2.2.8 Jiné pohyby, jiné rychlosti I

Rozměr: px
Začít zobrazení ze stránky:

Download "2.2.8 Jiné pohyby, jiné rychlosti I"

Transkript

1 2.2.8 Jiné poyby, jiné ryclosi I Předpoklady: Pomůcky: Vernier Go Moion, počíač, nafukovací míč, kyvadlo velké, závaží na pružině, nakloněná rovina s vozíkem Př. 1: Nejdelší přímou pravidelně provozovanou leeckou linkou je v současnosi (k ) spojení Dubaj-Auckland. Leoun Airbus A380 urazil rasu dlouou km za 17 odin 15 minu. Urči jeo ryclos běem leu. Jakou vzdálenos urazí leadlo za 1 minuu? s = km, = 17 15min = 17,25 s v = = km/ = 820 km/ 17, 25 Leadlo se poybuje ryclosí 820 km/. 1 minua je jednou šedesáinou odiny za minuu urazí leadlo šedesákrá menší vzdálenos než za odinu: 820 : 60 = 13, 7 km. Leadlo urazí běem leu za každou minuu přibližně 14 km. Př. 2: Převeď na jednoku v závorce. a) 15 m/s [ km/ ] b) 0,5 km/ [ m/s ] c) 1,5 km/s[ m/s ] d) 2,3 m/min [ km/ ] e) 3 km/s[ km/ ] f) 7,1 mm/s[ m/ ] a) 15 m/s = 15 3,6 km/ = 54 km/ b) 0,5 km/ = 0,5 :3,6 m/s = 0,139 m/s 1,5 km 1500 m c) 1,5 km/s = = = 1500 m/s 1s 1s d) e) f) 2,3 m 0,0023 km 2,3 m/min = = = 0, km/ = 0,138 km/ 1 min km 3 km 3 km/s = = = km/ = km/ 3 s ,1 mm 0,0071 m 7,1 mm/s = = = 0, m/ = 25,56 m/ 1s

2 Př. 3: Nejvyšší povolenou ryclosí na dálnicíc v UK je 70 mil/. Kolik je o km/? (1 mil = 1609 m ). 70 mil 70 1,609 km 70 mil/ = = = 112, 6 km/ 1 1 Nejvyšší povolená ryclos na anglickýc dálnicíc je 113 km/. Pedagogická poznámka: Následující úkoly zadáváme jako čásečně skupinovou práci. Poyb několikrá předvedu (bez měření), pak si každý žák nakreslí obrázek s grafy. Poé si žáci v jedné skupině ukáží své návry a snaží se nají společné řešení. Výsledek, na kerém se doodli, zakreslí na společný papír (kerý poé budou odevzdáva a na kerém se nesmí opravova). Pak poyb naměříme pomocí čidla Go Moion a rozebereme si výsledky. Po rozboru následuje další poyb (další bod v zadání) sejným způsobem. Skupinové papíry si pak vyberu a opravím je. Př. 4: Nakresli do společnéo obrázku graf závislosi poloy na čase a ryclosi na čase pro následující poyby: a) jízda vozíku po nakloněné rovině, b) kývaní kyvadla, c) kmiání závaží na pružině, d) pád a poskakování míče. a) jízda vozíku po nakloněné rovině Vozík běem jízdy po nakloněné rovině plynule zrycluje: ryclos se musí zvyšova (zřejmě rovnoměrně), vzdálenos od čidla na začáku nakloněné roviny se zvyšuje čím dál rycleji (s rosoucí ryclosí) graf poloy bude čím dál srmější. b) kývaní kyvadla Kyvadlo se kývá neusále sem am, poyb se opakuje i na grafec se musí opakova určiý vzor. Kyvadlo se v krajníc bodec zasavuje, mění se v nic směr ryclosi v krajníc bodec s nejvěší výcylkou musí bý ryclos nulová a měni znaménko. 2

3 Graf poloy se věšinou kreslí ak, že nulová poloa je v mísě, kde se kyvadlo po dloué době usálí graf poloy ak kmiá okolo nulové odnoy jako graf ryclosi. Pokud necáme kyvadlo kýva delší dobu, kmiy se posupně zmenšují výška vlnek na grafu se bude posupně zmenšova. c) kmiání závaží na pružině Poyb je velmi podobný, grafy jsou sejné, jenom vlnky jsou kraší, proože kmián je ryclejší. d) pád a poskakování míče 3

4 Míč je nejdříve blízko u čidla v malé vzdálenosi, pak padá sále rycleji, po každém odrazu se k čidlu cvilku přibližuje a pak zase začne pada dolů a znovu se odrazí. Po každém odrazu vyleí do menší výška (obráí se ve věší vzdálenosi od čidla), nakonec zůsane sá v nejvěší vzdálenosi od čidla. Ryclos se po pušění zvěšuje, při odrazu se rycle změní její směru (a znaménko), pak se běem soupání zmenšuje, až začne směřova od čidla (jako po spušění). To se posupně opakuje, čím dál rycleji a s menšími odnoami ryclosi, jak se zmenšuje výška výskoků. Pedagogická poznámka: V bodě b) jsou před konrolou časější špičaé grafy, po konrole by se při řešení bodu c) měl jejic poče zmenši. Pokud si někdo všimne, že grafy v bodec b) a c) jsou ve skuečnosi sejné, zaslouží si velkou pocvalu (zvlášě v případě, že se ak sane ješě před změřením poybu). Př. 5: Před zavedením leu uvedeným v prvním příkladu bylo nejdelší leeckou linkou spojení Dubaj-Los Angeles. Trasa vedoucí přes severní pól má délku přibližně km. Linka odléá z Dubaje v 8:20 a na mezinárodní leišě v Los Angeles přileí ve 12:50 amnío času éož dne. Zpáeční le odléá z Los Angeles v 16:00 a do Dubaje přiléá v 19:50 následujícío dne. Urči ryclos leadla při obou cesác. Zajímavé rozdíly vysvěli. Dobu leu nemůžeme vypočía jako pouý rozdíl časů (le z Dubaje do Los Angeles by rval jen 4,5 odiny, zpáeční naopak 27 odin 50 minu), musíme zoledni o, že obě měsa leží v různýc časovýc pásmec: Dubaj: +4 (o čyři odiny více než UTC na nulém poledníku v Greenwici v Anglii), Los Angeles: 8, rozdíl časovýc pásem je 12 (při leu z Dubaje do Los Angeles k rozdílu mísníc časů 12 přičíáme, při zpáečním leu naopak 12 odin odečíáme). Le Dubaj - Los Angeles s = km, = 4, = 16,5 s v = = km/ = 810 km/ 16,5 Le Los Angeles - Dubaj s = km, = min 12 = min = 15,8 4

5 s v = = km/ = 850 km/ 15,8 Při cesě z Dubaje do Los Angeles leí leadlo ryclosí 810 km/, při zpáeční cesě pak ryclosí 850 km/. Dodaek: Rozdílná ryclos leadla vůči zemi je věšinou způsobena ím, že leadlo se poybuje cesovní ryclosí vůči vzducu, kerý se věšinou vůči zemi poybuje. Ve vyššíc vrsvác amosféry je proudění vzducu usálenější než při zemi, při cesě z Dubaje do Los Angeles ak leadlo zřejmě leí po věší čás cesy proi věru než při zpáeční cesě. U někerýc leeckýc linek je eno rozdíl daleko výraznější. Pedagogická poznámka: Na začáku příkladu neupozorňuji na časová pásma ani na nic jinéo, případné doazy se snažím řeši individuálně, aby řída nic neposřela. Při řešení povoluji (jako sandardně u podobnýc příkladů) přísup na inerne. Srnuí: Někeré druy železa si zmagneování ucovávají. 5

2.2.9 Jiné pohyby, jiné rychlosti II

2.2.9 Jiné pohyby, jiné rychlosti II 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Nakloněná rovina I

Nakloněná rovina I 1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

1.1.13 Poskakující míč

1.1.13 Poskakující míč 1.1.13 Poskakující míč Předpoklady: 1103, 1106 Pedagogická poznámka: Tato hodina je zvláštní tím, že si na začátku nepíšeme její název. Nový druh pohybu potřebujeme nový pokus Zatím jsme stále na začátku

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

2.6.5 Výměny tepla při změnách skupenství

2.6.5 Výměny tepla při změnách skupenství 2.6.5 Výměny epla při změnách skupensí Předpoklady: 2604 Opakoání: Teplo se spořeboáá na da druhy dějů: zyšoání eploy: Q = mc, změna skupensí: Q = mlx. Tepelné konsany ody: c( led ) = 2000 J kg K, l =

Více

Vztahy mezi veličinami popisujíscími pohyb

Vztahy mezi veličinami popisujíscími pohyb 1.1.23 Vzhy mezi veličinmi popisujíscími pohyb Předpokldy: 010122 Pedgogická poznámk: Cílem hodiny je: získání ciu pro diferenciální chování veličin, nácvik dovednosi dodržování prvidel (kreslení derivovných

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

2.6.5 Výměny tepla při změnách skupenství

2.6.5 Výměny tepla při změnách skupenství 2.6.5 Výměny epla při změnách skupensí Předpoklady: 2604 Opakoání: Teplo se při změnách skupensí spořeboáá na da druhy dějů: zyšoání eploy: Q = mc, změna skupensí: Q = mlx. Tepelné konsany ody: c( led

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

kolmo dolů (její velikost se prakticky nemění) odpor vzduchu F

kolmo dolů (její velikost se prakticky nemění) odpor vzduchu F .6.4 Sislý r Předpoklady: 6, 6 Pedagogická poznámka: Obsa odpoídá spíše děma yučoacím odinác. Z lediska dalšíc odin je důležié dopočía se k příkladu číslo 7. Hodina paří mezi y, keré záisí na znalosec

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Sbírka B - Př. 1.1.5.3

Sbírka B - Př. 1.1.5.3 ..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

1.3.5 Dynamika pohybu po kružnici I

1.3.5 Dynamika pohybu po kružnici I 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Newtonův zákon II

Newtonův zákon II 1.2.4 1. Newonův záon II Předpolady: 1203 Pomůcy: rubice, papír. Př. 1: Rozhodni, eré z následujících vě můžeme chápa jao další formulace 1. Newonova záona. a) Je-li výslednice sil, eré působí na ěleso,

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje rojek realizoaný na SŠ Noé Měo nad Meují finanční podporou Operační prorau Vzděláání pro konkurencecopno Králoéradeckéo kraje Modul 03 - Tecnické předěy In. Jan Jeelík . Mecanická práce oybuje-li e oný

Více

Pouť k planetám - úkoly

Pouť k planetám - úkoly Nemůže Slunce náhle ohrozi nečekaným výbuchem Vaši rakeu? záleží, v jaké vzdálenosi se nachází, důležié je uvědomi si akiviu Slunce (skvrny, prouberance, nebezpečné výrysky plazmau a následný proud nabiých

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Úloha II.E... je mi to šumák

Úloha II.E... je mi to šumák Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi

Více

Nakloněná rovina II

Nakloněná rovina II 1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 Elekyromagneická indukce je velmi důležiý jev, jeden ze základů moderní civilizace. Všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

Příklad 4 Ohýbaný nosník - napětí

Příklad 4 Ohýbaný nosník - napětí Příklad 4 Oýaný nosník - napěí Teorie Prosý o, rovinný o Při prosé ou je průře naáán oový oene oáčející kole jedné lavníc os servačnosi průřeu, ovkle os. oen se načí neo jeno. Běžněji je ožné se seka s

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

15600 Hz = khz 483 khz = 0, MHz = 1,5

15600 Hz = khz 483 khz = 0, MHz = 1,5 Zvukové jevy 1 Auor: Miroslav Randa 1. V kovárně se železo pro snazší zpracování zahřívá ve výhni na vysokou eplou. Po úderu pak zahřáý kus železa snadno mění svůj var. Je ako zahřáé ěleso pružným, nebo

Více

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D 1.a) Graf v km h 1 Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kaegorie D 50 Auor úloh: J. Jírů 40 30 0 10 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 6bodů b) Pomocí obahu plochy pod grafem určíme dráhu

Více

2.6.4 Kapalnění, sublimace, desublimace

2.6.4 Kapalnění, sublimace, desublimace 264 Kapalnění, sublimace, desublimace Předpoklady: 2603 Kapalnění (kondenzace) Snižování eploy páry pára se mění v kapalinu Kde dochází ke kondenzaci? na povrchu kapaliny, na povrchu pevné láky (orosení

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGOIE EF Výledky řešení úlo 45. ročníku FO ka. E F Ivo Volf * ÚV FO Univerzia Hradec Králové Mirolav anda ** ÚV FO Pedagogická fakula ZČU Plzeň Jak je již v naší ouěži obvyklé uvádíme pouze

Více

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 DRUHY POHYBŮ Velikosti okamžité rychlosti se většinou v průběhu pohybu mění Okamžitá rychlost hmotného bodu (její velikost i

Více

Úloha IV.E... už to bublá!

Úloha IV.E... už to bublá! Úloha IV.E... už o bublá! 8 bodů; průměr 5,55; řešilo 42 udenů Změře účinno rychlovarné konvice. Údaj o příkonu naleznee obvykle na amolepce zepodu konvice. Výkon určíe ak, že zjiíe, o kolik upňů Celia

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Pilové pásy PILOUS MaxTech

Pilové pásy PILOUS MaxTech Pilové pásy PILOUS MaxTech Originální pilové pásy, vyráběné nejmodernější echnologií z nejkvalinějších německých maeriálů, za přísného dodržování veškerých předepsaných výrobních a konrolních posupů. Zaručují

Více

MATEMATIKA Srovnávací pololetní práce; příklady 8. ročník, II. pololetí

MATEMATIKA Srovnávací pololetní práce; příklady 8. ročník, II. pololetí MATEMATIKA Srovnávací pololení práce; příklay 8. ročník, II. pololeí I. Lineární rovnice: Řeše rovnice a proveďe zkoušku: a) (y ) (y ) ) 8(9 p) ( p) c) (r ) (r ) (r ) (r ) ) 8(m -) (m ) 8(m ) (m ) e) (a

Více

É Ý Ú Ó ď Ý Ý Í ň ř Í É Š Ý Í Ž š ř ď ť Ž ř č š š čš ž ř č ů ď š ů ů řš ž ž ř ž ž č ů č ú ž č ř š ž ů ř ž ž šš Ť ň š ů ť č š ř Í ů ž úč ů ř ř Ž š š č ť úč ů č ď š Š ř ř ř ď ď Í č ž š ůž ř úč ůž č ď ž ž

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper o. 1/24 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ISIU PRO EKOOMICKOU A EKOLOGICKOU POLIIKU VYSOKÁ ŠKOLA EKOOMICKÁ V PRAZE AKULA ÁROOHOSPOÁŘSKÁ

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f )

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f ) 1 Pracovní úkoly 1. Zěřte tuost k pěti pružin etodou statickou. 2. Sestrojte raf závislosti prodloužení pružiny na působící síle y = i(f ) 3. Zěřte tuost k pěti pružin etodou dynaickou. 4. Z doby kitu

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

4. SEMINÁŘ Z MECHANIKY

4. SEMINÁŘ Z MECHANIKY - 9-4. SEMINÁŘ Z MECHNIKY 4. Čloěk drží jeden konec prkn, jeož druý konec leží n álci. Čloěk zčne posou prkno kupředu k, by se álec lil po odoroné roině bez prokluzoání by ni prkno po álci neklouzlo. Jkou

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

REV23.03RF REV-R.03/1

REV23.03RF REV-R.03/1 G2265 REV23.03RF Návod k monáži a uvedení do provozu A D E B C F G2265C_REV23.03RF 15.02.2006 1/8 G K H L LED_1 LED_2 I M 2/8 15.02.2006 G2265C_REV23.03RF Pokyny k monáži a volbě umísění vysílače REV23.03RF

Více

Cíl a následující tabulku. t [ s ] s [ mm ]

Cíl a následující tabulku. t [ s ] s [ mm ] 1.1.8 Rychlost I Předpoklady: 010107 Pomůcky: Rychlost: kolik ukazuje ručička na tachometru, jak rychle se míhá krajina za oknem, jak rychle se dostaneme z jednoho místa na druhé. Okamžitá rychlost se

Více

( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př.

( ) ( )( ) ( x )( ) ( )( ) Nerovnice v součinovém tvaru II. Předpoklady: Př. .. Nerovnice v součinovém tvaru II Předpoklady: 0 Př. 1: Řeš nerovnici x x 0. Problém: Na levé straně není součin musíme ho nejdříve vytvořit: x x x x x x x x x x + 0. ( ( ( = = + řešíme nerovnici: ( (

Více

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka:

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka: .5.9 Zákon zacování mecanické energie III Předpoklady: 58 Dokonale pružný centrální ráz dvou koulí v v m m Speciální typ srážky, situace známá z kulečníku: dokonale pružný: při srážce se neztrácí energie,

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

ecosyn -plast Šroub pro termoplasty

ecosyn -plast Šroub pro termoplasty ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Nepřímá úměrnost I

Nepřímá úměrnost I .. Nepřímá úměrnost I Předpoklady: 000 Př. : Která z následujících slovních úloh popisuje nepřímou úměrnost? Zapiš nepřímou úměrnost jako funkci. a) 7 rohlíků stojí Kč. Kolik bude stát rohlíků? b) Pokud

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Popis regulátoru pro řízení směšovacích ventilů a TUV

Popis regulátoru pro řízení směšovacích ventilů a TUV Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

1.3.11 Třecí síla II. Předpoklady: 010310. Pomůcky: kvádr, souprava na tření, siloměr Vernier, LABQuest mini

1.3.11 Třecí síla II. Předpoklady: 010310. Pomůcky: kvádr, souprava na tření, siloměr Vernier, LABQuest mini .. Třecí síla II Předpoklady: 000 Pomůcky: kvádr, souprava na tření, siloměr Vernier, LABQuest mini Pedagogická poznámka: Většina žáků předpokládá, že tření působí jen při pohybu. V diskusi však rychle

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Název: Měření zrychlení těles při různých praktických činnostech

Název: Měření zrychlení těles při různých praktických činnostech Název: Měření zrychlení těles při různých praktických činnostech Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny

Více

2.5.15 Trojčlenka III

2.5.15 Trojčlenka III .5.15 Trojčlenka III Předpoklady: 0051 Př. 1: Doplň tabulku, která udává vzdálenost, kterou je možné ujít za různé doby velmi rychlou chůzi. Kolik kilometrů ujdeme touto rychlostí za 1 hodinu? doba chůze

Více

KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204

KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST. Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 KINEMATIKA 4. PRŮMĚRNÁ RYCHLOST Mgr. Jana Oslancová VY_32_INOVACE_F1r0204 OPAKOVÁNÍ Otázka 1: Jak se vypočítá změna veličiny (např. dráhy, času) mezi dvěma měřeními? Otázka 2: Jak se vypočítá velikost

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Cíl a následující tabulku: t [ s ] s [ mm ]

Cíl a následující tabulku: t [ s ] s [ mm ] .. Rychlost Předpoklady: 0 Rychlost: kolik ukazuje ručička na tachometru jak rychle se míhá krajina za oknem jak rychle se dostaneme z jednoho místa na druhé Okamžitá rychlost se při jízdě autem neustále

Více

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá 4..4 Funkce tangens Předpoklady: 40 c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro

Více

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY foto: zdroj www.google.cz foto: zdroj www.google.cz foto: zdroj www.google.cz Na obrázku je graf závislosti dráhy tělesa na čase. Odpověz na otázky:

Více

POPIS OBVODŮ U2402B, U2405B

POPIS OBVODŮ U2402B, U2405B Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody

Více

Přírodní vědy aktivně a interaktivně

Přírodní vědy aktivně a interaktivně Přírodní vědy aktivně a interaktivně Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/01.0040 Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová škola stavební,

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

MULTIFUNKČNÍ ČASOVÁ RELÉ

MULTIFUNKČNÍ ČASOVÁ RELÉ N Elekrická relé a spínací hodiny MULIFUNKČNÍ ČASOVÁ RELÉ U Re 1 2 0 = 1+2 Ke spínání elekrických obvodů do 8 A podle nasaveného času, funkce a zapojení Především pro účely auomaizace Mohou bý využia jako

Více

á ář á ř ř Č ř áč ě řá ú á ř č á á á á á ú ů ř ř Č á ř á á á Š ž č ě ř č ý ů á á ř ř ú á ř ž ý ý á á ž á ř č ů á á ů ř ý ý áš á ěř á ž á á ěř á á ř ž á ě ě á á žá á ů ý ř žá ř ě č ě á ě á ř ž ú ů ř ř ž

Více

Pracovní list - Laboratorní práce č. 2 Jméno: Třída: Skupina:

Pracovní list - Laboratorní práce č. 2 Jméno: Třída: Skupina: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 2 Jméno: Třída:

Více

4. KINEMATIKA - ZÁKLADNÍ POJMY

4. KINEMATIKA - ZÁKLADNÍ POJMY 4. KINEMATIKA - ZÁKLADNÍ POJMY. Definuj pojem hmoný bod /HB/. 2. Co o je vzažná ouava? 3. Co je o mechanický pohyb? 4. Podle jakých krierií můžeme mechanický pohyb rozlišova? 5. Vyvělee relaivno klidu

Více