(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval)

Rozměr: px
Začít zobrazení ze stránky:

Download "(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval)"

Transkript

1 A definice a tvrzení 1 c phabala 2010 Definice a tvrzení Reálná osa Značení(populární číselné množiny. IN přirozenáčísla1,2,3,4,... IN 0 = IN {0}={0,1,2,3,4,...} Z celáčísla0,1,-1,2,-2,3,-3,... IQ racionální čísla(zlomky IR reálnáčísla,racionálníairacionální(např. 2, e, π Definice. Vlastní intervaly: Nechť a b IR. (a,b={x IR;a < x < b} (otevřenýinterval a,b={x IR;a x < b} (polouzavřenýinterval (a,b ={x IR;a < x b} (polouzavřenýinterval a,b ={x IR;a x b} (uzavřenýinterval Poznámka:Jestliže a=b,pakdostanemedegenerovanéintervaly(a,a= a,a=(a,a = a a,a ={a}. Nevlastní intervaly: Nechť a, b IR. (a, ={x IR;a < x} (otevřenýinterval (,b={x IR;x < b} (otevřenýinterval a, ={x IR;a x} (polouzavřenýinterval (,b ={x IR;x b} (polouzavřenýinterval. Definice. Nechť je podmnožina IR. Číslo K IRjehornímezmnožiny,jestliže a : a K. Číslo k IRjedolnímezmnožiny,jestliže a : a k. Řekneme, že je omezená shora, jestliže existuje nějaká její horní mez. Řekneme, že je omezená zdola, jestliže existuje nějaká její dolní mez. Řekneme,že jeomezená,jestližejeomezenázdolaishora. Je-li omezenáshora,definujemejejísupremumsup(jakonejmenšíhornímez,jinaksup(=. Je-li omezenázdola,definujemejejíinfimuminf(jakonejvětšídolnímez,jinakinf(=. Řekneme,že x IRjemaximummnožiny,značenomax(,jestliže x a a : a x. Řekneme,že x IRjeminimummnožiny,značenomin(,jestliže x a a : a x. Každá podmnožina reálných čísel má supremum a infimum. Fakt. max(existuje sup(,pakmax(=sup(. min(existuje inf(,pakmin(=inf(. Definice. Rozšířenáreálnáosa IR = IR {, }.Terminologie:vlastníčísla x IR,nevlastníčísla ±. Uspořádání: x IR: < x <. Okolí: U ε ( =P ε ( = ( 1 ε,, U ε ( =P ε ( = (, 1 ε. Operace: + =, ( =,( +( =,( = ; =, =. Neurčeno:,. +a= a= pro a IR, +a= a= pro a IR. a =0pro a IR, a = pro a >0, a = pro a <0. a = pro a >0, a ( = pro a >0, a = pro a <0, a ( = pro a <0. a Neurčeno: 0, 0,0. a = pro a >0, a =0pro a <0; a = pro a >1, a =0pro a <1. Neurčeno: 0,1. Definice a tvrzení funkce(úvod, základní vlastnosti Definice. Reálnáfunkcereálnéproměnnéjelibovolnézobrazení f: D IR,kde Djenějakápodmnožina IR. Zde budeme říkat jen reálná funkce či dokonce jen funkce. Definice. Nechť f je funkce. Definičníobor fjemnožina D(f={x IR; f(xmásmysl}. Oborhodnot fjemnožina R(f={f(x; x D(f}. Graf fjemnožina G(f={(x,f(x, x D(f}. Definice. (srovnání Nechť f, g jsou funkce. Řekneme,že f= g,jestliže D(f=D(g=Da x D: f(x=g(x. Nechť jepodmnožina D(f D(g. Řekneme,že f= gna,jestliže x : f(x=g(x. Řekneme,že f gna,jestliže x : f(x g(x. Řekneme,že f < gna,jestliže x : f(x < g(x. 1

2 A definice a tvrzení 1 c phabala 2010 Řekneme,že f gna,jestliže x : f(x g(x. Řekneme,že f > gna,jestliže x : f(x > g(x. Definice. (operace Nechť f,gjsoufunkcetakové,že = D(f D(g. Definujemejejichsoučet f+ gvzorcem(f+ g(x=f(x+g(xpro x. Definujemejejichrozdíl f gvzorcem(f g(x=f(x g(xpro x. Definujemejejichsoučin f gvzorcem(f g(x=f(x g(xpro x. Definujemejejichpodíl f g vzorcem ( f g (x= f(x g(x pro x, g(x 0. Definujemejejichobecnoumocninu f g vzorcem(f g (x=e ln[f(x]g(x pro x D(f g,kde D(f g =D(g {x D(f; f(x >0}. Definice. (složenáfunkce Nechť f,gjsoufunkcetakové,že R(f D(g. Definujemejejichsloženíčikompozici g(f=g fjako(g f(x=g ( f(x pro x D(g f,kde D(g f={x D(f; f(x D(g}. Definice. Nechť f je funkce. Řekneme,že fjeomezenáshora,jestliže K IR x D(f: f(x K. Řekneme,že fjeomezenázdola,jestliže k IR x D(f: f(x k. Řekneme,že fjeomezená,jestližejeomezenáshoraizdola. Poznámka:Pokudčíslo Kexistuje,říkásemuhornímez.Podobněsečíslu kříkádolnímez. Definice. (symetrie Řekneme,žepodmnožina reálnýchčíseljesymetrická,jestliže x :( x. Nechť fjefunkce.řekneme,žejesudá,jestliže D(fjesymetrickámnožinaa x D(f: f( x=f(x. Řekneme,žejelichá,jestliže D(fjesymetrickámnožinaa x D(f: f( x= f(x. Definice. Nechť fjefunkce, T >0. Řekneme,že T jeperioda f,nebože fje T-periodická,jestliže x D(ftakové,že x+t D(f,platí f(x+t=f(x. Definice. Nechť f je funkce. Řekneme,že fjeprostá,jestliže x 1,x 2 D(f: x 1 x 2 = f(x 1 f(x 2. Definice. Nechť f, g jsou funkce. Řekneme,že gjeinverznífunkcekf,značeno g= f 1,jestliže x D(f: g ( f(x = xa y R(f: f ( g(y = y. Fakt. Nechť f je funkce. fmáinverznífunkci fjeprostá. Pak f 1 jejednoznačněurčenáaplatí D(f 1 =R(faR(f 1 =D(f. 2

3 A definice a tvrzení 1 c phabala 2010 Limita funkce. Definice. Nechť a IR, ε >0.Definujemeokolíbodu a: U ε (a={x IR; x a < ε}=(a ε,a+ε ε-okolíbodu a P ε (a={x IR;0 < x a < ε}=(a ε,a (a,a+ε prstencové ε-okolíbodu a U ε(a={x + IR; a x < a+ε}= a,a+ε pravé ε-okolíbodu a P ε(a={x + IR; a < x < a+ε}=(a,a+ε pravéprstencové ε-okolíbodu a Uε(a={x IR; a ε < x a}=(a ε,a levé ε-okolíbodu a Pε(a={x IR; a ε < x < a}=(a ε,a levéprstencové ε-okolíbodu a Okolíbodu aznamená ε-okolíbodu apronějakékonkrétní(alibovolné ε >0,značímejej U(a. Podobně prstencovéokolí P(a,levéokolí U (a,atd.kdyžřekneme nechťexistujenějakéokolí U(abodu a,znamená to,žechcemenějaké U ε (a,kdenakonkrétníhodnotě εnezáleží,hlavněabynějakébylo. Kdyžřekneme pro každéokolí U(abodu aplatí,paktoznamená,žetomáplatitprookolí U ε (aprovšechna ε >0. Definice. Nechť fjefunkcedefinovanánanějakémprstencovémokolíbodu a IR,nechť L IR. Řekneme,že Ljeitafunkce fpro xjdoucíka,nebože fjdeklpro xjdoucíka,jestliže okolí U= U(L prstencovéokolí P= P(a,aby x P: f(x U. Říkámetaké,že fmáitu Lva,nebože fjdeklva. Jestližetakové Lexistuje,řekneme,žeita fv aexistuje,zapíšemeto f(x = L nebo f(x L pro x a.jinakřekneme,žeitaneexistuje. Jestliže ita existuje a L = ±, mluvíme o nevlastní itě. JestližeitaexistujeaL IR,mluvímeovlastníitě,takéřekneme,že fkonvergujeklva nebože f(x konverguje.jinakřekneme,že f(x diverguje. Poznámka: áme tedy ity vlastní a nevlastní. Podobně bod, ve kterém itu zkoumáme, může být vlastní pro a IRnebonevlastnípro a=±. Poznámka: Přepis definice pro vlastní bod a [ vlastní itu: ] f(x = L ε >0 δ >0aby x: 0 < x a < δ = f(x L < ε. Ukázkajinédefinice,třebakdyž jeita fv : [ ] f(x = K IR m IRaby x: x < m = f(x > K. x Definice. (jednostranné ity Nechť fjefunkcedefinovanánanějakémlevémprstencovémokolíbodu a IR { },nechť L IR. Řekneme,že Ljeitafunkce fpro xjdoucíkazleva,jestliže okolí U= U(L levéprstencovéokolí P= P (a,aby x P: f(x U. Říkámetaké,že fjdeklpro ( xjdoucíkazleva,nebo fmáitu Lvazleva,nebože fjdeklva zleva. Zapisujeme to f(x = L,popřípadězkráceně f(a =L. Nechť fjefunkcedefinovanánanějakémpravémprstencovémokolíbodu a IR { },nechť L IR. Řekneme,že Ljeitafunkce f pro xjdoucíkazprava,jestliže okolí U= U(L pravéprstencové okolí P= P + (a,aby x P: f(x U. Říkámetaké,že fjdeklpro ( xjdoucíkazprava,nebo fmáitu Lvazprava,nebože fjdeklva zprava. Zapisujeme to f(x = L,popřípadězkráceně f(a + =L. + f(x = L f(a =L=f(a +. Jestliže existuje ita f v daném a, pak je jednoznačně určena. Jestližeexistujevlastníita fvdaném a,pakje fomezenánanějakémprstencovémokolí a. (itaaoperace Nechť f Aag Bpro x a.pak (f+ g (A+Bpro x a, ( (f g (A Bpro x a, (f g (A Bpro x a, f g A Bpro x a, f g A B pro x a, pokudmajípravéstranysmysl. Zápis [ vhodný pro ] výpočet: (f ± g(x = f(x ± g(x, [ ] (f g(x = f(x g(x, ] (f(x (x = [( f g (g(x, [ (f g (x ] = f(x (g(x, pokudmajívýsledkypravýchstransmysl. Nechť f(x = b,nechť g(y = L. y b Jestliže g(b=lnebo prstencovéokolí P= P(aaby x P: f(x b,pak 3

4 A definice a tvrzení 1 c phabala 2010 (g f(x = (g(f(x = L. Poznámka: Pokud je g spojitá v a, pak [ ( jsou] předpoklady ( [ splněny. ] Zápis vhodný pro výpočet: g f(x = g f(x. Algebra nekonečna pro ity: + =, ( =,( +( =,( = ; =, =. +a= a= pro a IR, +a= a= pro a IR. a =0pro a IR, a = pro a >0, a = pro a < =, + 0 =. a = pro a >0, a ( = pro a >0, a = pro a <0, a ( = pro a <0. a = pro a >0, a =0pro a <0; a = pro a >1, a =0pro a <1. Neurčitévýrazy:,, a 0, 0,0,00, 0,1. Rozšíření pro funkce: ln(0 + =,ln( =, e =0, e =,arctg( = π 2,arctg( = π 2. Definice. Nechť ( f(x = L. Označímetentovýsledekjako L +,jestliže prstencovéokolí P= P(aaby x P: f(x > L. Označímetentovýsledekjako L,jestliže prstencovéokolí P= P(aaby x P: f(x < L. (srovnáníaita Nechť f Aag Bpro x a. 1Jestliže prstencovéokolí P= P(aaby f gna P,pak A B. 2Jestliže A < B,pak prstencovéokolí P= P(aaby f < gna P. Nechť f,gjsoufunkcedefinovanénanějakémprstencovémokolí P bodu a IR takovém,že f gna P. Jestliže f va,paknutně g va.jestliže g va,paknutně f va. (Věta o sevření Nechť f,g,hjsoufunkcedefinovanénanějakémprstencovémokolíbodu a IR takovém,že f g hna P. Jestliže f Lah Lva,paknutně g Lva. Důsledek. Nechť f,gjsoufunkcedefinovanénanějakémprstencovémokolí P bodu a IR takovém,že f gna P. Jestliže g 0va,paknutně f 0va. Fakt. Nechť f je omezená na nějakém prstencovém okolí a. Jestliže g 0va,pak f g 0va. Jestliže g va,pak f g 0va. Jestliže g ± va,pak f+ g ± va. Spojitost funkce. Definice. Nechťfunkce fjedefinovánananějakémokolíbodu a IR. Řekneme,že fjespojitáva,jestliže okolí U= U(f(a okolí V = V(aaby x V: f(x U. Epsilon-delta verze: fjespojitáva,jestliže ε >0 δ >0aby x: [ x a < δ = f(x f(a < ε ]. Definice. (jednostranná spojitost Nechťfunkce fjedefinovánananějakémlevémokolíbodu a IR.Řekneme,že fjespojitázlevava,jestliže okolí U= U(f(a levéokolí V = V (aaby x V: f(x U. Nechťfunkce fjedefinovánananějakémpravémokolíbodu a IR. Řekneme,že fjespojitázpravava, jestliže okolí U= U(f(a pravéokolí V = V + (aaby x V: f(x U. Funkcejespojitávnějakémbodě jetamspojitázpravaizleva. Funkce fjespojitáva ( f(x existujeajerovna f(a. Podobně pro jednostrannou spojitost. (spojitost a operace Nechťfunkce f,gjsouspojitéva. Pakjsouspojitévaifunkce f ± g, f g, f g (pokud g(a 0, fg (pokud f(a >0. Nechťje fspojitáva,nechťje gspojitávb=f(a.pakje g f= g(fspojitáva. Definice. Nechť f je funkce definovaná na nedegenerovaném intervalu I. Řekneme, že je na intervalu I spojitá, jestliže splňuje tyto podmínky: fjespojitávevšechvnitřníchbodech I, jestliže Iobsahujesvůjlevýkrajníbod,pakjevněm fspojitázprava, jestliže Iobsahujesvůjpravýkrajníbod,pakjevněm fspojitázleva. Definice. Nechť f je funkce, jejíž D(f je sjednocení nedegenerovaných intervalů. Řekneme,že fjespojitá,jestližejespojitánavšechintervalech,znichžseskládájejí D(f. 4

5 A definice a tvrzení 1 c phabala 2010 Jsou-li f,gspojité,pakjsou f+ g, f g, f g, f g, fg, g fspojité. Všechny elementární funkce jsou spojité. 5

6 A definice a tvrzení 1 c phabala 2010 Definice. Nechť f je definována na okolí bodu a. Bod ajebodnespojitosti,jestliže fneníspojitáva. Definice. (klasifikace nespojitostí Nechť fjedefinovanánaokolíbodu a. Řekneme, že f má v bodě a odstranitelnou nespojitost, jestliže f(x konverguje,aletatoitanení rovna f(a. Řekneme, že f má v bodě a skokovou nespojitost, jestliže konvergují obě jednostranné ity f(x a f(x,alenejsousirovny. + Řekneme, že f má v bodě a podstatnou nespojitost, jestliže alespoň jedna z jednostranných it f(x či f(x nekonverguje. + Definice. Nechť f je funkce definovaná na množině. Řekneme,že fsplňujevlastnostmezihodnotyna I,jestliže a,b f( c (a,b x : f(x=c. Slovně,Jestliže fnabývána nějakýchdvouhodnot,paktamnabýváivšechhodnotmezinimi. (Věta o mezihodnotě Nechť f je spojitá na intervalu I. Pak f splňuje vlastnost mezihodnoty na I. Důsledek. Nechť f je funkce na intervalu a, b. Jestližemají f(aaf(brozdílnáznaménkaafjespojitána a,b,pakmusímít fvintervalu a,b kořen. Funkce spojitá na omezeném uzavřeném intervalu je tam omezená. Definice. Nechť f je funkce definovaná na neprázdné množině. Jestližeje fomezenáshorana,definujemejejísupremumna,značenosup(f,jakonejmenšíhornímez. Jinak definujeme sup(f=. Jestližeje f omezenázdolana,definujemejejíinfimumna,značenoinf (f,jakonejvětšídolnímez. Jinak definujeme inf (f=. Definujememaximum f na jakočíslo m=max(fsplňujícítytodvěpodmínky: x : f(x ma c : f(c=m.pokudtakovémaximumexistuje,řekneme,že fnabývásvémaximumna. Definujememinimum f na jakočíslo m=min(fsplňujícítytodvěpodmínky: x : f(x ma c : f(c=m.pokudtakovéminimumexistuje,řekneme,že fnabývásvéminimumna. Poznámka:Nechť f(jeobrazmnožiny funkcí f.paksup(f=sup ( f(,podobněostatnítřidefinice. Fakt. Každá funkce má supremum a infimum na libovolné neprázdné podmnožině D(f. (Věta o extrémní hodnotě Funkce spojitá na omezeném uzavřeném intervalu na něm nabývá své minimum a maximum. Nechť f je funkce spojitá na intervalu I. fjena Iprostá fjena Iryzemonotonní.Pakipříslušnáinverznífunkce f 1 jespojitá. 6

Spojitost a limita funkce

Spojitost a limita funkce Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové

Více

Limita posloupnosti, limita funkce, spojitost. May 26, 2018

Limita posloupnosti, limita funkce, spojitost. May 26, 2018 Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a

Více

5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.

5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R. 5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

LIMITA A SPOJITOST FUNKCE

LIMITA A SPOJITOST FUNKCE PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:

Více

Limita a spojitost LDF MENDELU

Limita a spojitost LDF MENDELU Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

a = a 0.a 1 a 2 a 3...

a = a 0.a 1 a 2 a 3... Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,

Více

Limita posloupnosti a funkce

Limita posloupnosti a funkce Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti

Více

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

Kapitola 2: Spojitost a limita funkce 1/20

Kapitola 2: Spojitost a limita funkce 1/20 Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

1. Posloupnosti čísel

1. Posloupnosti čísel 1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce

2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce 2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,

Více

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

LIMITA FUNKCE, SPOJITOST FUNKCE

LIMITA FUNKCE, SPOJITOST FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

3 Limita funkce Limitafunkcevbodě Jednostrannélimity Vlastnostilimitfunkcí Výpočetlimitfunkcí...

3 Limita funkce Limitafunkcevbodě Jednostrannélimity Vlastnostilimitfunkcí Výpočetlimitfunkcí... Obsah 3 Limita funkce 2 3.1 Limitafunkcevbodě... 2 3.2 Jednostrannéity... 3 3.3 Vlastnostiitfunkcí..... 4 3.4 Výpočetitfunkcí... 5 4 Spojitost funkce 6 4.1 Spojitostfunkcevbodě.... 6 4.2 Vlastnostifunkcíspojitýchvbodě.....

Více

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet

I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

(5) Primitivní funkce

(5) Primitivní funkce (5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,

Více

3. LIMITA A SPOJITOST FUNKCE

3. LIMITA A SPOJITOST FUNKCE 3. LIMITA A SPOJITOST FUNKCE Okolí reálného čísla a 3.1. Deinice Okolím reálného čísla a nazýváme otevřený interval a, a, kde je libovolné kladné číslo. Je to tedy množina reálných čísel x, která vyhovují

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou

Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou 4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné:   s1a64/cd/index.htm. KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

1. Matematická analýza definice (MP leden 2010)

1. Matematická analýza definice (MP leden 2010) 1. Matematická analýza definice (MP leden 2010) Základní pojmy a definice 1. Definujte metrický prostor, otevřené a uzavřené množiny, hraniční bod množiny. Metrickýprostor jedvojice(m, d),kde M jemnožinabodů

Více

1. Úvod Výroková logika Množiny a množinové operace

1. Úvod Výroková logika Množiny a množinové operace 1. Úvod 1.1. Výroková logika Výrok je tvrzení, o kterém má smysl říci, že platí (je pravdivé) nebo že neplatí (je nepravdivé). Definice. Negací A výroku A rozumíme výrok: Není pravda, že platí A. Konjukcí

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

x i y i. metrika: Provektor x IR n definujemejeho(euklidovskou)normujako x = x x2 n.

x i y i. metrika: Provektor x IR n definujemejeho(euklidovskou)normujako x = x x2 n. Funkce více proměnných Nechť n IN. Symbol IR n značíprostorvšech n-rozměrnýchvektorůsreálnýmisouřadnicemi značených x=(x 1,...,x n ),také xnebotřeba x.čísla x i IRjsousouřadnicečisložky. operace s vektory:

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Matematika 1B. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1B. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Matematika 1B. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz Fakulta přírodovědně-humanitní a pedagogická TUL LS

Více

Helena R ˇ ı hova (CˇVUT) Funkce 5. rˇı jna / 28

Helena R ˇ ı hova (CˇVUT) Funkce 5. rˇı jna / 28 Funkce Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Funkce 5. října 2012 1 / 28 Obsah 1 Reálná funkce jedné reálné proměnné Limita funkce Věty o limitách Spojitost funkce Význačné limity Asymptoty

Více

Spojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení.

Spojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení. funkce je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení. Je důležité vědět, kdy se malá změna nějakého měření projeví málo na konečném výsledku. Zpřesňuje-li se měření, měl

Více

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.

Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N. 4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf

Více

5. Limita a spojitost

5. Limita a spojitost 5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální

Více

(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27

(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27 (1) Limity Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Limity 1 / 27 Proč studovat matematiku Zdroje: http://www.karlin.mff.cuni.cz/ pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6ec3ndnr86s

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 8-9 Vybrané kapitoly z matematiky 8-9 / 6 Funkce více proměnných Vybrané kapitoly z matematiky 8-9 / 6 Definice Necht M R n, M. Funkcí n proměnných je zobrazení

Více

Funkce. Limita a spojitost

Funkce. Limita a spojitost Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

Základy matematické analýzy (BI-ZMA)

Základy matematické analýzy (BI-ZMA) Příklady ke cvičení z předmětu Základy matematické analýzy (BI-ZMA) Matěj Tušek Katedra matematiky České vysoké učení technické v Praze BI-ZMA ZS 009/00 Evropský sociální fond Praha & EU: Investujeme do

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

Doporučená literatura 1. Jako doplněk k přednáškám: V. Hájková, M. Johanis, O. John, O.F.K. Kalenda a M. Zelený: Matematika (kapitoly I IV)

Doporučená literatura 1. Jako doplněk k přednáškám: V. Hájková, M. Johanis, O. John, O.F.K. Kalenda a M. Zelený: Matematika (kapitoly I IV) Přednáška Matematika I v prvním semestru 2013-2014 Spojení na přednášejícího a konzultace Petr Holický, Matematicko fyzikální fakulta Katedra matematické analýzy Sokolovská 83, 2. patro e-mail: holicky@karlin.mff.cuni.cz

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz 26.9.2016 Fakulta přírodovědně-humanitní a pedagogická

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0

f(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0 KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Matematická analýza pro informatiky I. Limita funkce

Matematická analýza pro informatiky I. Limita funkce Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA

MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR 2018 2019 PŘEDNÁŠKA LUBOŠ PICK 1. Logika, množiny a základní číselné obory 1.1. Logika. Logika je věda o formální správnosti myšlení. Formálně logická správnost spočívá

Více

Spojitost funkce. Kapitola 8. ale kromě toho zajímá, jestli daný experiment probíhal kontinuálně, nebo nastaly. Intuitivní představy o pojmu spojitost

Spojitost funkce. Kapitola 8. ale kromě toho zajímá, jestli daný experiment probíhal kontinuálně, nebo nastaly. Intuitivní představy o pojmu spojitost Kapitola 8 Spojitost funkce V následující kapitole se budeme zabývat tzv. spojitostí funkce a to, jak spojitostí v bodě, tak spojitostí na množině. S pojmem spojitosti se dále váží pojmy jako je okolí

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

9. Limita a spojitost

9. Limita a spojitost OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a + r), kde r > 0; značí se O(a, r), případně jen O(a) (obr. 9..). Číslo r se nazývá poloměr okolí. O(a, r) 0 a r a a + r Obrázek

Více

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis 1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ

LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více