s,a,a) = {(s,λ)} * * * (s,(a+a),*) δ(s,*,*) = {(s,λ)} λ (s,(a+a),) δ(s,λ,) = {(s,(a))} (A) ( ( (s,a+a),(a)) δ(s,(,() = {(s,λ)} A) λ A (s,a+a),a)) δ(s,λ,a) = {(s,a+)} A+) λ A (s,a+a),a+)) δ(s,λ,a) = {(s,)} +) λ (s,a+a),+)) δ(s,λ,) = {(s,)} +) λ (s,a+a),+)) δ(s,λ,) = {(s,a)} a+) a a (s,+a),a+)) δ(s,a,a) = {(s,λ)} +) + + (s,a),+)) δ(s,+,+) = {(s,λ)} ) λ (s,a),)) δ(s,λ,) = {(s,)} ) λ (s,a),)) δ(s,λ,) = {(s,a)} a) a a (s,),a)) δ(s,a,a) = {(s,λ)} ) ) ) (s,λ,)) δ(s,),)) = {(s,λ)} λ λ λ (s,λ,λ) δ(s,λ,λ) = {(s,λ)} 3) Obecná definice zásobníkového automatu (ZA), pojmy situace ZA, přijímání prázdným zásobníkem, přijímání koncovým stavem, vztah ZA a KNA Zásobníkový automat ZA = (Q,Σ,Γ,δ,q 0,Z 0,F) Q neprázdná množina stavů Σ (sigma) konečná vstupní abeceda Γ (gama) konečná zásobníková abeceda δ (delta) přechodová funkce q 0 počáteční stav Z 0 počáteční zásobníkový symbol F akceptační stavy Přechodová funkce δ δ: Q x (Σ {λ}) x Γ P(Q x Γ*) Upřesníme-li: δ(q,a,x) = {(q 1,η 1 ),(q 2,η 2 ),...,(q m,η m )} a {Σ {λ}} vstupní abeceda doplněná o λ x Γ zásobníkový znak 4/6

5 q 1...q m stavy z množiny Q η 1...η m Γ* Pozn.: platí-li a = λ, jedná se o prázdné kroky Situace ZA (q,w,ξ) q aktuální stav w Σ* řetěz nad Σ (nepřečtená část slova (řetěz)) ξ Γ* symboly (řetěz) v zásobníku η Γ* část symbolů (řetězu) v zásobníku Řekneme, že situace (q,aw,yη) vede bezprostředně k situaci (q,w,xη); předložený řetěz se zkrátí o a (za předpokladu (q,x) δ(q,a,y)). Značíme: (q,aw,yη) (q,w,xη). w w a *(a+a) *(a+a) Můžeme rozšířit na posloupnost E E ' (situace E vede ne-bezprostředně k situaci E*) Přijímání slov ZA může přijímat dvěma způsoby: a) Prázdným zásobníkem N(ZA) b) Koncovým stavem L(ZA) N(ZA) = {w q Q : q 0, w, z 0 q,, } L(ZA) = {w q F, : q 0, w, z 0 q,, } q koncový stav λ konec slova (už není co číst v zadaném slově) η něco v zásobníku Zásobníkový automat se užívá jen pro bezkontextové jazyky a vyskytuje ve dvou variantách: a) s jedním stavem přijímá jen prázdným zásobníkem b) s více stavy přijímá buď prázdným zásobníkem, nebo koncovým stavem Př. 2.: ZA s rozpoznáváním prázdným zásobníkem; ZA = ({p,q},{0,1},{a,,},δ,p,a,ø) L = {ww R w {O,1}*} (w je z množiny řetězců nad množinou {0,1}; w R značí inverzi: je-li w = a 1 a 2...a n je w R = a n...a 2 a 1 ). Pravidla: 1. δ(p,0,a) = {(p,a)} 2. δ(p,1,a) = {(p,a)} 3. δ(p,0,) = {(p,),(q,λ)} 4. δ(p,0,) = {(p,)} 5. δ(p,1,) = {(p,)} 6. δ(p,1,) = {(p,),(q,λ)} 7. δ(q,0,) = {(η,λ)} 8. δ(q,1,) = {(q,λ)} 9. δ(p,λ,a) = {(q,λ)} 10. δ(q,λ,a) = {(q,λ)} Je slovo generováno jazykem L? 5/6

6 Jde o to, zda platí: p,110011, A?? p,, či q,, Lze vyvodit tuto posloupnost: p,110011, A 2 p,10011, A 6 p,0011,a 4 p,011, A 3 q,11, A 8 q,1,a 8 q,, A 10 q,, Pozn.: čísla nad znaky vyvozování značí číslo užitého pravidla. Platí: p,110011, A q,, a řetězec je generován jazykem. Vztah KNA = (S,V,g,I,G) a ZA = (Q,Σ,Γ,δ,q 0,Z 0,F) KNA (konečný nedeterministický akceptor) je speciálním případem ZA (zásobníkového automatu) 6/6

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Fakulta informačních technologií. Teoretická informatika

Fakulta informačních technologií. Teoretická informatika Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

Implementace LL(1) překladů

Implementace LL(1) překladů Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39 Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma

Více

Minimalizace KA - Úvod

Minimalizace KA - Úvod Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat

Více

/01: Teoretická informatika(ti) přednáška 5

/01: Teoretická informatika(ti) přednáška 5 460-4005/01: Teoretická informatika(ti) přednáška 5 prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar LS 2010/2011 Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) LS

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

ZÁKLADY TEORETICKÉ INFORMATIKY

ZÁKLADY TEORETICKÉ INFORMATIKY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

2 Formální jazyky a gramatiky

2 Formální jazyky a gramatiky 2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně

Více

Teoretická informatika

Teoretická informatika Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,

Více

Virtuální počítač. Uživatelský program Překladač programovacího jazyka Operační systém Interpret makroinstrukcí Procesor. PGS K.

Virtuální počítač. Uživatelský program Překladač programovacího jazyka Operační systém Interpret makroinstrukcí Procesor. PGS K. Virtuální počítač Uživatelský program Překladač programovacího jazyka Operační systém Interpret makroinstrukcí Procesor Virtuální počítač Překladač Překladač : Zdrojový jazyk Cílový jazyk Analytická část:

Více

Strukturální rozpoznávání

Strukturální rozpoznávání Strukturální rozpoznávání 1 Strukturální rozpoznávání obsah hierarchický strukturální popis systém strukturálního rozpoznávání teorie gramatik volba popisu výběr primitiv výběr gramatiky syntaktická analýza

Více

Teoretická informatika TIN 2013/2014

Teoretická informatika TIN 2013/2014 Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Diplomová práce Vedoucí práce: RNDr.

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA VÝPOČETNÍ A DIDAKTICKÉ TECHNIKY PŘÍPRAVA KOMPONENT PRO E-KURZ KONEČNÉ AUTOMATY A FORMÁLNÍ JAZYKY BAKALÁŘSKÁ PRÁCE Luděk Hroch Informatika se zaměřením

Více

Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz

Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz Teoretická informatika průběh výuky v semestru 1 Týden 5 Přednáška Na rozšiřující přednášce minulý týden jsme se věnovali zejména algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární

Více

Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma

Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma 10 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Chomského normální forma Podívejme se nyní na derivační stromy. Jak odhadnout výšku stromu podle délky

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky študenti MFF 15. augusta 2008 1 1 Základy teoretické informatiky Požadavky Logika - jazyk, formule, sémantika, tautologie

Více

popel, glum & nepil 16/28

popel, glum & nepil 16/28 Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

3. Sekvenční logické obvody

3. Sekvenční logické obvody 3. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody příklad sekv.o. Příklad sledování polohy vozíku

Více

Lexikální analýza Teorie programovacích jazyků

Lexikální analýza Teorie programovacích jazyků Lexikální analýza Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Osnova dnešní přednášky 1 Úvod do teorie překladačů kompilátor a interpret

Více

Referát z předmětu Teoretická informatika

Referát z předmětu Teoretická informatika Referát z předmětu Téma: Algoritmus Coke-Younger-Kasami pro rozpoznávání bezkontextových jazyků VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111. Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ OSTRAVSKÁ UNIVERZITA V OSTRAVĚ REGULÁRNÍ A BEZKONTEXTOVÉ JAZYKY II HASHIM HABIBALLA OSTRAVA 2005 Recenzenti: RNDr. PaedDr. Eva Volná, PhD. Mgr. Rostislav Fojtík Název: Regulární a bezkontextové jazyky

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

NÁSTROJ PRO PRÁCI S BÜCHI AUTOMATY

NÁSTROJ PRO PRÁCI S BÜCHI AUTOMATY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS NÁSTROJ PRO

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

1) Sekvenční a paralelní gramatiky

1) Sekvenční a paralelní gramatiky A. Kapitoly z teorie formálních jazyků a automatů c Milan Schwarz (006) ) Sekvenční a paralelní gramatiky Derivace v gramatikách: Sekvenční postup sekvenční gramatiky (např. gramatiky v Chomského hierarchii)

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

5. Sekvenční logické obvody

5. Sekvenční logické obvody 5. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody - příklad asynchronního sekvenčního obvodu 3.

Více

Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní.

Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní. Teoretická informatika referáty 1 Referátč.1 Vysvětlete, co znamená tvrzení, že operace levého kvocientu je asociativní. Pak toto tvrzení pečlivě dokažte či vyvraťte. Dálevysvětlete,pročprokonečnýautomat

Více

Webový simulátor Turingova stroje

Webový simulátor Turingova stroje MASARYKOVA UNIVERZITA Fakulta informatiky Webový simulátor Turingova stroje Bakalářská práce Stanislav Straka Vedoucí práce: Mgr. Jiří Barnat Ph.D. Brno 2006 Shrnutí Cílem této bakalářské práce je napsat

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LEXIKÁLNÍ ANALÝZA Kód ve vstupním jazyku Lexikální analyzátor

Více

Turingovy stroje. Turingovy stroje 1 p.1/28

Turingovy stroje. Turingovy stroje 1 p.1/28 Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD

Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Obsah: 1 Struktura a princip činnosti překladače... 3 2 Regulární gramatika, konečný automat a jejich ekvivalence... 5 3 Lexikální analýza... 8 4 Bezkontextová

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Teorie informace: řešené příklady 2014 Tomáš Kroupa

Teorie informace: řešené příklady 2014 Tomáš Kroupa Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?

Více

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky

Více

}w!"#$%&'()+,-./012345<ya

}w!#$%&'()+,-./012345<ya MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY }w!"#$%&'()+,-./012345

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS PARALELNÍ SYNTAKTICKÁ

Více

Deterministický konečný automat

Deterministický konečný automat Deterministický konečný utomt Formálně je deterministický konečný utomt definován jko pětice (Q,Σ,δ,q 0,F) kde: Q je konečná množin stvů Σ je konečná eced δ:q Σ Qjepřechodováfunkce q 0 Qjepočátečnístv

Více

Automaty a gramatiky. Na zopakování X*/~ Roman Barták, KTIML. Iterační (pumping) lemma. Pravidelnost regulárních jazyků

Automaty a gramatiky. Na zopakování X*/~ Roman Barták, KTIML. Iterační (pumping) lemma. Pravidelnost regulárních jazyků 2 utomaty a gramatiky Roman Barták, KTML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na zopakování Víme, co je konečný automat = (Q,X,δ,q,F) Umíme konečné automaty charakterizovat (Myhill-)Nerodova

Více

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

Teoretická informatika TIN

Teoretická informatika TIN Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh

Více

SIC1602A20. Komunikační protokol

SIC1602A20. Komunikační protokol SIC1602A20 Komunikační protokol SIC1602A20 Mechanické parametry Rozměr displeje 80 x 36 mm Montážní otvory 75 x 31 mm, průměr 2.5mm Distanční sloupky s vnitřním závitem M2.5, možno využít 4mm hloubky Konektor

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY

{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY SNTÉZA TABULEK PŘECHODŮ. NEALGEBRAICKÉ METOD a) GINSBURGOVA METODA Využívá tzv. korespondencí mez vstupním a výstupním slovem př dané vstupní a výstupní abecedě. Jnak řečeno, vyhodnocuí se ednotlvé odezvy

Více

Překladač a jeho struktura

Překladač a jeho struktura Překladač a jeho struktura Překladače, přednáška č. 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz http://fpf.slu.cz/ vav10ui Poslední aktualizace: 23. září 2008 Definice

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMEDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

KLASIFIKACE A VYUŽITÍ GRAMATIK, JAZYKŮ A AUTOMATŮ

KLASIFIKACE A VYUŽITÍ GRAMATIK, JAZYKŮ A AUTOMATŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS KLASIFIKACE A VYUŽITÍ GRAMATIK, JAZYKŮ A

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace 1) Charakterizujte křížový překladač Překlad programu probíhá na jiném procesoru, než exekuce. Hlavním důvodem je náročnost překladače na cílovém stroji by ho nemuselo být možné rozběhnout. 2. Objasněte

Více

Zadání soutěžních úloh

Zadání soutěžních úloh Zadání soutěžních úloh Kategorie mládež Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

Maturitní téma: Programovací jazyk JAVA

Maturitní téma: Programovací jazyk JAVA Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek

Více

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1 Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné

Více

1 Úvod. Formální jazyky a automaty, P. Savický, 6. leden

1 Úvod. Formální jazyky a automaty, P. Savický, 6. leden Formální jazyky a automaty, P. Savický, 6. leden 2017 1 1 Úvod Formální jazyk je množina posloupností symbolů v nějaké konečné abecedě. Posloupnost symbolů může vyjadřovat například aritmetický výraz,

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

Substituce a morfismy jednoduše

Substituce a morfismy jednoduše Substituce a morfismy jednoduše Petr Zemek 31. července 2010 Abstrakt Tento text si dává za cíl srozumitelně a formou příkladů osvětlit problematiku substitucí a morfismů v rozsahu předmětu Teoretická

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS OBECNÝ SYSTÉM

Více

základů algoritmizace

základů algoritmizace Mendelova univerzita v Brně Provozně ekonomická fakulta Punťa - vývojové prostředí pro výuku základů algoritmizace Diplomová práce Vedoucí práce: Mgr. Tomáš Foltýnek, Ph.D. Bc. Marek Fojtl Brno 2010 zadání

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce , strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ

Více

Postupy práce se šablonami IS MPP

Postupy práce se šablonami IS MPP Postupy práce se šablonami IS MPP Modul plánování a přezkoumávání, verze 1.20 vypracovala společnost ASD Software, s.r.o. dokument ze dne 27. 3. 2013, verze 1.01 Postupy práce se šablonami IS MPP Modul

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

Spojení OntoUML a GLIKREM ve znalostním rozhodování

Spojení OntoUML a GLIKREM ve znalostním rozhodování 1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

Simulátor programované gramatiky

Simulátor programované gramatiky Příloha 1. Uživatelská příručka k programu Simulátor programované gramatiky Program slouží k simulaci derivace podle programované gramatiky s bezkontextovými pravidly. Umožňuje automatický průběh derivace,

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Ě ÁÁ Ú é é ý ů ý ů é ý ů é é ú Ž ý ů é ů é é Ě ÁÁ Ú é Ý ž ý ž ý ý ů ž ů ň é Ž ý Ž ů ý é é é é ý ž Í Ě ÁÁ Ú é é ň é Ž ý ž Ž Í ý é ý Í ů ý ý ý é ý é ý é ň Ž Ž Ě ÁÁ Ú é é ý Ý é é ý Ž Í Í é ž Í Ž Ě ÁÁ Ú é

Více

P1 Formule ve sněhu. P2 Double Cola

P1 Formule ve sněhu. P2 Double Cola P1 Formule ve sněhu Jak je obecně známo, losi mají spoustu různých zálib. Není tedy velkým překvapením, že existují losi, kteří se vyžívají v matematických prapodivnostech. Jeden takový los přišel s následující

Více

Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice

Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice Definice Formálně je Turingův stroj definován jako šestice M=(Q,Σ,Γ,δ,q 0,F)kde: Q je konečná množina stavů Γ je konečná množina páskových symbolů Σ Γ,Σ jekonečnámnožinavstupníchsymbolů δ:(q F) Γ Q Γ {

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více