Dělení. Demonstrační cvičení 8 INP

Rozměr: px
Začít zobrazení ze stránky:

Download "Dělení. Demonstrační cvičení 8 INP"

Transkript

1 Dělení Demonstrační cvičení 8 INP

2 Přístupy k dělení sekvenční s restaurací nezáporného zbytku bez restaurace nezáporného zbytku SRT kombinační obvod založen na úplné odečítačce iterační algoritmy Newtonův iter. algoritmus

3 Dělení (bez znamének) Hledáme: podíl a zbytek dělení D/d Platí: D = Q.d + R D dělenec (2n) d dělitel (n) Q podíl (n) R zbytek (n) Princip: v každém kroku (i) se pokoušíme odečíst od průběžného zbytku Ri posunutý dělitel (2 -i d o i bitů vpravo)

4 Dělení 38:5 ( d vpravo, Ri v pevné poloze) D=100110b (38) d=101b (5) Ri+1= Ri - qn-i2 -i d i= R0=D 2 -i d > Ri => qn-i= q3 = q32 0 d (5.) i= R1 2 -i d < Ri => qn-i = q2 = q22-1 d i= R2 2 -i d < Ri => qn-i = q1 = q12-2 d i= R3 2 -i d < Ri => qn-i = q0 = q02-3 d 011 R=R4 Q=0111b (7) R=011b (3)

5 Dělení modifikovaný postup (Praxe: Ri, d v pevné poloze) D=100110b (38) d=101b (5) Ri+1= 2Ri - qn-id i= R0=D d > 2R0 => Q= q3d i= R x 2R1 d < 2R1 => Q= q2d i= x R2 0010xx 2R2 d < 2R2 => Q= q1d i=3 1000xx R3 000xxx 2R3 d < 2R3 => Q= q0d 011xxx R4 =2 4 R => R = 2-4 R4 Q=0111b (7) R=011b (3)

6 30= , 7=0111, -7= d <0, => c4= d (korekce) < x d x <0 => c3= d (korekce) x xx d xx >0 => c2= xxx d 10100xxx <0 => c1= d (korekce) 00010xxx 0010xxxx d 1011xxxx <0 => c0= d (korekce) 0010xxxx zbytek 2 Příklad: 30:7=4, zbytek 2 s restaurací nezáporného zbytku

7 30= , 7=0111, -7= d <0 => c4 = x < d x <0 => c3 = xx d xx >0 => c2 = xxx d 10100xxx <0 => c1 = xxxx d 1011xxxx <0 => c0 = d (korekce na kladný zbytek) 0010xxxx zbytek 2 Příklad: 30:7=4, zbytek 2 bez restaurace nezáporného zbytku Úspornější z hlediska počtu operací.

8 Algoritmus SRT (1958) (Sweeney, Robertson, Tocher) umožňuje dělení čísel se znaménkem prováděné operace se pro každý krok určují (odhadují) podle nejvyšších tří bitů průběžného zbytku na závěr se případný záporný zbytek koriguje na kladný algoritmus může selhat

9 Algoritmus SRT tabulka odhadů Průběžný zbytek Ri d>0 bit podílu d>0 operace d<0 bit podílu d<0 operace d, -1 +d, d, 1 -d, 100

10 49= , 7=0111, -7= = (d>0) d < x d x xx < xxx < d 11001xxx < xxxx d 0000xxxx zbytek 0 Q = = Ri Příklad: -49:7=-7, zb 0 SRT d>0 bit podílu d>0 operace -d, +d, d<0 bit podílu d<0 operace +d, -d, = = -7

11 53= , 6=0110, -6= d x < d x xx < xxx < d 11001xxx < xxxx d 1111xxxx záporný zbytek d (korekce) 0101 zbytek 5 Ri Příklad: 53:6=8, zb 5 SRT d>0 bit podílu 0 1 d>0 operace -d, d<0 bit podílu 0-1 d<0 operace +d, Q = = = d, 1 -d, po korekci 9-1=8

12 53= , 6=0110, -6= d x < d x xx < xxx < d 11001xxx < xxxx d 1111xxxx záporný zbytek d (korekce) 0101 zbytek 5 Příklad: 53: (-6)=-8, zb 5 SRT Ri d>0 bit podílu 0 1 d>0 operace -d, d<0 bit podílu 0-1 d<0 operace +d, Q = = = d, 1 -d, po korekci -9+1=-8

13 51= , 7=0111, -7= d < x d x < xx < xxx d 01001xxx < xxxx d 0000xxxx zbytek 0 Q = = = 5 Příklad: 51: 7=7, zb 2 SRT Ri Výsledek není správný! Odhad podle 3 bitů nepostačuje. Demonstrovali jsem selhání algoritmu SRT. d>0 bit podílu d>0 operace -d, +d, d<0 bit podílu d<0 operace +d, -d,

14 Selhání algoritmu SRT Odhad podle tří bitů průběžného zbytku je nedostatečný způsobuje časté chybování postupu SRT. Praktické realizace postupu (např. Pentium) odhadují hodnotu číslice podílu podle 7 bitů průběžného zbytku a podle 5 bitů hodnoty dělitele.

15 Iterační algoritmy: Newtonův iterační algoritmus pro dělení y f(x) x i x i+1 x Na základě odhadu x i hledáme přesnější odhad x i+1 v bodě průsečíku tečny s osou x. Rovnice přímky procházející bodem f(x i ) je y - f(x i ) = f'(x i )(x - x i ) Pokládáme-li přímku za aproximaci funkce f(x), můžeme psát f(x i+1 ) - f(x i ) = f'(x i )(x i+1 - x i ) V průsečíku tečny s osou x je f(x i+1 ) = 0, takže odtud dostáváme iterační vzorec x i+1 = x i - f(x i )/f'(x i )

16 Newtonův iterační algoritmus pro dělení Platí: x i+1 = x i - f(x i )/f'(x i ) Máme-li dělit číslem b, zvolíme: f(x) = 1/x b Pokud f(x) = 0, pak 1/x = b, resp. x = 1/b Operaci dělení a/b pak nahradíme násobením a*1/b Derivace: f'(x) = -1/x 2, odtud dosazením x i+1 = x i - (1/ x i - b)/(-1/ x i2 ) = = x i + x i - bx i2 = x i (2 - bx i ) x i+1 = x i (2 - bx i ) Postup výpočtu a/b: Posuneme b tak, aby padlo do intervalu (1,2). Pomocí tabulky odhadů zvolíme první odhad x 0. Iteračně provádíme výpočty x i+1 dokud nedostanemeřešení s požadovanou přesností na p bitů Výsledek n. iterace (x n ) vynásobíme číslem a, součin posuneme o odpovídající počet bitů (viz krok 1)

17 Příklad: 1/b pro b=20 b= 10100, posun des. čárky o 4b, b= zvolím x 0 =1 x 1 = x 0 (2 bx 0 )d = 1( x1)b = 0.11b x 2 = x 1 (2 bx 1 )d = 0.11( x0.11) = 0.11( )b = 0.11x1.0001b = b x 3 = b atd. posun des. čárky o 4b Výsledek po 3 iteračních krocích: 1/20d = b = d

18 Př. Ukažte, že se počet správných (přesných) bitů p se každým iteračním krokem zdvojnásobuje x i - 1/b je absolutní chyba ε i = (x i - 1/b)/(1/b) = 2 -p je relativní chyba i. kroku, hledáme ale tvar pro krok i+1, tj. pro x i+1 Vyjádříme x i = 1/b (2 -p )+1/b a dosadíme do x i+1 = x i (2 - bx i ) kde dostáváme x i+1 = (1/b (2 -p )+1/b).(2 b (1/b (2 -p )+1/b)) x i+1 = 1/b 1/b(2-2p ) což upravíme na tvar pro relativní chybu pro krok i+1: ε i+1 = (x i+1-1/b)/(1/b) = 2-2p ε i+1 /ε i = 2-2p / 2 -p = 2 -p ε i+1 = ε i.2 -p Počet přesných míst v jednotlivých iteracích: Čím přesnější je počáteční odhad x 0, tím méně iterací je potřeba.

19 Newtonův algoritmus dělení v HW x i+1 =x i (2-bx i )

20 Literatura Drábek, V.: Výstavba počítačů, skriptum VUT v Brně, 1995

Dělení. INP 2008 FIT VUT v Brně

Dělení. INP 2008 FIT VUT v Brně ělení INP 28 FIT VUT v Brně ělení čísel s pevnou řádovou čárkou Nejdříve se budeme zabývat dělením čísel s pevnou řádovou čárkou bez znaménka. Pro jednotlivé činitele operace dělení zavedeme symboly d

Více

Operace v FP a iterační algoritmy. INP 2008 FIT VUT v Brně

Operace v FP a iterační algoritmy. INP 2008 FIT VUT v Brně Operace v FP a iterační algoritmy INP 2008 FIT VUT v Brně 1 Operace FP Číslo X s pohyblivou řádovou čárkou X = M X.B Ex zapíšeme jako dvojici (M X, E X ), kde mantisa M X je ve dvojkovém doplňkovém kódu,

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA

METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA 2-3. Metoda bisekce, met. prosté iterace, Newtonova metoda pro řešení f(x) = 0. Kateřina Konečná/ 1 ITERAČNÍ METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC - řešení nelineární rovnice f(x) = 0, - separace kořenů =

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

Řešení nelineárních rovnic

Řešení nelineárních rovnic Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Dělení. MI-AAK(Aritmetika a kódy)

Dělení. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Dělení c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha& EU:

Více

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá

Více

Numerické řešení rovnice f(x) = 0

Numerické řešení rovnice f(x) = 0 Numerické řešení rovnice f(x) = 0 Přemysl Vihan 9.10.2003 Katedra fyziky, Pedagogická fakulta Univerzity J.E. Purkyně v Ústí n.l. 2. ročník, PMVT-mag. Abstrakt Seminární práce se zabývá numerickým řešením

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

DRN: Kořeny funkce numericky

DRN: Kořeny funkce numericky DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f

Více

Nelineární rovnice. Numerické metody 6. května FJFI ČVUT v Praze

Nelineární rovnice. Numerické metody 6. května FJFI ČVUT v Praze Nelineární rovnice Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Ohraničení kořene Hledání kořene Soustava Programy 1 Úvod Úvod - Úloha Hledáme bod x, ve kterém je splněno pro zadanou funkci

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

BAKALÁŘSKÁ PRÁCE. Metody pro výpočet kořenů polynomů

BAKALÁŘSKÁ PRÁCE. Metody pro výpočet kořenů polynomů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody pro výpočet kořenů polynomů Vedoucí diplomové práce: RNDr. Horymír Netuka,

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Numerické metody a programování. Lekce 7

Numerické metody a programování. Lekce 7 Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Hledání extrémů funkcí

Hledání extrémů funkcí Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání

Více

Přijímací zkoušky z matematiky pro akademický rok 2017/18 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2017/18 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 7/8 NMgr. studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 5 Celkem Body Ke každému příkladu uved te podrobný,

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

úloh pro ODR jednokrokové metody

úloh pro ODR jednokrokové metody Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat

Více

Struktura a architektura počítačů (BI-SAP) 5

Struktura a architektura počítačů (BI-SAP) 5 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 5 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například:

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například: ARNP 1 2015 Př. 5 Základní operace s přirozenými čísly Přesná definice přirozeného čísla je složitá spokojíme se s tím, že o libovolném čísle dokážeme rozhodnout, zda je, či není přirozeným číslem (5,

Více

E. Pohyblivářádováčárka

E. Pohyblivářádováčárka E. Pohyblivářádováčárka pevná a pohyblivá řádová čárka formát US Air Force MIL-STD-1750A základní operace normalizace přetečení a nenaplnění formátbflm 1 přímý kód sčítání a odčítání násobení, dělení a

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Moderní numerické metody

Moderní numerické metody Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

Úvod do programování 7. hodina

Úvod do programování 7. hodina Úvod do programování 7. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Znaky Vlastní implementace

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Diferenciál a Taylorův polynom

Diferenciál a Taylorův polynom Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

Variace. Kvadratická funkce

Variace. Kvadratická funkce Variace 1 Kvadratická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratická funkce Kvadratická

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

4 Numerické derivování a integrace

4 Numerické derivování a integrace Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 7, strany 85-94. Jedná se o úlohu výpočtu (první či druhé) derivace či o výpočet určitého integrálu jinými metodami,

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Násobení. MI-AAK(Aritmetika a kódy)

Násobení. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Násobení c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody.

Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody. Y36SAP Číselné soustavy a kódy, převody, aritmetické operace Tomáš Brabec, Miroslav Skrbek - X36SKD-cvičení. Úpravy pro SAP Hana Kubátová Osnova Poziční číselné soustavy a převody Dvojková soust., převod

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Přijímací zkoušky z matematiky pro akademický rok 2016/17 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2016/17 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 6/7 NMgr. studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 5 Celkem Body Ke každému příkladu uved te

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

Numerická integrace a derivace

Numerická integrace a derivace co byste měli umět po dnešní lekci: integrovat funkce různými metodami (lichoběžníkové pravidlo, Simpson,..) počítat vícenásobné integrály počítat integrály podél křivky a integrály komplexních funkcí

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19

Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19 Algoritmy I Číselné soustavy přečíst!!! Číselné soustavy Každé číslo lze zapsat v poziční číselné soustavě ve tvaru: a n *z n +a n-1 *z n-1 +. +a 1 *z 1 +a 0 *z 0 +a -1 *z n-1 +a -2 *z -2 +.. V dekadické

Více

metoda Regula Falsi 23. října 2012

metoda Regula Falsi 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda Regula Falsi Michal Čihák 23. října 2012 Metoda Regula Falsi hybridní metoda je kombinací metody sečen a metody půlení intervalů předpokladem je (podobně

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Architektury počítačů

Architektury počítačů Architektury počítačů IEEE754 České vysoké učení technické, Fakulta elektrotechnická A0M36APO Architektury počítačů Ver.1.20 2014 1 Fractional Binary Numbers (zlomková binární čísla / čísla v pevné řádové

Více

Nerovnice, grafy, monotonie a spojitost

Nerovnice, grafy, monotonie a spojitost Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Struktura a architektura počítačů (BI-SAP) 6

Struktura a architektura počítačů (BI-SAP) 6 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 6 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

1. Chyby vstupních dat metody převedení úlohy na numerickou (řád použité metody) zaokrouhlovací reprezentace čísel v počítači

1. Chyby vstupních dat metody převedení úlohy na numerickou (řád použité metody) zaokrouhlovací reprezentace čísel v počítači 1. Chyby vstupních dat metody převedení úlohy na numerickou (řád použité metody) zaokrouhlovací reprezentace čísel v počítači 2. Reprezentace čísel v Pascalu celá čísla Typ Rozsah Formát shortint 128..127

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 38 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 2 3 4 5 6 2 / 38 2 / 38 čárkou Definition 1 Bud základ β N pevně dané číslo β 2, x bud reálné číslo s

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více