Vojtěch Franc. Biometrie ZS Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost

Rozměr: px
Začít zobrazení ze stránky:

Download "Vojtěch Franc. Biometrie ZS Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost"

Transkript

1 Rozpoznávání tváří I Vojtěch Franc Centrum strojového vnímání, ČVUT FEL Praha Biometrie ZS 2013 Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost

2 Úlohy rozpoznávání tváří: Detekce Cíl: lokalizovat tvář v obraze Vstup: obrázek 2/21 Výstup: pozice tváře (souřadnice, velikost, popřípadě orientace)

3 Úlohy rozpoznávání tváří: Verifikace Cíl: ověřit identitu na základě porovnání tváře s databází 3/21 Vstup: obrázek (nebo video) tváře a jméno Výstup: binární rozhodnutí - idenita ověřena nebo zamítnuta Input image User database Kim Ki-Duk Verification machine verified / rejected

4 Úlohy rozpoznávání tváří: Identifikace Cíl: přiřadit tváři identitu na základě porovnání s databází Vstup: obrázek (nebo video) 4/21 Výstup: jedna z N identit popřípadě odpověď není v databázi

5 Úlohy rozpoznávání tváří: Vyhledávání Cíl: nalézt v databázi tváře podle zadaného popisu 5/21 Vstup: obrázek tváře (popřípadě slovní popis) Výstup: N nejbližších obrázků v databázi face descriptor Part of the ISO/IEC JTC 1SC 29WG 11 (MPEG7) standard.

6 Úlohy rozpoznávání tváří: Kategorizace Cíl: zařadit tvář do jedné z N kategorií 6/21 Vstup: obrázek (nebo video) Výstup: jedna z N kategorií Příklady kategorií: muž/žena, věkové kategorie, nálada (úsměv/smutek/neutrální), rasa (běloch/černoch/asiat)

7 Úlohy rozpoznávání tváří: Detekce mluvčího Cíl: nalézt ve videu kdo mluví 7/21 Vstup: video sekvence s lidmi Výstup: lokalizace mluvících tváří

8 Úlohy rozpoznávání tváří: Odhad tepové frekvence Cíl: odhadnout tepovou frekvenci sledovaného subjektu 8/21 Vstup: video tváře Výstup: tepová frekvence

9 Proč je rozpoznávání tváří v obecném případě těžké? Tváře se typicky reprezentují vektorem příznaků a podobnost tváří se měří podobností těchto vektorů (např. jejich Euklidovskou vzdáleností). 9/21 Tváře patřící do stejné třídy mají velkou variabilitu: změna pozice, meřítka, rotace (roll, pan, tilt) změna osvětlení změna výrazu tváře (úsměv, smutek, neutrální,...) zákryty (brýle, pokrývka hlavy), změna účesu, make up, stárnutí...

10 Složitost rozpoznávání tváří je ovlivňena mnoha faktory Světelné podmínky (venkovní/vnitřní prostor, stíny, přesvětlení obrazu...) 10/21 Použitý snímací senzor: kamera pracující ve viditelném spektru infračervená kamera (s IR přísvícením) stereo kamera 3D skener Statický obrázek / video sekvence Spolupracující / nespolupracující subjekt...

11 Příklad rozpoznávacího systému, stavební bloky Geometrická a fotometrická normalizace: 11/21 cílem je získat reprezentaci tváře invariantní vůči geometrické transformaci či změně osvětlení geometrická normalizace se typicky řeší nalezením významných bodů na tváři Příznakový popis: tvář se popíše vektorem čísel (jasové hodnoty, popis textury,...) Klasifikace: zařazení vektoru příznaků do třídy detekce geometrická a fotometrická normalizace příznakový popis klasifikace x 1 x 2. x n id/gender/age

12 Vstup detektoru: obrázek x X Detektor tváří 12/21 Výstup detektoru: množina d D oblastí v obrázku x, které obsahují tváře; oblast je popsaná polohou a velikostí (popřípadě orientací) tváře Kritéria pro hodnocení detektoru Q: X D: přesnost a rychlost Přesnost detektoru tváří se charakterizuje dvěma čísly: 1. True Positive Rate (TPR): pravděpodobnost, že tvář je v obraze nalezena 2. False Positive Rate (FPR): pravděpodnost, že nalezená oblast neobsahuje tvář

13 Scanning window approach 13/21 Problém detekce tváří lze převést na sekvenci binárních klasifikačních problémů tvář/netvář. FACE Těžký rozhodovací problém Q : X D převedeme na mnoho jednodušších H : X { 1, +1} NONFACE

14 Binární klasifikátor tváří Klasifikátor h: X {+1, 1} (tvář/netvář) rozhoduje podle znaménka skórovací funkce f : X R, { +1 pokud f(x) 0 H(x) = 1 pokud f(x) < 0 která je lineární kombinací n slabých klasifikátorů 14/21 f(x) = α 1 h 1 (x) + α 2 h 2 (x) α n h n (x) h i : X {+1, 1}... i-tý slabý klasifikátor α i R... váha i-tého slabého klasifikátoru

15 Slabý klasifikátor pro detektor tváří Slabý klasifikátor je oprahovaná odezva Haarova filtru h i (x) = sign (u,v) A + i (x) x(u, v) x(u, v) + θ (u,v) A i (x) 15/21 Příklady filtrů Odezvu Haarova filtru lze spočítat velmi rychle pomocí integrálního obrázku I(u, v) = u v x(u, v ) u =1 v =1

16 Učení klasifikátorů Jak vybrat takouvou podmnožinu slabých klasifikátorů a jejich váhy, abychom výsledný silný klasifikátor byl přesný? 16/21 H(x) = { +1 pro f(x) 0 1 pro f(x) < 0 kde f(x) = α 1h 1 (x) + α 2 h 2 (x) α n h n (x)

17 Učení klasifikátorů Jak vybrat takouvou podmnožinu slabých klasifikátorů a jejich váhy, abychom výsledný silný klasifikátor byl přesný? 16/21 H(x) = { +1 pro f(x) 0 1 pro f(x) < 0 kde f(x) = α 1h 1 (x) + α 2 h 2 (x) α n h n (x) Klasifikátor se učí sám z množiny trénovacích příkladů {(x1, y1),..., (xm, ym)} (x i, y i = +1) (x i, y i = 1)

18 Učení klasifikátorů Jak vybrat takouvou podmnožinu slabých klasifikátorů a jejich váhy, abychom výsledný silný klasifikátor byl přesný? 16/21 H(x) = { +1 pro f(x) 0 1 pro f(x) < 0 kde f(x) = α 1h 1 (x) + α 2 h 2 (x) α n h n (x) Klasifikátor se učí sám z množiny trénovacích příkladů {(x1, y1),..., (xm, ym)} (x i, y i = +1) (x i, y i = 1) Učení: optimalizační úloha kdy hledáme vektor vah α RL, tak aby trénovací chyba P (α) = m [H(x i, α) y i ] i=1 byla minimální za podmínky, že počet nenulových komponent vektoru α je roven n.

19 Učení klasifikátorů Jak vybrat takouvou podmnožinu slabých klasifikátorů a jejich váhy, abychom výsledný silný klasifikátor byl přesný? 16/21 H(x) = { +1 pro f(x) 0 1 pro f(x) < 0 kde f(x) = α 1h 1 (x) + α 2 h 2 (x) α n h n (x) Klasifikátor se učí sám z množiny trénovacích příkladů {(x1, y1),..., (xm, ym)} (x i, y i = +1) (x i, y i = 1) Učení: optimalizační úloha kdy hledáme vektor vah α RL, tak aby trénovací chyba P (α) = m [H(x i, α) y i ] i=1 byla minimální za podmínky, že počet nenulových komponent vektoru α je roven n. AdaBoost: hladová minimalizace horní meze P (α) U(α) = m i=1 exp( y ih(x i, α)).

20 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} 17/21

21 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m 17/21

22 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : 17/21

23 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 t = 1 17/21

24 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 1 17/21

25 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 1 17/21 Set αt = 12 log(1 ɛt ɛ t )

26 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 1 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor

27 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 1 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x)

28 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 2 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x)

29 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 3 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x) + α 3 h 3 (x)

30 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 4 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x) α 4 h 4 (x)

31 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 5 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x) α 5 h 5 (x)

32 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 6 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x) α 6 h 6 (x)

33 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 7 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x) α 7 h 7 (x)

34 AdaBoost algoritmus Given: (x 1, y 1 ),..., (x m, y m ); x i X, y i { 1, +1} Initialise weights D 1 (i) = 1/m For t = 1,..., T : Find ht = arg min ɛ j = m D t (i) y i h j (x i ) h j H i=1 If ɛ t 1/2 then stop t = 40 17/21 Set αt = Update 12 log(1 ɛt ɛ t ) D t+1 (i) = D t(i) exp( α t y i h t (x i )) Z t where Z t is normalisation factor Output the final classifier: H(x) = sign ( ) α 1 h 1 (x) + α 2 h 2 (x) α 40 h 40 (x)

35 Po prvních 25 iteracích. Příklady nalezených slabých klasifikátorů 18/21

36 Urychlení detekce pomocí sekvenčního rozhodování Počet slabých klasifikátorů je n 1000, což může být stále časově náročné pokud používáme celý klasifikátor 19/21 H(x) = { +1 pokud f(x) 0 1 pokud f(x) < 0 f(x) = n α i h i (x) i=1 K rozhodnutí o jasných příkladech tváří/netváří stačí jednoduší pravidlo. Detektor lze urychlit použitím sekvenčního rozhodovacího pravidla S t (x) = +1 f t (x) θt A 1 f t (x) θt B # θt B < f t (x) < θt A f t (x) = t α i h i (x) i=1 # # # S 1 (x) S 2 (x) S 3 (x) S n (x)

37 Příklad komerčního detektoru tváří ( Trénovací množina vytvořena tak, aby pokryla co nejvíce variance (rasa, osvětlení, výraz tváře, pozadí obrázku...). Pozitivní příklady (tváří): více než 500, 000 Synteticky generované z cca 60, 000 tváří aplikováním transformací, které nemění třídu obrázku - malá změna rotace, změna měřítka, posunutí. Pozitivní příklady vyžadují manuální anotaci. Negativní příklady (netváře): přibližně Negativní příklady se generují z množiny obrázků neobsahujících žádné tváře. Není potřeba anotace. Rychlost detektoru závisí na mnoha parametrech (minimální velikost detekované tváře, velikost vstupního obrázku, krok posunutí, rotace...) Například pro rozlišení px a minimální velikosti tváře px zpracuje detektor cca smímků za vteřinu. 20/21

38 Konec 21/21

39

40

41

42 Kim Ki-Duk Verification machine verified / rejected

43

44

45

46

47

48

49

50

51

52

53

54 detekce geometrická a fotometrická normalizace příznakový popis klasifikace x 1 x 2. x n id/gender/age

55

56

57 NONFACE FACE

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109 # # # S 1 (x) S 2 (x) S 3 (x) S n (x)

Vojtěch Franc. Biometrie ZS 2016

Vojtěch Franc. Biometrie ZS 2016 Rozpoznávání tváří I Vojtěch Franc Centrum strojového vnímání, ČVUT FEL Praha Biometrie ZS 2016 Osnova: Příklady úloh v rozpoznávání tváří: detekce, verifikace, vyhledávání, odhad věku,... Metriky pro

Více

Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015

Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015 Příklady použití metod strojového učení v rozpoznávání tváří Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015 Stavební bloky systému

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Rozpoznávání v obraze

Rozpoznávání v obraze Rozpoznávání v obraze AdaBoost a detekce objektů IKR, 2013 Roman Juránek www.fit.vutbr.cz/~ijuranek/personal Detekce objektů Úloha - v daném obraze nalézt objekty určitých tříd

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

Detekce obličeje v obraze s využitím prostředí MATLAB

Detekce obličeje v obraze s využitím prostředí MATLAB Detekce obličeje v obraze s využitím prostředí MATLAB T. Malach, P. Bambuch, J. Malach EBIS, spol. s r.o. Příspěvek se zabývá detekcí obličeje ve statických obrazových datech. Algoritmus detekce a trénování

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

DATA MINING KLASIFIKACE DMINA LS 2009/2010

DATA MINING KLASIFIKACE DMINA LS 2009/2010 DATA MINING KLASIFIKACE DMINA LS 2009/2010 Osnova co je to klasifikace typy klasifikátoru typy výstupu jednoduchý klasifikátor (1R) rozhodovací stromy Klasifikace (ohodnocení) zařazuje data do předdefinovaných

Více

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY

TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají

Více

Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ Ing. Jiří Přinosil ANALÝZA EMOCIONÁLNÍCH STAVŮ NA ZÁKLADĚ OBRAZOVÝCH PŘEDLOH Emotional State Analysis

Více

Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý

Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý Odečítání pozadí a sledování lidí z nehybné kamery Ondřej Šerý Plán Motivace a popis úlohy Rozdělení úlohy na tři části Detekce pohybu Detekce objektů Sledování objektů Rozbor každé z částí a nástin několika

Více

Změkčování hranic v klasifikačních stromech

Změkčování hranic v klasifikačních stromech Změkčování hranic v klasifikačních stromech Jakub Dvořák Seminář strojového učení a modelování 24.5.2012 Obsah Klasifikační stromy Změkčování hran Ranking, ROC křivka a AUC Metody změkčování Experiment

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Vytěžování znalostí z dat Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague Přednáška 5: Hodnocení kvality modelu BI-VZD, 09/2011 MI-POA Evropský sociální

Více

Úvod do zpracování obrazů. Petr Petyovský Miloslav Richter

Úvod do zpracování obrazů. Petr Petyovský Miloslav Richter Úvod do zpracování obrazů Petr Petyovský Miloslav Richter 1 OBSAH Motivace, prvky a základní problémy počítačového vidění, pojem scéna Terminologie, obraz, zpracování a analýza obrazu, počítačové vidění,

Více

Zpracování digitalizovaného obrazu (ZDO) - Popisy III

Zpracování digitalizovaného obrazu (ZDO) - Popisy III Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování

Více

Automatické rozpoznávání dopravních značek

Automatické rozpoznávání dopravních značek ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Jiří Hofman Automatické rozpoznávání dopravních značek Semestrální práce z předmětu ITS 2012 Obsah 1. Automatické rozpoznávání dopravních značek (ATSR)...

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30 Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce

Více

Detekce a rozpoznávání mincí v obraze

Detekce a rozpoznávání mincí v obraze POV prezentace projektu Projekt pro předmět POV, ZS 2012 Varianta projektu č. 12: Detekce a rozpoznávání mincí v obraze Autoři: Adam Crha, xcrhaa00 Jan Matyáš, xmatya02 Strana 1 z 11 Řešený problém a cíl

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP

SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP Bronislav Koska*, Tomáš Křemen*, Vladimír Jirka** *Katedra speciální geodézie, Fakulta stavební ČVUT v Praze **ENKI, o.p.s. Obsah Porovnání metod sběru

Více

Úloha: Verifikace osoby pomocí dynamického podpisu

Úloha: Verifikace osoby pomocí dynamického podpisu Cvičení z předmětu Biometrie Úloha: Verifikace osoby pomocí dynamického podpisu Jiří Wild, Jakub Schneider kontaktní email: schnejak@fel.cvut.cz 5. října 2015 1 Úvod Úloha má za cíl seznámit vás s metodami

Více

Klasifikace a rozpoznávání

Klasifikace a rozpoznávání Klasifikace a rozpoznávání Prezentace přednášek Ústav počítačové grafiky a multimédií Téma přednášky Boosting Michal Hradiš UPGM FIT Brno University of Technology Obsah: Co je to boosting? Algoritmus AdaBoost

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Zpracování digitalizovaného obrazu (ZDO) - Segmentace II

Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. 1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 35.040 Červenec 2013 Informační technologie Formáty výměny biometrických dat Část 5: Data obrazu obličeje ČSN ISO/IEC 19794-5 36 9860 Information technology Biometric data interchange

Více

7 Další. úlohy analýzy řeči i a metody

7 Další. úlohy analýzy řeči i a metody Pokročilé metody rozpoznávánířeči Přednáška 7 Další úlohy analýzy řeči i a metody jejich řešení Výsledky rozpoznávání (slovník k 413k) frantisek_vlas 91.92( 90.18) [H= 796, D= 10, S= 60, I= 15, N=866,

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

BOOSTING A EVOLUČNÍ ALGORITMY

BOOSTING A EVOLUČNÍ ALGORITMY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

Katedra kybernetiky, FEL, ČVUT v Praze.

Katedra kybernetiky, FEL, ČVUT v Praze. Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

geekovo minimum počítačového Nadpis 1 Nadpis 2 Nadpis 3

geekovo minimum počítačového  Nadpis 1 Nadpis 2 Nadpis 3 geekovo minimum Nadpis 1 Nadpis 2 Nadpis 3 počítačového vidění Adam Herout (doc. Jméno Ing. Příjmení Ph.D.) Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Vysoké učení technické

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

ELIMINACE VLIVU DRUHÉ ROTACE PŘI AFINNĚ INVARIANTNÍM 2D ROZPOZNÁVÁNÍ

ELIMINACE VLIVU DRUHÉ ROTACE PŘI AFINNĚ INVARIANTNÍM 2D ROZPOZNÁVÁNÍ ELIMINACE VLIVU DRUHÉ ROTACE PŘI AFINNĚ INVARIANTNÍM 2D ROZPOZNÁVÁNÍ K. Nováková 1, J. Kukal 1,2 1 Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze 2 Ústav počítačové a řídicí techniky, VŠCHT Praha

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Popis objektů. Karel Horák. Rozvrh přednášky:

Popis objektů. Karel Horák. Rozvrh přednášky: 1 / 41 Popis objektů Karel Horák Rozvrh přednášky: 1. Úvod.. Příznakový vektor. 3. Příznakový prostor. 4. Členění příznaků. 5. Identifikace oblastí. 6. Radiometrické deskriptory. 7. Fotometrické deskriptory.

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce příznaků 3 25 2 Granáty Jablka Četnost 15 1 5 2 3 4 5 6 7 8 Váha [dkg] Pravděpodobnosti - diskrétní příznaky Uvažujme diskrétní příznaky

Více

Dolování dat z multimediálních databází. Ing. Igor Szöke Speech group ÚPGM, FIT, VUT

Dolování dat z multimediálních databází. Ing. Igor Szöke Speech group ÚPGM, FIT, VUT Dolování dat z multimediálních databází Ing. Igor Szöke Speech group ÚPGM, FIT, VUT Obsah prezentace Co jsou multimediální databáze Možnosti dolování dat v multimediálních databázích Vyhledávání fotografií

Více

DIGITÁLNÍ ORTOFOTO. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník

DIGITÁLNÍ ORTOFOTO. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník DIGITÁLNÍ ORTOFOTO SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník DIGITÁLNÍ SNÍMEK Ortofotomapa se skládá ze všech prvků, které byly v době expozice přítomné na povrchu snímkované oblasti.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS ROZPOZNÁVÁNÍ

Více

Využití detektoru Viola-Jones pro lokalizaci obličeje a očí v barevných obrazech

Využití detektoru Viola-Jones pro lokalizaci obličeje a očí v barevných obrazech Využití detektoru Viola-Jones pro lokalizaci obličeje a očí v barevných obrazech Ing. Jiří Přinosil, Bc. Martin Krolikowski Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií,

Více

Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39

Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 39 Extrakce obrazových příznaků Ing. Aleš Láník, Ing. Jiří Zuzaňák Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 39

Více

Text Mining: SAS Enterprise Miner versus Teragram. Petr Berka, Tomáš Kliegr VŠE Praha

Text Mining: SAS Enterprise Miner versus Teragram. Petr Berka, Tomáš Kliegr VŠE Praha Text Mining: SAS Enterprise Miner versus Teragram Petr Berka, Tomáš Kliegr VŠE Praha Text mining vs. data mining Text mining = data mining na nestrukturovaných textových dokumentech otázka vhodné reprezentace

Více

Princip gradientních optimalizačních metod

Princip gradientních optimalizačních metod Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu

Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu Zpracování digitalizovaného obrazu (ZDO) - Analýza pohybu Úvod Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu (ZDO)

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

VÝSLEDKYVÝVOJEAUTONOMNÍ MAPOVACÍVZDUCHOLODĚ

VÝSLEDKYVÝVOJEAUTONOMNÍ MAPOVACÍVZDUCHOLODĚ VÝSLEDKYVÝVOJEAUTONOMNÍ MAPOVACÍVZDUCHOLODĚ Ing. B. Koska, Ph.D., Ing. J. Jon Katedra speciální geodézie Fakulta stavební České vysoké učení technické v Praze Telč Listopad 2014 Obsah Seznámení s projektem

Více

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE Petr Vaněček, katedra informatiky a výpočetní techniky Fakulta aplikovaných věd, Západočeská univerzita v Plzni 19. listopadu 2009 1888, Geroge Eastman You press the button, we do

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Moderní metody rozpoznávání a zpracování obrazových informací 15

Moderní metody rozpoznávání a zpracování obrazových informací 15 Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta

Více

Dálkový průzkum Země. Klasifikace obrazu

Dálkový průzkum Země. Klasifikace obrazu Dálkový průzkum Země Klasifikace obrazu Neřízená klasifikace v IDRISI Modul CLUSTER (Image Processing / Hard Classifiers) využívá techniku histogramových vrcholů pásma pro klasifikaci výsledný obraz volba

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 9

Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení

Více

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Analýza pohybu. Karel Horák. Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok.

Analýza pohybu. Karel Horák. Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok. 1 / 40 Analýza pohybu Karel Horák Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok. 2 / 40 Analýza pohybu Karel Horák Rozvrh přednášky:

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,

Více

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery

Termovizní měření. 1 Teoretický úvod. Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery Termovizní měření Cíl cvičení: Detekce lidské kůže na snímcích z termovizní i klasické kamery 1 Teoretický úvod Termovizní měření Termovizní kamera je přístroj pro bezkontaktní měření teplotních polí na

Více

LDA, logistická regrese

LDA, logistická regrese Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů

ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů REGISTRACI OBRAZU (IMAGE REGISTRATION) Více snímků téže scény Odpovídající pixely v těchto snímcích musí mít stejné souřadnice Pokud je nemají

Více

Klasifikace a rozpoznávání. Extrakce příznaků

Klasifikace a rozpoznávání. Extrakce příznaků Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

Využití metod strojového učení v bioinformatice David Hoksza

Využití metod strojového učení v bioinformatice David Hoksza Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace

Více

Aplikace obrazové fúze pro hledání vad

Aplikace obrazové fúze pro hledání vad Marek Vajgl, Irina Perfilieva, Petr Hurtík, Petra Hoďáková Národní superpočítačové centrum IT4Innovations Divize Ostravské univerzity Ústav pro výzkum a aplikaci fuzzy modelování Ostrava, Česká republika

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 20. prosince 2007 1 2 3D model světa ProMIS Cvičení hledání domečku Model štěrbinové kamery Idealizovaný jednoduchý model kamery Paprsek světla vychází

Více

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM

Více

Statistické modely tvaru a vzhledu

Statistické modely tvaru a vzhledu Kapitola 1 Statistické modely tvaru a vzhledu V této kapitole nastíním problematiku statistických modelů tvaru, jejich využití a metod potřebných pro jejich výpočet a použití. Existují dvě hlavní metody;

Více

SRE 03 - Statistické rozpoznávání

SRE 03 - Statistické rozpoznávání SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget ÚPGM FIT VUT Brno, burget@fit.vutbr.cz FIT VUT Brno SRE 03 - Statistické rozpoznávání vzorů II Lukáš Burget, ÚPGM FIT VUT Brno, 2006/07 1/29 Opakování

Více

Reprezentace geometrických objektů pro 3D fotografii

Reprezentace geometrických objektů pro 3D fotografii Úvod Reprezentace geometrických objektů pro 3D fotografii Diplomová práce České vysoké učení technické v Praze, Fakulta elektrotechnická Vedoucí diplomové práce: Daniel Martinec, martid1@cmp.felk.cvut.cz

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

Zpracování obrazu a fotonika 2006

Zpracování obrazu a fotonika 2006 Základy zpracování obrazu Zpracování obrazu a fotonika 2006 Reprezentace obrazu Barevný obrázek Na laně rozměry: 1329 x 2000 obrazových bodů 3 barevné RGB kanály 8 bitů na barevný kanál FUJI Superia 400

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování

Více