Syntaxí řízený překlad

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Syntaxí řízený překlad"

Transkript

1 Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 27. listopadu 2008

2 Zobecněný překladový automat Překladový automat Překladový automat budeme konstruovat pro zadaný překlad Z L 1 L 2. Účelem je pro každý vstup h i (w) L 1 vytvořit na výstupu h o (w) L 2. Vytváříme konečný překladový automat pro regulární překladovou gramatiku, zásobníkový překladový automat pro bezkontextovou překladovou gramatiku.

3 Zobecněný překladový automat Překladový automat Překladový automat budeme konstruovat pro zadaný překlad Z L 1 L 2. Účelem je pro každý vstup h i (w) L 1 vytvořit na výstupu h o (w) L 2. Vytváříme konečný překladový automat pro regulární překladovou gramatiku, zásobníkový překladový automat pro bezkontextovou překladovou gramatiku.

4 Konečný překladový automat Definice (Konečný překladový automat) je uspořádaná šestice KP A = (Q, T, D, δ, q 0, F ), kde Q je konečná neprázdná množina stavů automatu, T je konečná neprázdná množina vstupních symbolů, D je konečná množina výstupních symbolů, D T =, δ je přechodová funkce automatu, δ : Q T P(Q D ) (u nedeterministického automatu by výsledkem zobrazení byla množina), q 0 Q je počáteční stav, F Q je množina koncových stavů automatu.

5 Definice (Konfigurace) Konfigurace konečného překladového automatu KP A = (Q, T, D, δ, q 0, F ) je uspořádaná trojice (q, x, y) Q T D. Počáteční konfigurace je (q 0, w, ε), kde w je vstupní řetězec (řetězec vstupních symbolů). Koncová konfigurace je (q f, ε, y), kde q f F, y je výstupní řetězec (řetězec výstupních symbolů).

6 Definice Překlad definovaný konečným překladovým automatem KP A = (Q, T, D, δ, q 0, F ) je množina uspořádaných dvojic Z(KP A) = {(u, v) ; (q 0, u, ε) (q f, ε, v), q f F }.

7 Činnost konečného překladového automatu Činnost automatu KP A = (Q, T, D, δ, q 0, F ) probíhá takto: na vstupu je vstupní řetězec složený ze symbolů množiny T, automat postupně čte vstupní řetězec a podle znaků v tomto řetězci přechází mezi stavy, při každém přechodu může na výstupní pásku přidat řetězec z množiny D, výpočet končí tehdy, když je přečteno vstupní slovo a automat je v některém z koncových stavů.

8 Činnost konečného překladového automatu Činnost automatu KP A = (Q, T, D, δ, q 0, F ) probíhá takto: na vstupu je vstupní řetězec složený ze symbolů množiny T, automat postupně čte vstupní řetězec a podle znaků v tomto řetězci přechází mezi stavy, při každém přechodu může na výstupní pásku přidat řetězec z množiny D, výpočet končí tehdy, když je přečteno vstupní slovo a automat je v některém z koncových stavů.

9 Činnost konečného překladového automatu Činnost automatu KP A = (Q, T, D, δ, q 0, F ) probíhá takto: na vstupu je vstupní řetězec složený ze symbolů množiny T, automat postupně čte vstupní řetězec a podle znaků v tomto řetězci přechází mezi stavy, při každém přechodu může na výstupní pásku přidat řetězec z množiny D, výpočet končí tehdy, když je přečteno vstupní slovo a automat je v některém z koncových stavů.

10 Činnost konečného překladového automatu Činnost automatu KP A = (Q, T, D, δ, q 0, F ) probíhá takto: na vstupu je vstupní řetězec složený ze symbolů množiny T, automat postupně čte vstupní řetězec a podle znaků v tomto řetězci přechází mezi stavy, při každém přechodu může na výstupní pásku přidat řetězec z množiny D, výpočet končí tehdy, když je přečteno vstupní slovo a automat je v některém z koncových stavů.

11 Sestrojení konečného automatu podle gramatiky Je dána regulární překladová gramatika P G = (N, T, D, R, S). Sestrojíme podle ní konečný překladový automat KP A = (Q, T, D, δ, q 0, F ) takto: Q = N {X}, X / N je nově přidaný stav, množiny T a D jen přejmeme jako vstupní a výstupní abecedu, q 0 = S, jestliže A aγb, a T, γ D je pravidlo gramatiky P G, tak definujeme δ(a, a) (B, γ) jestliže A aγ, a T, γ D je pravidlo gramatiky P G, tak definujeme δ(a, a) (X, γ) jestliže ε L(P G), pak F = {S, X}, jinak F = {X}.

12 Zadání Sestavte konečný překladový automat, který provádí inverzní zobrazení nad abecedou {0, 1}. Řešení KP A = ({q}, {0, 1}, { 0, 1 }, δ, q, {q}), s přechodovou funkcí δ: 0 1 δ(q, 0) = (q, 1 ) q 1 0 δ(q, 1) = (q, 0 ) Ukázka zpracování slova : (q, , ε) (q, 10101, 0 ) (q, 0101, 0 0 ) (q, 101, ) (q, 01, ) (q, 1, ) (q, ε, )

13 Zadání Sestavte konečný překladový automat, který provádí inverzní zobrazení nad abecedou {0, 1}. Řešení KP A = ({q}, {0, 1}, { 0, 1 }, δ, q, {q}), s přechodovou funkcí δ: 0 1 δ(q, 0) = (q, 1 ) q 1 0 δ(q, 1) = (q, 0 ) Ukázka zpracování slova : (q, , ε) (q, 10101, 0 ) (q, 0101, 0 0 ) (q, 101, ) (q, 01, ) (q, 1, ) (q, ε, )

14 Zadání Podle regulární gramatiky sestrojte konečný překladový automat. S a a A a a A B +C B a a A a a C a a + A a a + Řešení KP A = ({S, A, B, C, X}, {a, +, }, { a, +, }, δ, S, {X}), s přechodovou funkcí δ:

15 Zadání Podle regulární gramatiky sestrojte konečný překladový automat. S a a A a a A B +C B a a A a a C a a + A a a + Řešení KP A = ({S, A, B, C, X}, {a, +, }, { a, +, }, δ, S, {X}), s přechodovou funkcí δ: δ(s, a) = {(A, a ), (X, a )} δ(a, ) = {(B, ε)} δ(a, +) = {(C, ε)} δ(b, a) = {(A, a ), (X, a )} δ(c, a) = {(A, a + ), (X, a + )}

16 Zadání Podle regulární gramatiky sestrojte konečný překladový automat. S a a A a a A B +C B a a A a a C a a + A a a + Řešení KP A = ({S, A, B, C, X}, {a, +, }, { a, +, }, δ, S, {X}), s přechodovou funkcí δ: a + S (A, a ), (X, a ) A (C, ε) (B, ε) B (A, a ), (X, a ) C (A, a + ), (X, a + )

17 Zásobníkový překladový automat Definice (Zásobníkový překladový automat) je uspořádaná 8-ce ZP A = (Q, T, Γ, D, δ, q 0, Z 0, F ), kde Q je množina vnitřních stavů, T je množina vstupních symbolů, Γ je množina zásobníkových symbolů, D je množina výstupních symbolů, D T =, δ je zobrazení δ : Q (T {ε}) Γ P(Q Γ D ) (přechodová funkce automatu), q 0 Q je počáteční stav, Z 0 Γ je počáteční symbol na zásobníku, F Q je množina koncových stavů.

18 Definice (Konfigurace) Konfigurace zásobníkového překladového automatu má tvar (q, x, α, y) Q T Q D. Počáteční konfigurace je (q 0, w, Z 0, ε), kde w T je vstupní řetězec. Koncová konfigurace je definována podobně jako u běžného ZA podle typu automatu.

19 Definice Překlad definovaný zásobníkovým překladovým automatem ZP A = (Q, T, Γ, D, δ, q 0, Z 0, F ) je množina uspořádaných dvojic Z(ZP A) = { (u, v) ; (q 0, u, Z 0, ε) (q, ε, α, v), kde (q, ε, α, v) je koncová konfigurace }.

20 Sestrojení zásobníkového automatu podle gramatiky Máme překladovou gramatiku P G = (N, T, D, R, S). Sestrojíme překladový zásobníkový automat ZP A = (Q, T, Γ, D, δ, q 0, Z 0, ) Q = {q}, Γ = N T D, q 0 = q, Z 0 = S, δ funkce: Podle pravidel A α v R δ(q, ε, A) (q, α, ε) Vstupy pro každé a T δ(q, a, a) = (q, ε, ε) Výstupy pro každé a D δ(q, ε, a ) = (q, ε, a )

21 Rozkladová tabulka Rozkladová tabulka pro LL(1) překladovou gramatiku vypočteme potřebné množiny F IRST a F OLLOW vstupní gramatiky, ověříme, zda jde o LL(1) gramatiku (vstupní), vytvoříme rozkladovou tabulku vstupní gramatiky (výstupní symboly se nemohou objevit na vstupní pásce, podle které se řídíme).

22 Postup Rozkladová tabulka zjistíme množiny FIRST a FOLLOW vstupní gramatiky, ověříme, zda je vstupní gramatika typu LL(1), vytvoříme rozkladovou tabulku vstupní gramatiky (výstupní symboly se nemohou objevit na vstupní pásce, podle které se řídíme). Reakce na symboly v zásobníku 1 neterminál: expandujeme podle daného pravidla, ale číslo pravidla nezapisujeme na výstup 2 vstupní terminál: voláme proceduru (funkci) pop (podle rozkladové tabulky) 3 výstupní terminál: přeneseme na výstup

23 Gramatika Příklad P G = ({S, A, B, C, D}, {n, +,,, /, (, )}, { n, +,,, / }, R, S) S AB 1 A CD 2 B +A + B A B ε 3, 4, 5 C (S) i i n n 6, 7, 8 D C D /C / D ε 9, 10, 11 Rozkladová tabulka vstupní gramatiky i n + / ( ) $ S e1 e1 e1 A e2 e2 e2 B e3 e4 e5 e5 C e7 e8 e6 D e11 e11 e9 e10 e11 e11

24 i n + / ( ) $ S e1 e1 e1 A e2 e2 e2 B e3 e4 e5 e5 C e7 e8 e6 D e11 e11 e9 e10 e11 e11 Zpracování vstupu podle tabulky (n+i n$, S#, ε) (n+i n$, AB#, ε) (n+i n$, CDB#, ε) (n + i n$, n n DB#, ε) (+i n$, n DB#, ε) (+i n$, DB#, n ) (+i n$, B#, n ) (+i n$, +A + B#, n ) (i n$, A + B#, n ) (i n$, CD + B#, n ) (i n$, i i D + B#, n ) ( n$, i D + B#, n ) ( n$, D + B#, n i )... ($, + B#, n i n ) ($, B#, n i n + ) ($, #, n i n + )

Implementace LL(1) překladů

Implementace LL(1) překladů Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku

Více

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:

Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva: 1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Formální jazyky a automaty Petr Šimeček

Formální jazyky a automaty Petr Šimeček Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného

Více

Fakulta informačních technologií. Teoretická informatika

Fakulta informačních technologií. Teoretická informatika Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

1. Definujte překladač. Jaký je rozdíl mezi interpretačním a kompilačním překladačem? Co je to konverzační překladač?

1. Definujte překladač. Jaký je rozdíl mezi interpretačním a kompilačním překladačem? Co je to konverzační překladač? 1. Definujte překladač. Jaký je rozdíl mezi interpretačním a kompilačním překladačem? Co je to konverzační překladač? 2. Charakterizujte lexikální analýzu(vstup, výstup, lexikální chyby). 3. Definujte

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu

Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Mendelova zemědělská a lesnická univerzita v Brně Provozně ekonomická fakulta Návrh algoritmů pro sémantické akce při výstavbě interpretu metodou rekurzivního sestupu Diplomová práce Vedoucí práce: RNDr.

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Překladač a jeho struktura

Překladač a jeho struktura Překladač a jeho struktura Překladače, přednáška č. 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz http://fpf.slu.cz/ vav10ui Poslední aktualizace: 23. září 2008 Definice

Více

Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz

Na rozšiřující přednášce minulý týden jsme se věnovali zejména. algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární výraz Teoretická informatika průběh výuky v semestru 1 Týden 5 Přednáška Na rozšiřující přednášce minulý týden jsme se věnovali zejména algoritmu, který k zadanému konečnému automatu sestrojí ekvivalentní regulární

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

ZÁKLADY TEORETICKÉ INFORMATIKY

ZÁKLADY TEORETICKÉ INFORMATIKY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY.

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY. PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Formální

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA VÝPOČETNÍ A DIDAKTICKÉ TECHNIKY PŘÍPRAVA KOMPONENT PRO E-KURZ KONEČNÉ AUTOMATY A FORMÁLNÍ JAZYKY BAKALÁŘSKÁ PRÁCE Luděk Hroch Informatika se zaměřením

Více

Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma

Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma 10 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Chomského normální forma Podívejme se nyní na derivační stromy. Jak odhadnout výšku stromu podle délky

Více

2 Formální jazyky a gramatiky

2 Formální jazyky a gramatiky 2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně

Více

Minimalizace KA - Úvod

Minimalizace KA - Úvod Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat

Více

5. Sekvenční logické obvody

5. Sekvenční logické obvody 5. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody - příklad asynchronního sekvenčního obvodu 3.

Více

/01: Teoretická informatika(ti) přednáška 5

/01: Teoretická informatika(ti) přednáška 5 460-4005/01: Teoretická informatika(ti) přednáška 5 prof. RNDr Petr Jančar, CSc. katedra informatiky FEI VŠB-TUO www.cs.vsb.cz/jancar LS 2010/2011 Petr Jančar (FEI VŠB-TU) Teoretická informatika(ti) LS

Více

Referát z předmětu Teoretická informatika

Referát z předmětu Teoretická informatika Referát z předmětu Téma: Algoritmus Coke-Younger-Kasami pro rozpoznávání bezkontextových jazyků VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ OSTRAVSKÁ UNIVERZITA V OSTRAVĚ REGULÁRNÍ A BEZKONTEXTOVÉ JAZYKY II HASHIM HABIBALLA OSTRAVA 2005 Recenzenti: RNDr. PaedDr. Eva Volná, PhD. Mgr. Rostislav Fojtík Název: Regulární a bezkontextové jazyky

Více

Teoretická informatika TIN 2013/2014

Teoretická informatika TIN 2013/2014 Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení

Více

Jednoznačné a nejednoznačné gramatiky

Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.

Více

Lexikální analýza Teorie programovacích jazyků

Lexikální analýza Teorie programovacích jazyků Lexikální analýza Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Osnova dnešní přednášky 1 Úvod do teorie překladačů kompilátor a interpret

Více

Deterministický konečný automat

Deterministický konečný automat Deterministický konečný utomt Formálně je deterministický konečný utomt definován jko pětice (Q,Σ,δ,q 0,F) kde: Q je konečná množin stvů Σ je konečná eced δ:q Σ Qjepřechodováfunkce q 0 Qjepočátečnístv

Více

Teoretická informatika

Teoretická informatika Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,

Více

NÁSTROJ PRO PRÁCI S BÜCHI AUTOMATY

NÁSTROJ PRO PRÁCI S BÜCHI AUTOMATY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS NÁSTROJ PRO

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

3. Sekvenční logické obvody

3. Sekvenční logické obvody 3. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody příklad sekv.o. Příklad sledování polohy vozíku

Více

PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY. Gramatiky LALR(1) 2011 David Beer

PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY. Gramatiky LALR(1) 2011 David Beer PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE Gramatiky LALR(1) 2011 David Beer Anotace Gramatiky LALR(1) jsou deterministické bezkontextové gramatiky, pro které lze

Více

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky

UČEBNÍ TEXTY VYSOKÝCH ŠKOL. Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky UČEBNÍ TEXTY VYSOKÝCH ŠKOL Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Prof. RNDr. Milan Češka, CSc. Gramatiky a jazyky Tato skripta jsou určena pro kurs Základy matematické informatiky

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

Katedra počítačů FEL

Katedra počítačů FEL TIS 311 1. Navrhněte KMP vyhledávací stroj pro vzorek v = kakadu, 2. Pro stejný vzorek navrhněte deterministický konečný automat. 3. Simulujte činnost obou strojů na textu T = dukakakaduka, porovnejte

Více

KLASIFIKACE A VYUŽITÍ GRAMATIK, JAZYKŮ A AUTOMATŮ

KLASIFIKACE A VYUŽITÍ GRAMATIK, JAZYKŮ A AUTOMATŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS KLASIFIKACE A VYUŽITÍ GRAMATIK, JAZYKŮ A

Více

Turingovy stroje. Turingovy stroje 1 p.1/28

Turingovy stroje. Turingovy stroje 1 p.1/28 Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za

Více

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39

Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39 Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS PARALELNÍ SYNTAKTICKÁ

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ OSTRAVSKÁ UNIVERZITA V OSTRAVĚ REGULÁRNÍ A BEZKONTEXTOVÉ JAZYKY I HASHIM HABIBALLA OSTRAVA 2005 Tento projekt byl spolufinancován Evropskou unií a českým státním rozpočtem Recenzent: Doc. Ing. Miroslav

Více

Substituce a morfismy jednoduše

Substituce a morfismy jednoduše Substituce a morfismy jednoduše Petr Zemek 31. července 2010 Abstrakt Tento text si dává za cíl srozumitelně a formou příkladů osvětlit problematiku substitucí a morfismů v rozsahu předmětu Teoretická

Více

Teoretické základy informatiky I.

Teoretické základy informatiky I. UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta Teoretické základy informatiky I. Hashim Habiballa Ostravská Univerzita 2003 Teoretické základy informatiky I. KIP/YTZI1 distanční studijní opora

Více

Strukturální rozpoznávání

Strukturální rozpoznávání Strukturální rozpoznávání 1 Strukturální rozpoznávání obsah hierarchický strukturální popis systém strukturálního rozpoznávání teorie gramatik volba popisu výběr primitiv výběr gramatiky syntaktická analýza

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace 1) Charakterizujte křížový překladač Překlad programu probíhá na jiném procesoru, než exekuce. Hlavním důvodem je náročnost překladače na cílovém stroji by ho nemuselo být možné rozběhnout. 2. Objasněte

Více

ÚVOD DO INFORMATIKY HASHIM HABIBALLA

ÚVOD DO INFORMATIKY HASHIM HABIBALLA ÚVOD DO INFORMATIKY HASHIM HABIBALLA ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: OP VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST ČÍSLO OBLASTI PODPORY: 7.3.2 TVORBA DISTANČNÍCH VZDĚLÁVACÍCH MODULŮ

Více

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky študenti MFF 15. augusta 2008 1 1 Základy teoretické informatiky Požadavky Logika - jazyk, formule, sémantika, tautologie

Více

základů algoritmizace

základů algoritmizace Mendelova univerzita v Brně Provozně ekonomická fakulta Punťa - vývojové prostředí pro výuku základů algoritmizace Diplomová práce Vedoucí práce: Mgr. Tomáš Foltýnek, Ph.D. Bc. Marek Fojtl Brno 2010 zadání

Více

ČVUT FEL, K Radek Mařík Testování konečných automatů 27. října / 52

ČVUT FEL, K Radek Mařík Testování konečných automatů 27. října / 52 Testování konečných automatů Radek Mařík ČVUT FEL, K13132 27. října 2016 Radek Mařík (radek.marik@fel.cvut.cz) Testování konečných automatů 27. října 2016 1 / 52 Obsah 1 Konečný automat - základy Definice

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMEDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice

Turingův stroj. Definice Formálně je Turingův stroj definován jako šestice Definice Formálně je Turingův stroj definován jako šestice M=(Q,Σ,Γ,δ,q 0,F)kde: Q je konečná množina stavů Γ je konečná množina páskových symbolů Σ Γ,Σ jekonečnámnožinavstupníchsymbolů δ:(q F) Γ Q Γ {

Více

1 Úvod. Formální jazyky a automaty, P. Savický, 6. leden

1 Úvod. Formální jazyky a automaty, P. Savický, 6. leden Formální jazyky a automaty, P. Savický, 6. leden 2017 1 1 Úvod Formální jazyk je množina posloupností symbolů v nějaké konečné abecedě. Posloupnost symbolů může vyjadřovat například aritmetický výraz,

Více

Teoretická informatika TIN

Teoretická informatika TIN Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh

Více

Studijní program ELEKTROTECHNIKA A INFORMATIKA

Studijní program ELEKTROTECHNIKA A INFORMATIKA STÁTNÍ ZÁVĚREČNÁ ZKOUŠKA Studijní obor APLIKOVANÁ INFORMATIKA Studijní program ELEKTROTECHNIKA A INFORMATIKA Tento dokument je platný pro studenty oboru Aplikovaná informatika, kteří začali studovat nejpozději

Více

1) Sekvenční a paralelní gramatiky

1) Sekvenční a paralelní gramatiky A. Kapitoly z teorie formálních jazyků a automatů c Milan Schwarz (006) ) Sekvenční a paralelní gramatiky Derivace v gramatikách: Sekvenční postup sekvenční gramatiky (např. gramatiky v Chomského hierarchii)

Více

Poslední aktualizace: 26. října 2011

Poslední aktualizace: 26. října 2011 LR(k) překlady Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 26. října 2011 LR(k) překlady Význam LR L left-to-right, R right-parse, k nejvýše k znaků

Více

Semestrální práce implementuje univerzální tokenizer založený na stavovém automatu. Jsou implementovány následující automaty:

Semestrální práce implementuje univerzální tokenizer založený na stavovém automatu. Jsou implementovány následující automaty: Překladač a obfuskátor ECMAScriptu Jan Pobříslo - semestrální práce PJP Zadání Zadáním semestrální práce je překladač pro ECMAScript (v. 262) z jazyka rozšířeného o třídní dědění (ECMAScript používá dědění

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky. PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA) Doba trvání: 90 minut Max. zisk: 65 bodů Minimální bodový zisk nutný k uznání: 25 bodů (jak je ovšem

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Univerzita Karlova v Praze Matematicko-fyzikální fakulta Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jiří Vytasil Univerzální diskrétní simulátor Kabinet software a výuky informatiky Vedoucí bakalářské práce: Studijní program: Studijní

Více

Hardwarová realizace konečných automatů

Hardwarová realizace konečných automatů BI-AAG - Automaty a gramatiky Katedra teoretické informatiky ČVUT FIT 11.1.21 Co potřebujeme Úvod Potřebujeme: zakódovat vstupní abecedu, zakódovat stavy automatu, pamatovat si současný stav, realizovat

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný

Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný Vysoké učení technické v Brně Fakulta informačních technologií Gramatiky nad volnými grupami 2005 Petr Blatný Abstrakt Tento dokument zavádí pojmy bezkontextové gramatiky nad volnou grupou a E0L gramatiky

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu.

(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška- první část (viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Turingovy stroje,(výpočetní)

Více

PŘECHOD OD REGULÁRNÍHO VÝRAZU KE KONEČNÝM AUTOMATŮM (POČÍTAČOVÁ REALIZACE)

PŘECHOD OD REGULÁRNÍHO VÝRAZU KE KONEČNÝM AUTOMATŮM (POČÍTAČOVÁ REALIZACE) PŘECHOD OD REGULÁRNÍHO VÝRAZU KE KONEČNÝM AUTOMATŮM (POČÍTAČOVÁ REALIZACE) napsal Radim Tkačík Bakalářská práce předložená k získání akademického titulu bakalář Ostravská Univerzita 1997 Vedoucí bakalářské

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LEXIKÁLNÍ ANALÝZA 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LEXIKÁLNÍ ANALÝZA Kód ve vstupním jazyku Lexikální analyzátor

Více

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky. PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA struktury) Doba trvání: 90 minut Max. zisk: 62 bodů Minimální bodový zisk nutný k uznání: 25 bodů jealenutnétakédocílitalespoňminima11bodůseparátněukaždézedvoučástípísemky

Více

Automaty a jazyky Úvod algoritmus

Automaty a jazyky Úvod algoritmus Automaty a jazyky Úvod V historii i v současnosti matematiky a informatiky hrály a hrají důležitou roli předpisy k řešení konkrétních úloh, např. předpisy pro čtyři základní aritmetické operace s přirozenými

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

}w!"#$%&'()+,-./012345<ya

}w!#$%&'()+,-./012345<ya MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY }w!"#$%&'()+,-./012345

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

ó Šú ž ó ó ó É Ž É Š Ž Š ú ů ó š Š Š Ž ó Š Ž ú ů Š Ž ň š ů É Ž š Ž ó Ž ů ň š š ů š Ú ů Š Ž ž ó Ž ů ú É Ú š É Ť ú ů Š Ž Š š Ť É Š Š Ž Ž Š Š ť ť ť Ž É Š Š Š Ž š Š Ž Ž Ů Š š Ž Ý Ý Š Ž Š Ž Ť Ž É Ý Š Š Ž š

Více

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS OBECNÝ SYSTÉM

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní.

Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní. Teoretická informatika referáty 1 Referátč.1 Vysvětlete, co znamená tvrzení, že operace levého kvocientu je asociativní. Pak toto tvrzení pečlivě dokažte či vyvraťte. Dálevysvětlete,pročprokonečnýautomat

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

57. ročník Matematické olympiády 2007/2008

57. ročník Matematické olympiády 2007/2008 57. ročník Matematické olympiády 2007/2008 Úlohy domácího kola kategorie P každého příkladu musí obsahovat podrobný popis použitého algoritmu, zdůvodnění jeho správnosti a diskusi o efektivitě zvoleného

Více

Modelování procesů (2) 23.3.2009 Procesní řízení 1

Modelování procesů (2) 23.3.2009 Procesní řízení 1 Modelování procesů (2) 23.3.2009 Procesní řízení 1 Seznam notací Síťové diagramy Notace WfMC Notace Workflow Together Editor Aktivity diagram (UML) FirsStep Designer Procesní mapa Select Prespective (procesní

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

GRAMATIKY A JAZYKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH HASHIM HABIBALLA

GRAMATIKY A JAZYKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH HASHIM HABIBALLA GRAMATIKY A JAZYKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH HASHIM HABIBALLA ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více