Synchrotronové záření Čerenkovovo záření Zdroje mikrovln. Mgr. Jan Pipek Dostupné na

Rozměr: px
Začít zobrazení ze stránky:

Download "Synchrotronové záření Čerenkovovo záření Zdroje mikrovln. Mgr. Jan Pipek Dostupné na"

Transkript

1 Synchrotronové záření Čerenkovovo záření Zdroje mikrovln Mgr. Jan Pipek Dostupné na

2 Synchrotronové záření

3 Synchrotronové záření historie 1054 Výbuch supernovy v dnešní Krabí mlhovině jako první historicky zaznamenaný zdroj synchrotronového záření 1898 Liénard (+Wiechert): Řešení Maxwellových rovnic pro pohybující se náboj 1947 Objev synchrotronového záření na synchrotronu v General Electric 1949(54) Schwinger: Klasická (kvantová) teorie SZ 1956 G. R. Burbridge zpozoroval synchrotronové záření v galaxii M87

4 Synchrotronové záření motivace O několik řádů větší intenzita než běžné rentgenky Velmi úzký svazek (v mrad) Krátké pulsy (1 ns a méně) V rovině svazku téměř 100% polarizované Velký rozsah spektra od radiových vln až po rentgen Vzhledem k výrazné závislosti na γ je neefektivní používat k produkci SZ jiné částice než elektrony

5 Synchrotronové záření vznik (1) Výkon vyzařování pohybujícího se elektronu je dán Liénardovým vztahem e 6 2 P= 3 4 o c [ ] Při rozložení na členy odpovídající podélnému a příčnému zrychlení je patrné, že příčné zrychlení v reálných aplikací drtivě převažuje.

6 Synchrotronové záření vznik (2) Směrové rozdělení záření v klidové soustavě elektronu je symetrické, ovšem v laboratorní je kolimováno do úzkého svazku ve směru tečném k pohybu elektronu.

7 Synchrotronové záření vlastnosti (1) Zářivý výkon na trajektorii s poloměrem zakřivení ρ lze též zapsat jako c C E4 P= 2 2 kde Cγ = 8, m. GeV-3 Šířka kuželu záření se mění pro různé energetické složky je řádově rovna 1/γ a s rostoucí energií záření se snižuje. V rovině, kterou tvoří vektor zrychlení a trajektorie částice, je záření lineárně polarizované, mimo ni elipticky polarizované.

8 Synchrotronové záření vlastnosti (2) Vzhledem k malému vyzařovacímu úhlu pozorujeme fotony jen z velmi krátké části obvodu synchrotronu. Doba trvání pulsu, jak ji pozorujeme v laboratorní soustavě, je dána rozdílem času, za které daný úsek proletí fotony a elektrony. Náskok fotonů je jen velice nepatrný, a tedy je puls velmi krátký (obvykle pod 1 ns). 4 t= 3 3c

9 Synchrotronové záření spektrum (1) Hlavním parametrem pro popis spektra je kritická (úhlová) frekvence definovaná jako 3 3 c = c 2 Tvar spektra je stejný pro každou energii částic (viz obrázek) Pokud jsou použity wigglery nebo undulátory, spektrum se pochopitelně mění.

10 Synchrotronové záření spektrum (2)

11 Zdroje synchrotronového záření (1) I. generace: Běžné synchrotrony používané kromě částicového výzkumu i jako zdroj SZ II. generace: dedikované akumulační prstence sloužící primárně jako zdroje SZ III. generace: akumulační prstence se speciálními vloženými prvky (wigglery, undulátory), které zvyšují výtěžek záření.

12 Zdroje synchrotronového záření (2) Undulátory Do cesty elektronu je periodicky umístěno několik slabých magnetických polí, které nutí elektron k vlnitému pohybu Kmitající elektron emituje elektromagnetické vlnění o vlnové délce úměrné periodě magnetické struktury Výsledná vlnová délka je kratší faktorem γ2 (elektron vidí kratší vzdálenosti mezi magnety + Dopplerův efekt) Vzniklé záření je koherentní, spektrum čárové, laditelné

13 Zdroje synchrotronového záření (3) Undulátory (pokr.) V typickém synchrotronu je γ v řádu tisíců, a tedy vlnová délka je 106 až 108krát menší než perioda struktury v oblasti UV a rentgenového záření Wigglery Jsou použita silnější magnetická pole Spektrum se skládá z mnoha čar, efektivně je spojité. Záření je spojité. Jako zdroj slouží (a dříve výhradně) pochopitelně i obyčejné ohýbací magnety.

14 Synchrotronové záření spektrum (3) Převzato ze stránek synchrotronu Spring-8

15 Zdroje synchrotronového záření (4) 123-pólový undulátor, Cornell University, USA Záření dosahuje energie 24 kev 10-pólový wiggler, SRS, UK Záření dosahuje energie 10 kev

16 Synchrotronové záření ukázka Zdroj: Wikimedia Commons

17 Využití synchrotronového záření (1) Rentgenová mikroskopie Využívají se (většinou) zaostřené rentgenové svazky. Díky tomu lze dosáhnou rozlišení až v řádu desítek nm Zobrazení tenkých vrstev a povrchů Využití v biologii (třeba zmrazit vzorky!) i v materiálovém výzkumu Pulsní charakter SZ umožňuje sledovat vývoj v čase Transmission X-Ray Microscopy (TXM) Scanning Transmission X-Ray Microscopy (STXM) X-Ray Photoemission Electron Microscopy (XPEEM)

18 Využití synchrotronového záření (2) Rentgenová mikroskopie (pokr.) Tři fáze napadení buňky malárií pozorované 2,4nm paprsky: 1) zdravá buňka, 2) čerstvě napadená buňka, 3) napadená buňka po 36 h

19 Využití synchrotronového záření (3) Rentgenová spektroskopie Existuje celá řada spektroskopických metod, které využívají existence elektronových atomových i molekulárních hladin Synchrotron poslouží jako zdroj monochromatického rentgenového (nebo tvrdého UV) záření Slouží především k určení chemického složení vzorků X-Ray Absorption Spectroscopy (XAS) X-Ray Photoelectron Spectroscopy (XPS) Resonant Inelastic X-ray Scattering (RIXS)

20 Využití synchrotronového záření (4) Rentgenová mikrotomografie Umožňuje získat plně trojrozměrný obraz drobných objektů s rozlišením na úrovni mikrometrů i lepším. Princip je stejný jako CT Zkoumají se buněčné struktury v biologii, struktura kostí v medicíně, používá se v archeologii, paleontologii, ekologii, při výzkumu magnetických materiálů, stavebních materiálů Cévní struktura v plicích (velikost pixelu 7 μm)

21 Využití synchrotronového záření (5) Rentgenová krystalografie Využívá se difrakce rentgenového záření (obecně o více frekvencích) na krystalu zkoumané látky Na fotografické desce vznikne Fourierův obraz elektronové hustoty struktury, jejž je třeba zpětně rekonstruovat Používá se pro výzkum struktury krystalických látek od jednoduchých anorganických látek až po makromolekulární látky (nepř. proteiny) Elastický (struktura) i neelastický (elektronové hladiny) rozptyl Small Angle X-Ray Scattering (SAXS) malý zkoumaný úhel, větší rozměry molekul

22 Využití synchrotronového záření (6) Rentgenová krystalografie (pokr.) Typický detekovaný difrakční obrazec Výsledek rekonstrukce (jiného obrazce) Molekula hemoglobinu

23 Využití synchrotronového záření (7) Rentgenová litografie Metoda, která nahrazuje optickou litografii při výrobě polovodičů. Do fotocitlivé vrstvy na povrchu křemíku se vypaluje maska (většinou v poměru 1:1), která je posléze chemicky fixována Používají se paprsky o vlnové délce v řádu desetin nanometru. Dosažitelné rozlišení činí desítky nm.

24 Využití synchrotronového záření (8) Nepřímá radioterapie Do nádorové tkáně se dopraví atomy těžkých kovů (Lu, Gd, Pt) Pokud je ozařujeme zářením na úrovni jejich K-hrany (~50 kev), absorbují výrazně více energie než okolní tkáň (Photon Activation Therapy) Vlastní terapeutický efekt mají na svědomí Augerovy elektrony

25 Významné projekty European Synchrotron Radiation Facility, Grenoble Spring-8, Japonsko - Advanced Photon Source (APS), Argonne National Laboratory -

26 Čerenkovovo záření

27 Čerenkovovo záření historie 1888 Heaviside předpovídá, že těleso s nadsvětelnou rychlostí vyzařuje. Čerenkovovo záření bylo pozorováno již od počátku 20. století, ovšem nikdo jej nedokázal uspokojivě vysvětlit P. A. Čerenkov spolu s Vavilovem pozorovali modré světlo při průchodu gama záření kapalinou a snažili se neúspěšně zjistit jeho původ I. M. Frank a I. J. Tamm jev vysvětlili Čerenkov, Frank a Tamm za své objevy dostali Nobelovu cenu.

28 Čerenkovovo záření vznik (1) Když nabitá částice (nejčastěji elektron) prochází nevodivým prostředím, polarizuje atomy. Následná depolarizace má za následek vznik elektromagnetických vln. Vlny, vznikající podél trajektorie částice, lze složit díky Huyghensovu principu: Pokud se pohybuje pomaleji než světlo v daném prostředí (nikoliv však c!), nedochází k žádnému zesílení. Pokud se pohybuje rychleji (nikoliv však rychleji než c!), vlnoplochy se skládají do rovinné vlny.

29 Čerenkovovo záření vznik (2) To je splněno, pokud 1 cos = n Lze vypočítat minimální β, a tedy i minimální energii nabité částice: E min = n 2 m0 c m0 c Např. ve vodě (n = 1,33) to pro elektrony znamená energii 260 kev, pro protony 460 GeV. 2

30 Čerenkovovo záření vznik (3) Světlo se šíří pouze pod tímto úhlem, a tedy vzniká světelný kužel. Ztráta energie částice díky Čerenkovovu záření je oproti jiným ztrátám zanedbatelná (více než tisíckrát menší). Množství energie vyzářené s danou frekvencí na jednotkovou dráhu dráhy částice je vyjádřeno vztahem 2 2 dw 4 q 1 f = f dl hc n

31 Čerenkovovo záření spektrum Je vidět, že Čerenkovovo záření preferuje kratší vlnové délky s maximem v ultrafialové oblasti spektra. I proto pozorujeme záření jako modré. Index lomu pro kratší vlnové délky klesá k jedničce (a níž), a tedy nepozorujeme energii vyzářenou v podobě rentgenových ani pronikavějších paprsků.

32 Čerenkovovy detektory Detektor se skládá z průhledného média o vysokém indexu lomu (radiátoru) a fotonásobičů. Čerenkovovy detektory jako jediné mají principiální spodní mez pro energie zaznamenaných částic. Protože měří rychlost, lze je v kombinaci s měřením hybnosti použít k jednoznačné identifikaci částic. Množství fotonů je malé, proto je třeba citlivých fotonásobičů a prostředí, které samo nescintiluje. Odezva detektoru je velmi rychlá (~ps), zpoždění je dáno fotonásobičem.

33 Čerenkovovy detektory ukázka Ukázka odezvy fotonásobičů v Superkamiokande. Různé barvy označují různé doby příchodu fotonů.

34 Využití Čerenkovova záření (1) Projekt Auger používá Čerenkovovy detektory jako jeden ze dvou zdrojů informací o kosmických částicích s velmi vysokými energiemi (kromě nich ještě fluorescenci dusíku v atmosféře). Projekty (Superkamiokande, SNO, Ice Cube), zkoumající vlastnosti neutrin pomocí Čerenkovových detektorů k identifikaci leptonů z reakcí neutrin. Další projekty (ALICE, BaBar,...) částicové fyziky využívají Čerenkovovy detektory pro identifikaci částic.

35 Využití Čerenkovova záření (2) V reaktorech intenzita Čerenkovova záření odpovídá četnosti štěpných reakcí. Koherentní Čerenkovovo záření se používá pro diagnostiku elektronových svazků na urychlovačích, ale i na tokamacích. Čerenkovovo záření se dá využít v biochemii, pokud jsou použity označené biomolekuly (např. pomocí 32P).

36 Mikrovlnné zdroje

37 Mikrovlnné zdroje srovnání Magnetron Nižší napětí Menší velikost Použité např. v mikrovlnné troubě Klystron Větší výkon Větší velikost Vhodné pro velké urychlovače

38 Magnetron historie 1920 Albert Hull (USA): princip dvoupolóvého magnetronu 1924 August Žáček (ČSR): magnetron by šlo použít ke generování mikrovln 1935 Hans Hollman (Německo): princip rezonančního magnetronu 1940 J. Randall & H.Boot (UK): funkční exemplář tohoto zařízení, použití v 2. světové válce (spojenci)

39 Magnetron princip (1) Ze žhavicí katody unikají elektrony, které směřují k anodě ve vnější části. Magnetické pole (modře) vychyluje elektrony do kruhového pohybu (červeně). Proudy budí v dutinách jejich rezonanční frekvenci.

40 Magnetron princip (2) Katoda je válec, pokrytý vrstvou oxidu, zahřívání je nepřímé pomocí wolframového vlákna.

41 Magnetron ukázky

42 Klystron historie 1937 Bratři Varianovi (USA) navrhli a sestrojili první funkční klystron. Během druhé světové války zdroj mikrovln pro radary Osy (tehdy slabší než magnetron).

43 Klystron princip (1) Zdroj: wikipedia

44 Klystron princip (2) dutinových rezonátorech proud V elektronů budí jejich rezonanční frekvenci. Používá se lineární svazek elektronů, pocházející z běžné žhavé katody. V první dutině slabý zdroj mikrovln urychluje elektrony různou měrou. V jisté vzdálenosti od této dutiny se elektrony seřadí do krátkých pulsů (o různých rychlostech) tam se umístí druhá dutina. Mikrovlny jsou odsud odvedeny vlnovody.

45 Klystron ukázka Klystron pro Japan Proton Accelerator Research Complex

46 Toť vše! Děkuji za pozornost a přeji hodně štěstí u zkoušky.

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

Chemie a fyzika pevných látek l

Chemie a fyzika pevných látek l Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Krystalografie a strukturní analýza

Krystalografie a strukturní analýza Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Analýza vrstev pomocí elektronové spektroskopie a podobných metod 1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

Slunce zdroj energie pro Zemi

Slunce zdroj energie pro Zemi Slunce zdroj energie pro Zemi Josef Trna, Vladimír Štefl Zavřete oči a otočte tvář ke Slunci. Co na tváři cítíte? Cítíme zvýšení teploty pokožky. Dochází totiž k přenosu tepla tepelným zářením ze Slunce

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

Teorie rentgenové difrakce

Teorie rentgenové difrakce Teorie rentgenové difrakce Vlna primárního záření na atomy v krystalu. Jádra atomů zůstanou vzhledem ke své velké hmotnosti v klidu, ale elektrony jsou rozkmitány se stejnou frekvencí jako má primární

Více

Difrakce elektronů v krystalech a zobrazení atomů

Difrakce elektronů v krystalech a zobrazení atomů Difrakce elektronů v krystalech a zobrazení atomů Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Eva Korytiaková, Gymnázium Nové Zámky, korpal@pobox.sk Abstrakt: Jak vypadá vnitřek hmoty? Lze spatřit

Více

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla

Více

RTG difraktometrie 1.

RTG difraktometrie 1. RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat

Více

Elektronová Mikroskopie SEM

Elektronová Mikroskopie SEM Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne

Více

Balmerova série, určení mřížkové a Rydbergovy konstanty

Balmerova série, určení mřížkové a Rydbergovy konstanty Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální

Více

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Kvarta 2 hodiny týdně

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda

Přednáška 12. Neutronová difrakce a rozptyl neutronů. Martin Kormunda Přednáška 12 Neutronová difrakce a rozptyl neutronů Neutronová difrakce princip je shodný s rentgenovou difrakcí platí Braggova rovnice nλ = 2d sin θ Rozptyl záření na atomomech u XRD záření interaguje

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24 MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Lasery RTG záření Fyzika pevných látek

Lasery RTG záření Fyzika pevných látek Lasery RTG záření Fyzika pevných látek Lasery světlo monochromatické koherentní malá rozbíhavost svazku lze ho dobře zfokusovat aktivní prostředí rezonátor fotony bosony laser stejný kvantový stav učební

Více

Experimentální laboratoře (beamlines) ve Středoevropské synchrotronové laboratoři (CESLAB)

Experimentální laboratoře (beamlines) ve Středoevropské synchrotronové laboratoři (CESLAB) www.synchrotron.cz www.ceslab.cz www.ceslab.eu Experimentální laboratoře (beamlines) ve Středoevropské synchrotronové laboratoři (CESLAB) Petr Mikulík Ústav fyziky kondenzovaných látek Masarykova univerzita

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor MŽP K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb 1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev

Více

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe

Více

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.

Fotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření. FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika 336 28 NELINEÁRNÍ OPTIKA Nelineární optické jevy Holografie a optoelektronika Světelná vlna (jako každá jiná vlna) vyjádřená ve tvaru y=y o sin (út - ) je charakterizována základními charakteristikami:

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY 4.1 Mikrostruktura stavebních hmot 4.1.1 Úvod Vlastnosti pevných látek, tak jak se jeví při makroskopickém zkoumání, jsou obrazem vnitřní struktury materiálu. Vnitřní

Více

Vysoké frekvence a mikrovlny

Vysoké frekvence a mikrovlny Vysoké frekvence a mikrovlny Osnova Úvod Maxwellovy rovnice Typy mikrovlnného vedení Použití ve fyzice plazmatu Úvod Mikrovlny jsou elektromagnetické vlny o vlnové délce větší než 1mm a menší než 1m, což

Více

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření. KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné

Více

Počátky kvantové mechaniky. Petr Beneš ÚTEF

Počátky kvantové mechaniky. Petr Beneš ÚTEF Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl

Více

Kosmické záření a jeho detekce stanicí CZELTA

Kosmické záření a jeho detekce stanicí CZELTA Kosmické záření a jeho detekce stanicí CZELTA Jiří Slabý slabyji2@fjfi.cvut.cz 30.10.2008, Fyzikální seminář, Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze Co nás čeká

Více

Elektronová mikroskopie a mikroanalýza-2

Elektronová mikroskopie a mikroanalýza-2 Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství

Více

Fyzika. 7. Motor o příkonu 5 kw pracuje s účinností 80 %. Pracuje-li 1 hodinu, vykoná práci: a) 14, J b) Wh c) 4 kwh d) kj

Fyzika. 7. Motor o příkonu 5 kw pracuje s účinností 80 %. Pracuje-li 1 hodinu, vykoná práci: a) 14, J b) Wh c) 4 kwh d) kj Fyzika 1. Která veličina je bezrozměrná? a) permitivita prostředí b) relativní permeabilita prostředí c) zvětšení čočky d) absolutní index lomu prostředí 2. Do odměrného válce o vnitřním průměru 50 mm

Více

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření

Více

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

Úloha č. 1: CD spektroskopie

Úloha č. 1: CD spektroskopie Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Spektrometrie záření gama

Spektrometrie záření gama Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

INSTRUMENTÁLNÍ METODY

INSTRUMENTÁLNÍ METODY INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,

Více

Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček

Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Metody skenovací elektronové mikroskopie SEM a analytické techniky Jiří Němeček Druhy mikroskopie Podle druhu použitého paprsku nebo sondy rozeznáváme tyto základní druhy mikroskopie: Světelná mikrokopie

Více