VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH

Rozměr: px
Začít zobrazení ze stránky:

Download "VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH"

Transkript

1 Miloš Hüttnr SMR2 nilové účink viční 04 VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH RÁMOVÝCH KONSTRUKCÍCH Zdání Příkld č. 1 Vpočítjt prů v odě, noníku zorznéo ztížnéo dl Or. 1. Způo řšní Or. 1: Sé zdání příkldu č. 1. Pro výpočt j použit prinip virtuální il tzn. do ít, kd počítt prů (v toto přípdě td do odu ) uítí jdnotkovou ílu dodí do znáéo vzor (viz viční 02 rovni 1.1). Pro tnto způo řšní potřuj znát průě ontů od ilovéo ztížní (črvný il z Or. 1) průě ontů od jdnotkovéo ztížní v odě. Ztěžoví tv F Rovnovážná outv rkí (z podronéo výpočtu) ilové ztížní j zorzn n Or. 2. Or. 2: Rovnovážná outv il [kn, kn] ztěžoví tv F. Průě ontů vpdl tkto: 1

2 Miloš Hüttnr SMR2 nilové účink viční 04 Or. : Průě ontů n kontruki [kn] ztěžoví tv F. Virtuální ztěžoví tv Jlikož počítt vilý poun odu (dál znčn jko ), uí jko virtuální tv zvolit tkový tv, kd j n kontruki v uítěn vilá jdnotková íl. Zvolný virtuální tv j zorzn n Or. 4 Or. 4: Virtuální tv [-]. Rovnovážná outv virtuální rkí (z podronéo výpočtu) virtuální jdnotkové íl j zorzn n Or. 5Or. 2. Or. 5: Virtuální tv rovnovážná outv il [-]. 2

3 Miloš Hüttnr SMR2 nilové účink viční 04 Průě virtuální ontů vpdl tkto: Or. 6: Průě ontů n kontruki [] virtuální ztěžoví tv. Výpočt průu Pro výpočt prů j potř př lou délku kontruk počítt intgrál: δ dx (1.1) J vodné počítt tnto intgrál potupně jko oučt po jdnotlivý úí, td pltí: M x) dx ( x)dx + ( x)dx + ( δ ( x) dx (1.2) N lé dél úku j virtuální ont n toto úku pltit: Intgrál n úku vpočt jko: rovn nul, proto i pro intgrál oučinu uí δ dx 0 (1.) 1 δ dx ( 7.5) 1.5 ( 1) kN Intgrál n úku j potř rozdělit n dvě čáti (n dv podúk): M x) dx ( x)dx + ( δ ( x) dx (1.4) N úku i nví lioěžníkový ontový orz od ztěžovío tvu F rozdělí n trojúlník odélník ( ná ní lép provl při intgri):

4 Miloš Hüttnr SMR2 nilové účink viční 04 Intgrál n úku tk počítá: ( 1.25) ( ) 2 δ dx 2 ( 21.25) ( 1.25) 49.75kN Intgrál n úku počítá: ( 1.25) 2 δ dx 2 ( 0.5) 0.625kN Dozní dílčí výldků do rovni (1.2) tk dotává: δ dx Vpočt ont trvčnoti průřzu k vodorovné o: kN Oová tuot I EI td rovná: EI A končně prů n koni konzol rovná: ( x)dx EI kN & NESILOVÉ ÚČINKY NA STATICKY URIČTÝCH KONSTRUKCÍCH Mzi nilové účink n tvní kontruk ptří ztížní tplotou (olzní, otplní kontruk) pokl (přípdně pootoční) podpor. Sozřjě xituj i řd dlší piiký nilový způoů ztížní tvní kontrukí nilovýi účink (npř. iké půoní), t l nudou proírán v rái SMR2. V toto txtu ud provt náldujíí poj znčki: 0 d T výroní tplot (tková tplot, při ktré l kontruk vron), [ K no C ] T tplot dolnío (podnío dl podní vlákn) povru noníku, [ K no C ] T tplot ornío povru noníku, [ K no C ] T tplot třdni, pro odélník dán jko T T + T ) / 2 ( d T otplní (olzní) třdni - rovnoěrná ložk zěn tplot: T T T0 Td tplotní rozdíl povrů - nrovnoěrná ložk zěn tplot Td Td T -1 α oučinitl tplotní roztžnoti (triálová kontnt) - [ K ] 4

5 Miloš Hüttnr SMR2 nilové účink viční 04 Zdání Příkld č. 2 Uvžujt kontruki z příkldu č. 1 (všk z ilovéo ztížní) vpočítjt prů v odě pouz od ztížní tplotou. Tplot j n kontruki rozděln dl Or. 7, oučinitl tplotní roztžnoti uvžujt α K -1 (tpiká odnot pro ton ol). Výšk průřzu 0.4. Způo řšní Or. 7: Zdání příkldu č. 2 rozložní tplot po kontruki. Pro výpočt ud opět použit prinip virtuální il tj. do ít zjišťovnéo průu uítí jdnotkovou ílu, tntokrát ud dozovt do vzor, ktrý zrnuj i vliv tplot, vzor v plné znění pro noník ztížný ili i tplotou vpdl náldovně: Kd: M Td Q N 1 + α + δq + + α T δn dx (2.1) EI GA EA M j průě ontů od půoíío ztížní E j odul pružnoti (triálová rktritik) I ont trvčnoti k vodorovné o průřzu (průřzová rktritik) výšk průřzu δ M průě virtuální ontů Q průě poouvjíí il od půoíí ztížní δ Q průě virtuální poouvjíí il G j kový odul pružnoti (triálová rktritik) A plo průřzu (průřzová rktritik) N průě norálový il od půoíío ztížní δ N průě virtuální norálový il Avšk protož uvžuj, ž vliv poouvjíí norálový il n prů u ráový kontrukí zndává, protož n kontruki v nš příkldu npůoí žádné ilové ztížní, tk vzor (2.1) pro náš příkld rdukuj n tvr: 5

6 Miloš Hüttnr SMR2 nilové účink viční 04 Td 1 α + α TδN dx (2.2) Pro výpočt viléo průu v odě j tk potř uvžovt virtuální tv jdnotkovou vilou ílou v odě, určit průě virtuální ontů virtuální norálový il, určit ztížní tplotou vpočítt intgrál z rovni (2.2). Ztížní tplotou N kždé z tří úků kontruk (, ) j potř určit oě ložk zěn tplot. T jou z podronéo výpočtu zorzn n Or. 8. Virtuální ztěžoví tv Or. 8: Ztížní tplotou n kontruki příkld č. 2. Jlikož počítt vilý poun odu (dál znčn jko ), uí jko virtuální tv zvolit tkový tv, kd j n kontruki v uítěn vilá jdnotková íl. Zvolný virtuální tv j tjný jko v přdozí příkldu j zorzn n Or. 4. Virtuální rk průě virtuální ontů jou zorzn n Or. 5, rpktiv Or. 6. Průě virtuální norálový il vpdá náldovně: Or. 9: Průě norálový il n kontruki [-] virtuální ztěžoví tv. Výpočt průu Pro výpočt průu úí, td: C použij vzt (2.2), přičž intgrovt ud opět po jdnotlivý Td Td Td α + α TδN dx + α + α TδN dx + α + α TδN dx (2.) 6

7 Miloš Hüttnr SMR2 nilové účink viční 04 Pro úk pltí, ž δ M 0, tudíž i intgrál z ni uí rovnt nul, tk: α T δndx α T δndx [( 1.75) ] plo z Pro úk pltí, ž δ N 0, tudíž i intgrál z ni uí rovnt nul, tk: T α d T dx α d dx plo z 1 2 ( 1.5) Pro úk pltí, ž δ N 0, tudíž i intgrál z ni uí rovnt nul, tk: T α d T dx α d dx ( 1.5) plo z Dozní dílčí výldků do rovni (2.) zíká lkový prů C : ( 2.25) & 4 Zdání Příkld č. Uvžujt kontruki z příkldu č. 1 (všk z ilovéo ztížní) vpočítjt prů v odě od poklu podpor. Zdání, viz Or. 7. Způo řšní Or. 10: Zdání příkldu č. přdpný pokl podpor. Pro výpočt ud opět použit prinip virtuální il tj. do ít zjišťovnéo průu uítí jdnotkovou ílu. Po kontruki nztížnou ili ni tplotou ud ít vzor (2.1) náldujíí podou: 7

8 Miloš Hüttnr SMR2 nilové účink viční 04 ( P ) 0 δ (.1) Vzor (.1) říká, ž oučt vš vnější virtuální il (td virtuální jdnotkové íl od ní vznikjíí virtuální rkí) náoný kutčnýi poun (td zjišťovný poun poun v podporá) uí rovnt nul. Pro řšní jou tk určujíí virtuální rk zdný poun podpor. Virtuální ztěžoví tv Jlikož počítt vilý poun odu (dál znčn jko ), uí jko virtuální tv zvolit tkový tv, kd j n kontruki v uítěn vilá jdnotková íl. Zvolný virtuální tv j tjný jko v přdozí příkld j zorzn n Or. 4. Pro výpočt pounu od přdpnéo pounu podpor jou určujíí virtuální rk t jou pro tnto příkld zorzn n Or. 5. Výpočt průu Pro výpočt průu C použij vzt (.1). Muí pltit: Kd: 1 + δ R + δr 0 (.2) A B δ RA j virtuální vilá rk v odě δ RB j virtuální vilá rk v odě vilý poun podpor, v nš příkldu 0.02 vilý poun podpor, v nš příkldu 0 (podpor npon) Dodí do (.2) A td: 1 + ( 1.75) ínu, protož přdpný poun á opčný ěr nž virtuální rk Příkld k provičování Příkld 4: Uvžujt kontruki ztížní z Or. 11 vpočtět vilý prů uprotřd rozpětí (v odě ). Řšní: & Příkld 5: Uvžujt kontruki z příkldu 4 (l z ilovéo ztížní) ztížnéo tplotou dl Or. 12 vpočítjt vilý prů v odě. Součinitl tplotní roztžnoti uvžujt α K -1. Řšní:

9 Miloš Hüttnr SMR2 nilové účink viční 04 Příkld 6: Uvžujt kontruki z příkldu 4 (l z ilovéo ztížní) ztížnéo pokl lvé podpor, viz Or. 1. Vpočtět vilý prů v odě. Řšní: 1.5 Or. 11: Sé zdání příkldu č. 4. Or. 12: Sé zdání příkldu č. 5. Or. 1: Sé zdání příkldu č. 6. Tnto txt louží výrdně jko doplněk k přdnášká viční z přdětu Stvní nik R2 pro tudnt tvní kult ČVUT. I př vškrou nu utor oou v txtu ojvovt, npřnoti přklp udu rád, kdž ě n ně upozornít. Miloš Hüttnr (ilo.uttnr@v.vut.z), poldní ktuliz

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Miloš Hüne SMR neilové účink vičení 05 Zání VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Příkl č. Uvžje konki z O., vpočíeje vooovný pon v oě (znčený eploní ozžnoi vžje α 0 6 K -.

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak,

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak, .6. Mocniny celý ocnitele I Předpokldy: 6, 6 Př. : Kteé ze dvou pvidel je teticky hezčí? ) Po kždé R, N pltí: +. ) Po kždé R,, N, > pltí:. Zákldní poždvek n káu tetického pvidl: Muí ýt co nejoecnější inie

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník

Téma 6 Staticky neurčitý rovinný oblouk. kloubový příhradový nosník Stvení mechnik,.ročník klářského studi AST Tém 6 Stticky neurčitý rovinný olouk Stticky neurčitý rovinný klouový příhrdový nosník Zákldní vlstnosti stticky neurčitého rovinného olouku Dvoklouový olouk,

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém

Více

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

č Ě É š č éř č č č ř ř šť é ť é é ř ť č é ď č ň é úč ř ř č é š č é é ř ú ř úč é š š é é ř ť Ť Ť ř ó ř č š ó š é ř Č Č ř č úč č é č é ó Č ř š é Ě Ú é é é é é č š ú ř ú ř č ř ř č úč ř ó č č é é č ř é ř č

Více

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr) Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé

Více

Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Stvební mechnik,.ročník bklářského studi AST Tém 5 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

Zadání příkladu. Omezení trhlin. Dáno. Moment od kvazistálé kombinace. Průřezové charakteristiky průřezu bez trhlin

Zadání příkladu. Omezení trhlin. Dáno. Moment od kvazistálé kombinace. Průřezové charakteristiky průřezu bez trhlin Příkla P9 Výpočt šířky trlin - tropní trám T Zaání příklau Pouďt zaaný tropní trám T z příloy C na mzní tav šířky trlin l EN 99-- Zatížní vnitřní íly krytí poouzní na oy uvažujt z příklaů P P a P6 Použijt

Více

VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH

VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH Mioš Hüttner SMR přetvoření přímýh nosníků vičení VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH Zaání Příka č. 1 Vpočítejte maimání průh nosníku o rozpětí zatíženého uprostře siou, viz Or.

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném

Více

Překlad z vyztuženého zdiva (v 1.0)

Překlad z vyztuženého zdiva (v 1.0) Překla z vyztuženého ziva (v 1.0) Výpočetní pomůcka pro poouzení zěného vyztuženého překlau Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka prutového či těnového

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ

ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ Podniková norm energetiky pro rozvod elektrické energie Konečný návrh ČEPS,.., ČEZ Ditribuce, E.ON CZ, E.ON Ditribuce, PREditribuce, ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST : PŘÍKLADY VÝPOČTŮ PNE 041 Třetí

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný. 5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE ohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. m [00] +x volný hmotný od v rovině: n v =2 (posun

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

Výpočet vnitřních sil I

Výpočet vnitřních sil I Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil I přímý nosník, ztížení odové nitřní síly - zákldní pojmy ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení,

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1.

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1. eg. č. pojektu CZ..07/..0/0.0007 Eponenciální ovnice teoie - ovnice, ve kteých e neznámá vykytuje v eponentu Řešíme je v záviloti n typu ovnice několik zákldními metodmi. A. metod převedení n tejný zákld

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Rovinné nosníkové soustavy II h=3

Rovinné nosníkové soustavy II h=3 Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové

Více

Á řš ž ž ó ó ě É É É č č ž ó ě ů ě č ž š ž ž ú ň ú ě š č ř Ó ř č ž Ů Č ř č ě ó č ó č ě Ú ě ě č ž č ó ŮŽ ž č ó ŮŽ ů č Í č ě ů č ů č š ň č ř č č ř č č š Á ř ž č ř č č ř č ě č ě č č č č č č č č č Á š š ů

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Orientační odhad zatížitelnosti mostů pozemních komunikací v návaznosti na ČSN a TP200

Orientační odhad zatížitelnosti mostů pozemních komunikací v návaznosti na ČSN a TP200 Orientční odhd ztížitelnoti motů pozemních komunikcí v návznoti n ČSN 73 6222 TP200 Úvod Ztížitelnot motů PK e muí tnovit jedním z náledujících potupů podle ČSN 73 6222, kpitol 6 : - podrobný ttický výpočet

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

Vyztužená stěna na poddajném stropu (v 1.0)

Vyztužená stěna na poddajném stropu (v 1.0) Vyztužená těna na poajném tropu (v.0) Výpočetní pomůcka pro poouzení zěné, vyztužené těny na poajném tropu Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka rešení:

Více

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN

Řešte daný nosník: a = 2m, b = 2m, c = 1m, F 1 = 10kN, F 2 = 20kN Řešte dný nosník: m, m, m, F kn, F kn yhom nl kompletně slové účnky půsoíí n nosník, nejprve vyšetříme reke v uloženíh. ek určíme npříkld momentové podmínky rovnováhy k odu. F F F ( ) ( ) F( ) 8 ( ) 5

Více

LINEÁRNÍ TRANSFORMACE V ROVINĚ

LINEÁRNÍ TRANSFORMACE V ROVINĚ LINEÁRNÍ TRANSFORMACE V ROVINĚ Kil Mleček Dgr Szrková FSv ČVUT Prh Thákurov 7 66 9 Prh 6 ČR e-il: kil@tfsvvutz SjF STU Brtislv Ná Slood 7 8 3 Brtislv SR e-il: szrkov@sjfstusk Astrkt V řísěvku je osý geoetriký

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Obecná a zjednodušená deformační metoda

Obecná a zjednodušená deformační metoda SMA Přednášk 06 Oená zjednodušená deformční metod Pruty typu VV, KV, VK Sttiká kondenze Konové síly n prutu od ztížení Konové síly n prutu od teploty Příkldy Copyright ) 01 Vít Šmiluer Czeh Tehnil University

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Výfučtení: Geometrické útvary a zobrazení

Výfučtení: Geometrické útvary a zobrazení Výfučtení: Geometrické útvry zorzení V geometrii očs nrzíme n to, že některé geometrické orzce vykzují jistou symetrii. Popřípdě můžeme slyšet, že nějké dv útvry jsou si podoné. V tomto Výfučtení udeme

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Téma 9 Přetvoření nosníků namáhaných ohybem II.

Téma 9 Přetvoření nosníků namáhaných ohybem II. Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

Kuželosečky jako algebraické křivky 2. stupně

Kuželosečky jako algebraické křivky 2. stupně Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

ROVNOBĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOBĚŽNÉ PROMÍTÁNÍ

ROVNOBĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOBĚŽNÉ PROMÍTÁNÍ Technická univerzit v Liberci Fkult přírodovědně-humnitní pedgogická Ktedr mtemtiky didktiky mtemtiky ROVNOĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOĚŽNÉ PROMÍTÁNÍ Pomocný učební text Petr Pirklová Liberec, září 2013

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

É Ů č Ě ě č ý ř ů ě ěř ř ě ř é č ě č ě ě č ěř ěř ř ž ř ž č é ě č é ů ř ý č čů ž žů ř é ý č č ě ř ř ě č ý čů ř ě ě ů ě ý čů ě é é ě ě é ř ř ž ý č ý ř ř ě č ř ě é é é ě é ř ř ň ž ůč č č ý ý ě ř č č ě č č

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stní mnik 1 (K132SM01) Přnáší: o. ng. Mtěj Lpš, P.D. Ktr mniky K132 místnost D2034 konzult Čt 9:30-11:00 -mil: mtj.lps@fs.ut.z ttp://m.fs.ut.z/~lps/ting/inx.tml Řáný trmín zápočtoé písmky j ÚTERÝ 25. un

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme: rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám:

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

Pravoúhlý trojúhelník goniometrické funkce. Výpočet stran pravoúhlého trojúhelníka pomocí goniometrických funkcí

Pravoúhlý trojúhelník goniometrické funkce. Výpočet stran pravoúhlého trojúhelníka pomocí goniometrických funkcí Prvoúhlý trojúhelník goniometrické funkce V prvoúhlém trojúhelníku ABC jsou definovány funkce úhlu : sin, cos, tg, cotg tkto: sin c cos c tg cot g protilehlá odvěsn ku přeponě přilehlá odvěsn ku přeponě

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

Betonové a zděné konstrukce Přednáška 4 Spojité desky Mezní stavy použitelnosti

Betonové a zděné konstrukce Přednáška 4 Spojité desky Mezní stavy použitelnosti Betonové a zděné kontrukce Přednáška 4 Spojité deky Mezní tavy použitelnoti Ing Pavlína Matečková, PhD 2016 Spojitá deka: deka o více polích, zpravidla jako oučát rámové kontrukce Řeší e MKP Zjednodušené

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

Výpočet vnitřních sil lomeného nosníku

Výpočet vnitřních sil lomeného nosníku Stvní sttik, 1.ročník klářského stui ýpočt vnitřníh sil lomného nosníku omný nosník v rovinné úloz Kontrol rovnováhy uvolněného styčníku nitřní síly n uvolněném prutu rostorově lomný nosník Ktr stvní mhniky

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Korelační analýza. sdružené regresní přímky:

Korelační analýza. sdružené regresní přímky: Koelčí lýz - ooutá závlot dvou tttckých zků; - hodot jou zíká pozoováím, ez možot ovlvěí; - eí možo ozlšt závle ezávle poměou; - hlvím átojem je ze metod ejmeších čtveců; - kždou z oou možých závlotí vthuje

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Č ř ž č č č ř ž ř č ů ř Č Č č č úč š š Č Č ř ř ž ř š č úč č š ř ů ř Š ř Š ó ř ř ž č š ř ž úč č ř ř š ř ř ř č ř ó ť Ť Í Íř č č č ř č č ň ů ď ř Ý ť ž ž ůž ž ř č ř ř ť ř ď Í č č ó ů ů č ř š č ů š ž ú ř ř

Více