Radiometrie. Úvod do radiometrie. Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 1 / 30

Rozměr: px
Začít zobrazení ze stránky:

Download "Radiometrie. Úvod do radiometrie. Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 1 / 30"

Transkript

1 Detekce světla Úvod do radiometrie Ondřej Haderka Antonín Černoch Společná laboratoř optiky Regionální centrum pokročilých technologií a materiálů Rozvoj profesních kompetencí učitelů fyziky základních a středních škol v Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 1 / 30

2 Obsah 1 Radiometrické (fotometrické) veličiny Pojmy Veličiny 2 Zákony vyzařování Historický vývoj Planckův zákon 3 Mezi zdrojem a detektorem 4 Parametry detektorů Fyzikální vlastnosti detektorů Výběr vhodného detektoru 5 Příklady Detekce světla SLO/RCPTM 2 / 30

3 Pouˇzitá literatura [1] E. Mechlová, K. Košťál a kol.: Výkladový slovník fyziky pro základní vysokoškolský kurz. Praha, Prometheus (1999) [2] George Rieke: Detection of Light From Ultraviolet to the Submillimeter, 2nd edition. Cambrgidge, Cambridge University Press (2003) Detekce světla SLO/RCPTM 3 / 30

4 Radiometrické (fotometrické) veličiny Obsah 1 Radiometrické (fotometrické) veličiny Pojmy Veličiny 2 Zákony vyzařování Historický vývoj Planckův zákon 3 Mezi zdrojem a detektorem 4 Parametry detektorů Fyzikální vlastnosti detektorů Výběr vhodného detektoru 5 Příklady Detekce světla SLO/RCPTM 4 / 30

5 Radiometrické (fotometrické) veličiny Pojmy Energetické charakteristiky elektromagnetického záření Radiometrie absolutní, v jednotkách SI Fotometrie relativní vzhledem k citlivosti lidského oka popř. jiného receptoru, ve vedlejších jednotkách Zdroj záření Radiant source Světelný zdroj Light source objekt, který na základě různých fyzikálních principů emituje elektromagnetické záření Bodový zdroj plošnou velikost lze zanedbat vzhledem k vzdálenostem Plošný zdroj plošnou velikost nelze zanedbat Detekce světla SLO/RCPTM 5 / 30

6 Radiometrické (fotometrické) veličiny Veličiny Veličiny I Spektrální závislost veličin na frekvenci ν resp. vlnové délce λ přeintegrování přes celé spektrum spektrálně nezávislé veličiny Zářivá energie Q [J=m 2 kg/s 2 ] energie vyslaná, přenesená nebo přijatá Světelné množství Q v [lm s] Radiant energy Quantity of light Example (Energie jednoho fotonu) Q = hν = hc λ, h = Js; c = m/s Q 555 nm = J = 2.2 ev Detekce světla SLO/RCPTM 6 / 30

7 Radiometrické (fotometrické) veličiny Veličiny Veličiny II Hustota zářivé energie w [J/m 3 ] Radiant energy density množství zářivé energie v jednotkovém objemu Zářivý tok Φ = dq dt [W] Radiant power výkon (energie za čas) vyslaný, přenesený nebo přijatý Světelný tok Φ v = dqv dt [lm] Luminous flux 1 W = 683 lm pro λ = 555 nm (maximum zrakového vjemu) Detekce světla SLO/RCPTM 7 / 30

8 Radiometrické (fotometrické) veličiny Veličiny Veličiny III Intenzita vyzařování M = dφ ds [W/m2 ] Radiant excitance zářivý tok emitovaný z jednotkové plochy zdroje Světlení M v = dφv ds [lm/m2 ] Luminous excitance Zářivost I = dφ dω [W/ster] Radiant intensity zářivý tok emitovaný do jednotkového prostorového úhlu Svítivost I v = dφv dω [cd = lm/ster] Luminous intensity Detekce světla SLO/RCPTM 8 / 30

9 Radiometrické (fotometrické) veličiny Veličiny Veličiny IV I Zář L = ds cos θ [W/ster m2 ] Radiance zářivost jednotkového povrchu viděného pod úhlem θ Jas L v = Iv ds cos θ [nit = cd/m2 ] Luminance ds ds cos pozorovatel Example (zdroje jasu v nitech) Slunce v zenitu plamen svíčky modrá obloha rubínový laser zamračená obloha 40 atomová bomba Měsíc hvězda Sirius noční obloha Detekce světla SLO/RCPTM 9 / 30

10 Radiometrické (fotometrické) veličiny Veličiny Veličiny V Intenzita ozáření E = dφ ds, [W/m2 ] Irradiance množství zářivého toku dopadajícího na jednotkovou plochu Osvětlení E v = dφv ds, [lx = lm/m2 ] Illuminance Example (zdroje osvětlení v luxech) Slunce v zenitu Měsíc v úplňku 0.2 poledne ve stínu bezměsíčná noc zamračená obloha 100 až tmavá noc Expozice H = t 0 E(t)dt, [J/m2 ] Radiance exposure ozáření jednotkové plochy za daný časový interval Osvit H v = t 0 E v(t)dt, [lx s] Light exposure Detekce světla SLO/RCPTM 10 / 30

11 Zákony vyzařování Obsah 1 Radiometrické (fotometrické) veličiny Pojmy Veličiny 2 Zákony vyzařování Historický vývoj Planckův zákon 3 Mezi zdrojem a detektorem 4 Parametry detektorů Fyzikální vlastnosti detektorů Výběr vhodného detektoru 5 Příklady Detekce světla SLO/RCPTM 11 / 30

12 Zákony vyzařování Historický vývoj Pojmy Lambertovský (kosinový) zářič zářivost je konstantní pro všechny úhly pohledu, M = π L, Absolutně černé těleso Φ = 4πR 2 M = 4π 2 R 2 L absorbuje veškeré dopadající elektromagnetické záření, vyzařuje na různých vlnových délkách podle teploty šedé těleso, selektivní zářič Kirchhofův zákon na jisté vlnové délce je absorbce i emise tělesa stejná Detekce světla SLO/RCPTM 12 / 30

13 Zákony vyzařování Historický vývoj Historický vývoj Stefanův-Boltzmanův zákon vyzařování M = σt , σ = W/(m 2 K 4 ), odvozen empiricky, později teoreticky podložen zákony termodynamiky, bezkontaktní určení efektivní teploty tělesa Wienův posunovací zákon λ max [µm] = 2898/T 1893, vlnová délka maxima vyzařovací křivky, pyrometry k určení tzv. barevné teploty světla Rayleighův-Jeansův zákon M λ = 2π3 ckt λ , Boltzmannova konst. k = J/K, ultrafialová katastrofa Detekce světla SLO/RCPTM 13 / 30

14 Zákony vyzařování Planckův zákon Spektrální intenzita vyzařování černého tělesa Planckův zákon 1900, kvanta elektromagnetického pole hν 2πhc 2 M λ = ( ) λ 5 e hc λkt 1 2πhν 3 M ν = ( ) c 2 e hν kt 1 M( ) [TW/m 2 ] max T 4 Rayleigh-Jeans Planck T = K Vlnová délka [ m] Detekce světla SLO/RCPTM 14 / 30

15 Mezi zdrojem a detektorem Obsah 1 Radiometrické (fotometrické) veličiny Pojmy Veličiny 2 Zákony vyzařování Historický vývoj Planckův zákon 3 Mezi zdrojem a detektorem 4 Parametry detektorů Fyzikální vlastnosti detektorů Výběr vhodného detektoru 5 Příklady Detekce světla SLO/RCPTM 15 / 30

16 Mezi zdrojem a detektorem Geometrie S plocha zdroje poloúhel zorného pole optické soustavy S z detektor prostorový úhel S a plocha zdroje v zorném poli d plocha optické soustavy Detekce světla SLO/RCPTM 16 / 30

17 Mezi zdrojem a detektorem Spektrální propustnost Propustnost T P prostředí T O optické soustavy T F filtrů Optický výkon na detektoru: P(λ) = S zs a T P (λ)t O (λ)t F (λ)l λ (λ) d 2 úzká oblast spektra λ okolo λ 0 P S zs a T P (λ 0 )T O (λ 0 )T F (λ 0 )L λ (λ 0 ) λ d 2 Propustnost [%] Vlnova delka [nm] Detekce světla SLO/RCPTM 17 / 30

18 Parametry detektorů Obsah 1 Radiometrické (fotometrické) veličiny Pojmy Veličiny 2 Zákony vyzařování Historický vývoj Planckův zákon 3 Mezi zdrojem a detektorem 4 Parametry detektorů Fyzikální vlastnosti detektorů Výběr vhodného detektoru 5 Příklady Detekce světla SLO/RCPTM 18 / 30

19 Parametry detektorů Fyzikální vlastnosti detektorů Kvantová účinnost η Quantum efficiency Pravděpodobnost, že jeden foton dá vzniknout nosiči náboje, který přispěje k proudu v detektoru. η = (1 R)ξ(1 e αd ), 0 η 1 Fotocitlivá oblast Fotonový tok (1-R) Odražený Dopadající p 1/ Prošlý 0 d x Detekce světla SLO/RCPTM 19 / 30

20 Parametry detektorů Fyzikální vlastnosti detektorů η = (1 R)ξ(1 e αd ), 0 η 1 R odraz na vstupním rozhraní, antireflexní vrstvy, čisté materiály, dobrý povrch malá rekombinace pro kolmý dopad světla ze vzduchu R = (n 1)2 + (α(λ)λ/4π) 2 (n + 1) 2 + (α(λ)λ/4π) 2 ξ podíl nosičů, které přispívají k proudu detektorem d tloušťka materiálu, rezonátor Spektrální závislost η(λ) dlouhovlnný limit λ c = hc/e g Example (Si) λ = 830 nm, d = 20 µm, n = 3.5, α(830 nm) = 1000 /cm. η ( )ξ( ) 0.6ξ Detekce světla SLO/RCPTM 20 / 30

21 Parametry detektorů Fyzikální vlastnosti detektorů Citlivost S Responsivity Poměr elektrického proudu v obvodu detektoru i p ku intenzitě dopadajícího světla P. i p = ηeφ = ηep hν = SP S = ηe hν = ηλ 0[µm] 1.24 [A/W] Doba odezvy Response time Minimální časový interval, po kterém detektor zaznamená změnu v dopadající intenzitě. Rozšíření doby průchodu TTS Transition time spread Driftová rychlost RC konstanta Detekce světla SLO/RCPTM 21 / 30

22 Parametry detektorů Výběr vhodného detektoru Výběr vhodného detektoru SNR Poměr signálu k šumu (Signal to noise ratio), oscilace výstupního signálu (ideálně jen statistické fluktuace vstupních fotonů) Linearita (Linearity), odchylka od lineární závislosti mezi vstupem a výstupem Dynamický rozsah (Dynamical range), též spektrální šířka pásma, poměr mezi minimální a maximální intenzitou signálu, kterou lze změřit beze ztráty informace Spektrální odezva (Spectral response), závislost na vlnové délce dopadajícího záření Šířka pásma (Spectral range) rozsah vlnových délek, pro které má detektor nenulovou citlivost, maximum citlivosti pro λ p Detekce světla SLO/RCPTM 22 / 30

23 Parametry detektorů Výběr vhodného detektoru Parametry od výrobce R sh velikost odporového bočníku R LOAD velikost zátěžového odporu C J kapacitance p-n popř. p-i-n přechodu V BIAS předpětí a jeho maximální hodnota t R doba náběžné popř. úběžné hrany elektrického pulzu, t R 0.35/f BW, šířka pásma 1/f BW = 2πR LOAD C J I D šumový proud NEP Noise equivalent power, NEP norm = I D SG [W/ Hz] aktivní oblast (plocha), práh zničení V OUT = PS(λ)R LOAD Detekce světla SLO/RCPTM 23 / 30

24 Příklady Obsah 1 Radiometrické (fotometrické) veličiny Pojmy Veličiny 2 Zákony vyzařování Historický vývoj Planckův zákon 3 Mezi zdrojem a detektorem 4 Parametry detektorů Fyzikální vlastnosti detektorů Výběr vhodného detektoru 5 Příklady Detekce světla SLO/RCPTM 24 / 30

25 Příklady Example Vypočtěte optický výkon P d dopadající na kruhovou plochu r = 2 mm (zornice oka) vzdálenou d = 1 m od světelného zdroje o zářivém toku Φ = 2 W (100 W žárovka). Předpoklad: Zdroj je Lambertovský zářič, tedy Φ = 4πI. Řešení I = Φ 4π, S = πr2, Ω = S d 2 P d = ΩI = Φr2 4d 2 Výsledek: P d = W = 2 µw. Detekce světla SLO/RCPTM 25 / 30

26 Příklady Example Kulové černé těleso poloměru R = 1 m a teploty T = 1000 K je sledováno detektorem ze vzdálenosti d = 1000 m. Detekční systém vstupní apertura o poloměru 5 cm poloúhel zorného pole ζ = 0.1 účinnost optického systému T O = 50% λ 0 = 1µm s šířkou pásma 1% ( λ = 10 8 m) Vypočtěte 1 zář L λ a L ν v rovině detektoru 2 energii dopadající na detektor 3 počet fotonů dopadajících na detektor za sekundu 4 Co se změní, jestliže bude černé těleso mít poloměr 10 m místo 1 m? Detekce světla SLO/RCPTM 26 / 30

27 Příklady 1. Zář L λ a L ν v rovině detektoru L λ (λ) = 2hc ( 2 ), L ν (ν) = λ 5 e hc λkt 1 2hν ( 3 c 2 e hν kt 1 ) λ = 10 6 m, ν = c/λ = Hz c = m/s h = Js k = J/K L λ = W m 3 ster, L ν = W m 2 ster Hz Detekce světla SLO/RCPTM 27 / 30

28 Příklady 2. Energie dopadající na detektor P = S z ΩT O L λ λ = S z ΩT O L ν ν T O = 0.5 λ = 10 8 m ν = Hz S < S z S S S z S a = πr 2 = m 2 Ω = S a /d 2 = ster S = πr 2 = 3.14 m 2 S z = πd 2 tan 2 ζ = 9.57 m 2 plocha zdroje prostorový úhel poloúhel zorného pole optické soustavy S a detektor P = W plocha zdroje v zorném poli d plocha optické soustavy Detekce světla SLO/RCPTM 28 / 30

29 Příklady 3. Počet fotonů dopadajících na detektor za sekundu Q fotonu = hc λ = hν Q 1µm = J fotonů/s 4. Černé těleso poloměru 10 m S = 314 m 2, S z = 9.57 m 2, S z < S S z L se nezmění P = W fotonů/s Detekce světla SLO/RCPTM 29 / 30

30 Poděkování Poděkování Rozvoj profesních kompetencí učitelů fyziky základních a středních škol v Olomouckém kraji CZ.1.07/1.3.13/ Detekce světla SLO/RCPTM 30 / 30

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice

Více

Její uplatnění lze nalézt v těchto oblastech zkoumání:

Její uplatnění lze nalézt v těchto oblastech zkoumání: RADIOMETRIE, FOTOMETRIE http://cs.wikipedia.org/wiki/kandela http://www.gymhol.cz/projekt/fyzika/12_energie/12_energie.htm M. Vrbová, H. Jelínková, P. Gavrilov. Úvod do laserové techniky, skripta ČVUT,

Více

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla.

Radiometrie se zabývá objektivním a fotometrie subjektivním měřením světla. 12. Radiometrie a fotometrie 12.1. Základní optické schéma 12.2. Zdroj světla 12.3. Objekt a prostředí 12.4. Detektory světla 12.5. Radiometrie 12.6. Fotometrie 12.7. Oko 12.8. Měření barev 12. Radiometrie

Více

Stojaté a částečně stojaté vlny

Stojaté a částečně stojaté vlny Stojaté a částečně stojaté vlny Interference 2 postupných vln Dokonalá stojatá vlna: interference 2 vln stejné amplitudy a antiparalelních vlnových vektorů Problém s radiometrickou definicí intensity pomocí

Více

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. 2 Fotorealistická syntéza obrazu

Více

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů.

světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří zdroj do všech směrů. Světeln telné veličiny iny a jejich jednotky Světeln telné veličiny iny a jejich jednotky, světeln telné vlastnosti látekl světelný tok -Φ [ lm ] (lumen) Světelný tok udává, kolik světla celkem vyzáří

Více

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK

Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Fotorealistická syntéza obrazu

Více

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin

EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin FSI UT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 11. Měření světelných veličin OSNOA 11. KAPITOLY Úvod do měření světelných

Více

Elektrické světlo příklady

Elektrické světlo příklady Elektrické světlo příklady ZÁKLADNÍ POJMY SVĚTELNÉ TECHNIKY. Rovinný úhel (rad) = arc = a/r = a'/l (pro malé, zorné, úhly) a a' a arc / π = /36 (malým se rozumí r/a >3 až 5) r l. Prostorový úhel Ω = S/r

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Bezkontaktní termografie

Bezkontaktní termografie Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření

Více

Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a

Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a vztahy sloužící pro jeho popis (např. svítivost, zářivost,

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem

Geometrická optika. Vnímání a měření barev. světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem Vnímání a měření barev světlo určitého spektrálního složení vyvolá po dopadu na sítnici oka v mozku subjektivní barevný vjem fyzikální charakteristika subjektivní vjem světelný tok subjektivní jas vlnová

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

fotometrická měření jedna z nejstarších měření vůbec!

fotometrická měření jedna z nejstarších měření vůbec! Fotometrie fotometrie = fotos (světlo) + metron (míra, měřit) - část fyziky zabývající se měřením světla; zkoumáním hustoty světelného toku radiometrie obecnější, zkoumání hustoty toku záření fotometrická

Více

DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava

DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava DZDDPZ1 - Fyzikální základy DPZ (opakování) Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava Elektromagnetické záření Nositelem informace v DPZ je EMZ elmag vlna zvláštní případ elmag pole,

Více

Teplota je nepřímo měřená veličina!!!

Teplota je nepřímo měřená veličina!!! TERMOVIZE V PRAXI Roman Vavřička ČVUT v Praze, Fakulta strojní Ústav techniky prostředí 1/48 Teplota je nepřímo měřená veličina!!! Základní rozdělení senzorů teploty: a) dotykové b) bezdotykové 2/48 1

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

PROCESY V TECHNICE BUDOV 12

PROCESY V TECHNICE BUDOV 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Záření absolutně černého tělesa

Záření absolutně černého tělesa Záření absolutně černého tělesa Teplotní záření Všechny látky libovolného skupenství vydávají elektromagnetické záření, které je způsobeno termickým pohybem jejich nabitých částic. Toto záření se nazývá

Více

Geometrická optika. Energetické vlastnosti optického záření. zářivý tok (výkon záření) Φ e. spektrální hustota zářivého toku Φ Φ = e

Geometrická optika. Energetické vlastnosti optického záření. zářivý tok (výkon záření) Φ e. spektrální hustota zářivého toku Φ Φ = e Enrgticé vlastnosti opticého zářní popisují zářní z hlisa přnosu nrgi raiomtricé vličiny zářivý to (výon zářní) t W [W] zářivá nrgi W, trá proj za jnotu času nějaou plochou sptrální hustota zářivého tou

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání

Více

B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje. Vlastimil Havran ČVUT v Praze

B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje. Vlastimil Havran ČVUT v Praze B4M39RSO * Úvod do globálního osvětlení * Radiometrie * Světelné zdroje Vlastimil Havran ČVUT v Praze Úvod do globálního osvětlení Počítačová grafika Mezioborová tematika Matematický popis světa Animace

Více

Viditelné elektromagnetické záření

Viditelné elektromagnetické záření Aj to bude masakr 1 Viditelné elektromagnetické záření Vlnová délka 1 až 1 000 000 000 nm Světlo se chová jako vlnění nebo proud fotonů (záleží na okolnostech) 2 Optické záření 1645 Korpuskulární teorie

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

fotometr / radiometr

fotometr / radiometr HD-232- obj. č. 763 fotometr / radiometr Přístroj měří intenzitu osvětlení, svítivost, PAR a ozáření (spektrální rozsahy VIS-NIR, UVA, UVB a UVC nebo měření efektivního účinku ozáření UV dle EN 6335-2-27).

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Fotoelektrické snímače

Fotoelektrické snímače Fotoelektrické snímače Úloha je zaměřena na měření světelných charakteristik fotoelektrických prvků (součástek). Pro měření se využívají fotorezistor, fototranzistor a fotodioda. Zadání 1. Seznamte se

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

Úloha 05 Verze

Úloha 05 Verze FJFI ČVUT v Praze Fyzikální praktikum II Úloha 05 Verze 180220 Měření teploty wolframového vlákna Abstrakt: Úloha je zaměřena na měření teplot pomocí měření celkového záření vysílaného tělesem. Tělesa

Více

mocnině teploty. Pomocí fitu určete konstantu β. 3. Ověřte Stefan-Boltzmanův zákon (5), výsledky vyneste do grafu a určete konstatu ɛ.

mocnině teploty. Pomocí fitu určete konstantu β. 3. Ověřte Stefan-Boltzmanův zákon (5), výsledky vyneste do grafu a určete konstatu ɛ. Úloha 5 02PRA2 Fyzikální praktikum II Měření teploty wolframového vlákna Abstrakt: Úloha je zaměřena na měření teplot pomocí měření celkového záření vysílaného tělesem. Tělesa při zvyšování teploty nejprve

Více

1.3 Polovodiče... 8 1.4 Základní obecné vlastnosti detektoru... 10. 1.4.2 Citlivost R... 12 1.4.3 Doba odezvy... 13

1.3 Polovodiče... 8 1.4 Základní obecné vlastnosti detektoru... 10. 1.4.2 Citlivost R... 12 1.4.3 Doba odezvy... 13 Pokusná šablona a její využití 1 Obsah 1 Úvod 3 1.1 Radiometrie................................ 3 1.2 Zákony vyzařování............................ 5 1.3 Polovodiče................................. 8 1.4

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek

Jméno a příjmení. Ročník. Měřeno dne. 11.3.2013 Příprava Opravy Učitel Hodnocení. Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Spolupracoval Měřeno dne Odevzdáno dne Ladislav Šulák 25.2.2013 11.3.2013 Příprava Opravy

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

FYZIKA Světelné vlnění

FYZIKA Světelné vlnění Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Světelné

Více

Fyzikální praktikum z molekulové fyziky a termodynamiky KEF/FP3. Teplotní záření, Stefan-Boltzmannův zákon

Fyzikální praktikum z molekulové fyziky a termodynamiky KEF/FP3. Teplotní záření, Stefan-Boltzmannův zákon Fyzikální praktikum z molekulové fyziky a termodynamiky KEF/FP3 Teorie Teplotní záření, Stefan-Boltzmannův zákon Lze říci, že látky všech skupenství vyzařují elektromagnetické vlnění, jehož vznik souvisí

Více

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru:

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru: Pracovní úkol 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na převrácené

Více

Spektroskopie Vegy. e hc/k BλT. λ 5 1. L =4πR 2 σt 4, (2)

Spektroskopie Vegy. e hc/k BλT. λ 5 1. L =4πR 2 σt 4, (2) Spektroskopie Vegy Jako malý kluk jsem celkem pravidelně sledoval jeden televizní pořad jmenoval se Vega. Šlo o pásmo několika seriálů a rozhovorů s různými osobnostmi. Jakábylamojeradost,kdyžjsemsedozvěděl,ževtomtopraktikusebudeme

Více

25 ELEKTROMAGNETICKÉ VLNĚNÍ

25 ELEKTROMAGNETICKÉ VLNĚNÍ 300 25 ELEKTROMAGNETICKÉ VLNĚNÍ Teoretický důkaz existence elektromagnetického vlnění Vlastnosti elektromagnetických vln Elektromagnetické záření - radiometrie, světlo - fotometrie Významným druhem vlnění

Více

08 - Optika a Akustika

08 - Optika a Akustika 08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

DPZ - IIa Radiometrické základy

DPZ - IIa Radiometrické základy DPZ - IIa Radiometrické základy Ing. Tomáš Dolanský Definice DPZ DPZ = dálkový průzkum Země Remote Sensing (Angl.) Fernerkundung (Něm.) Teledetection (Fr.) Informace o objektu získává bezkontaktním měřením

Více

UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB

UMĚLÉ OSVĚTLENÍ V BUDOVÁCH. Ing. Bohumír Garlík, CSc. Katedra TZB UMĚLÉ OSVĚTLENÍ V BUDOVÁCH Ing. Bohumír Garlík, CSc. Katedra TZB Praha 2008 1. PŘEDNÁŠKA 2. Měrné jednotky používané ve světelné technice: Měrové jednotky rovinného úhlu Rovinný úhel různoběžky: α je ten,

Více

SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1

SFA1. Denní osvětlení. Přednáška 4. Bošová- SFA1 Přednáška 4/1 SFA1 Denní osvětlení Přednáška 4 Bošová- SFA1 Přednáška 4/1 CÍL: Přístup světla rozptýleného v atmosféře do interiéru (denní světlo je nezávislé na světových stranách) Vytvoření zrakové pohody pro uživatele

Více

24. Elektromagnetické kmitání a vlnění

24. Elektromagnetické kmitání a vlnění 24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich

Více

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C

Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C Základy pyrometrie - pyrometrie = bezkontaktní měření teploty 0.4 µm... 25 µm - 40 0 C... 10 000 0 C výhody: zanedbatelný vliv měřící techniky na objekt možnost měření rotujících nebo pohybujících se těles

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

24. Elektromagnetické kmitání a vlnění

24. Elektromagnetické kmitání a vlnění 24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich

Více

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření

Více

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24 MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní

Více

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření. KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

ELEKTROMAGNETICKÉ ZÁŘENÍ

ELEKTROMAGNETICKÉ ZÁŘENÍ FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA ELEKTROMAGNETICKÉ ZÁŘENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008

Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008 Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině

Více

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ Zadání: 1) Pomocí pyranometru SG420, Light metru LX-1102 a měřiče intenzity záření Mini-KLA změřte intenzitu záření a homogenitu rozložení záření na povrchu

Více

Fyzika pro chemiky II

Fyzika pro chemiky II Fyzika pro chemiky II P. Klang, J. Novák, R. Štoudek, Ústav fyziky kondenzovaných látek, PřF MU Brno 18. února 2004 1 Optika 1. Rovinná elektromagnetická vlna o frekvenci f = 5.45 10 14 Hz polarizovaná

Více

Úvod do laserové techniky

Úvod do laserové techniky Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické

Více

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

Radiometrie, radiační metody

Radiometrie, radiační metody Radiometrie, radiační metody 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Radiometry 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Globální výpočet

Více

Dálkový průzkum Země

Dálkový průzkum Země Dálkový průzkum Země Fyzikální základy RNDr. Ladislav Plánka, CSc. Institut geodézie a důlního měřictví, Hornicko-geologická fakulta, VŠB TU Ostrava Podkladové materiály pro přednáškový cyklus předmětu

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky

Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky Fyzika 2 - rámcové příklady vlnová optika, úvod do kvantové fyziky 1. Vysvětlete pojmy kulová a rovinná vlnoplocha. 2. Pomocí Hyugensova principu vysvětlete konstrukci tvaru vlnoplochy v libovolném budoucím

Více

ZÁVĚREČNÁ ZPRÁVA GRANTOVÉHO ÚKOLU VLIV SVĚTLA A ULTRAFIALOVÉHO ZÁŘENÍ NA ARCHIVNÍ DOKUMENTY

ZÁVĚREČNÁ ZPRÁVA GRANTOVÉHO ÚKOLU VLIV SVĚTLA A ULTRAFIALOVÉHO ZÁŘENÍ NA ARCHIVNÍ DOKUMENTY ZÁVĚREČNÁ ZPRÁVA GRANTOVÉHO ÚKOLU VLIV SVĚTLA A ULTRAFIALOVÉHO ZÁŘENÍ NA ARCHIVNÍ DOKUMENTY Národní archiv, Archivní 4/2257, Praha 4 Chodovec Praha 2009 Vliv světla a UV záření na knižní, archivní, muzejní

Více

1 Bezkontaktní měření teplot a oteplení

1 Bezkontaktní měření teplot a oteplení 1 Bezkontaktní měření teplot a oteplení Cíle úlohy: Cílem úlohy je seznámit se s technologií bezkontaktního měření s vyhodnocováním tepelné diagnostiky provozu elektrických zařízení. Součastně se seznámit

Více

výkonovou hustotu definovat lze (v jednotkách W na Hz). Tepelný šum (thermal noise) Blikavý šum (flicker noise)

výkonovou hustotu definovat lze (v jednotkách W na Hz). Tepelný šum (thermal noise) Blikavý šum (flicker noise) Šumová analýza Josef Dobeš 26. září 2013 Rádiové obvody a zařízení 1 1 Fyzikální příčiny šumu a jeho typy Náhodný pohyb nosičů náboje (elektronů a děr) v elektronických prvcích generuje napětí a proudy

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu.

(1 + v ) (5 bodů) Pozor! Je nutné si uvědomit, že v a f mají opačný směr! Síla působí proti pohybu. Přijímací zkouška na navazující magisterské studium - 017 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Těleso s hmotností

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Jiří Oswald. Fyzikální ústav AV ČR v.v.i. Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Fyzikální podstata DPZ

Fyzikální podstata DPZ Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více