Název: Let do vesmíru přistání raketoplánu

Rozměr: px
Začít zobrazení ze stránky:

Download "Název: Let do vesmíru přistání raketoplánu"

Transkript

1 Název: Let do vesmíru přistání raketoplánu Témata: exponenciály, diferenciály, teplota, rychlost, dráha a čas, hustota vzduchu, konverze energie. Čas: 35 minut Věk: 6+ Diferenciace: Vyšší úroveň: Diferenciální rovnici je možno řešit bez využití programu CAS, jak je vidět na listu s řešením a. Nižší úroveň: Je možné poskytnout studentům nápovědu, celý list s řešením, nebo může být diferenciální rovnice vypuštěna úplně. Instrukce, IT podpora atd.: K pracovním listům a jsou k dispozici listy s řešením. Podle úrovně předchozích znalostí a matematických schopností studentů mohou zůstat zakryté, učitel je může dát celé studentům, poskytnout studentům jen nápovědu, nebo řešení vůbec v hodině nepoužívat. List s řešením využívá k řešení diferenciální rovnice programu CAS, list a řeší tuto rovnici výpočtem. Pomůcky: Pracovní listy Připojení k internetu Volitelné: model raketoplánu Požadovaní znalosti: Pojmy týkající se typů energie Výstupy: Studenti budou schopni provést výpočty na pracovních listech, případně s použitím CAS a/nebo za využití nápovědy z listů s řešením. Studenti pochopí problémy tepelné izolace a jejich možná řešení. Studenti pochopí fyzikální principy odporu vzduchu. Studenti by měli být schopni spolupracovat v rámci týmu i mezi jednotlivými týmy, aby dosáhli výsledků. Funkce a derivace Pojem odpor vzduchu

2 Popis hodiny Úvodní aktivita Na začátku první hodiny učitel uvede téma přehrátím videa se startem a přistáním raketoplánu. I když raketoplán už ve skutečnosti nelétá, stále poskytuje zajímavý materiál pro matematiku a jiné přírodní vědy, a tyto principy jsou použitelné pro jakékoliv vesmírné plavidlo. Úvodní otázky jsou: Myslíte si, že raketoplán letí nejrychleji v nějakém bodě během vzletu, když je na oběžné dráze, nebo v nějakém bodě během přistávání? (Odpověď: když je na oběžné dráze). Tak proč má potom raketoplán skutečně horkou fázi pouze během přistávání? Jak je ve skutečnosti horká tato fáze? Studenti odpovědí na poslední dvě otázky odhadem a jejich odhady se napíší na tabuli). Hlavní aktivita Student vytvoří 4 týmy. Týmy si vyberou jedno z témat teplota, čas, izolace, nebo rychlost a obdrží odpovídající pracovní list. Týmy dostanou čas si přečíst obsah listu, porozumět mu, shrnout jeho obsah a pak si připravit poster a pětiminutovou prezentaci pro své spolužáky. Dokončení tohoto úkolu zabere první a druhou hodinu. Závěrečná aktivita Ve třetí hodině týmy vystoupí a prezentují celé třídě výsledky skupinové práce. Po každé pětiminutové prezentaci následuje pětiminutový blok otázek a odpovědí (vedený hlavně studenty, učitel by do něj měl vstupovat, pouze pokud odpovědi nejsou správně, nebo pokud jsou vynechána důležitá fakta týkající se tématu). Po skončení tohoto bloku by měli studenti znát nejdůležitější fakta o tématu. Hodina může být ukončena několika způsoby po prezentacích a blocích s otázkami a odpověďmi. Je možné diskutovat o současných letech do vesmíru, o historii letů raketoplánu, nebo může učitel odpovídat na další otázky.

3 Pracovní list teplota Jak horký je raketoplán během přistání? Než odpovíme na tuto otázku, musíme napřed zjistit, proč se raketoplán zahřívá. Odpověď je to, co se lidově nazývá odpor vzduchu. Molekuly vzduchu (zejména dusíku a kyslíku) narážejí na povrch pevné látky a malý zlomek kinetické energie se mění v energii tepelnou (nebo kinetickou energii molekul vzduchu). U relativně malé rychlosti k tomuto jevu dochází také, ale je příliš malý, než abychom ho zaznamenali když máváte rukama ve vzduchu, nic necítíte. Tento efekt je již měřitelný u rychlosti letadla. Při rychlosti raketoplánu (asi dvacetkrát vyšší než rychlost dopravního letadla) se tento jev stává velkým technickým problémem. Úkol: Nejteplejší fáze přistání je mezi dobou opuštění oběžné dráhy (tj. dobou, kdy začíná proces přistání) ve výšce km a při rychlosti v 5900 km/h, a dobou, kdy raketoplán sestoupí z pásma, kde je výpadek rádiového signálu (rádiové mlčení) ve výšce 55 km a při rychlosti v 3300 km/h. Jak se zvýší teplota povrchu raketoplánu v tomto období? (tepelná kapacita raketoplánu je J c 500 kgk ) Zajímavý fakt: díky efektu šokové vlny zahřívají raketoplán jen 4 % konvertované energie, zbytek energie zahřívá vzduch a našeho úkolu se netýká. Jak může raketoplán vydržet tuto teplotu? Zeptejte se týmu izolace!

4 Pracovní list čas Jak dlouho trvá horká fáze během přistání raketoplánu? Již víme, že odpor vzduchu je hlavním důvodem, proč se raketoplán zahřívá během přistání. Je to také hlavní důvod, proč raketoplán zpomaluje. Odpor vzduchu závisí a několika faktorech: rychlost v (hlavní faktor), hustota vzduchu ρ, (účinný) povrch objektu Aeff, a geometrický tvar objektu (popsán jako tvarový faktor nebo koeficient odporu vzduchu cd). Zpomalení je dáno a v m A eff c d Hmotnost, účinný povrch a tvarový faktor mohou být snadno stanoveny a zůstávají poměrně konstantní, ale hustota vzduchu závisí na výšce, počasí atd. Hustota vzduchu v zemské atmosféře v určité výšce h (v m) je dána h h 0 e, kde 0 3 kg,50 je hustota vzduchu u hladiny moře. m Úkol: Nejteplejší část přistání nastává mezi dobou sestupu (tj. dobou, kdy začíná proces přistání) ve výšce m a při rychlosti v 5900 km/h a dobou, kdy raketoplán sestoupí z pásma, kde je výpadek rádiového signálu ve výšce 55 km a při rychlosti v 3300 km/h. Povrch křídel raketoplánu je 50 m, přilétá s nosem zvednutým směrem nahoru v úhlu asi 40, jeho hmotnost při přistání je asi 00 t, koeficient odporu vzduchu je asi 0,078. (Poznámka: pro obzvláště jednoduché výpočty považujte hustotu vzduchu za konstantní hodnotu ). Teď známe rychlost v době vstupu do atmosféry a rychlost na konci rádiového mlčení, ale jaká je maximální rychlost? Zeptejte se týmu Rychlost!

5 Pracovní list 3 izolace Jak raketoplán vydrží vysokou teplotu? Teplota nejteplejších částí raketoplánu během přistání je > 500 C. To znamení, že použití běžných leteckých materiálů na raketoplán by jej dostatečně neochránilo před horkem při vstupu do atmosféry (ocel se taví při 530 C, hliník při 660 C a polykarbonát, z něhož se dělají okna letadla, se taví už při 55 C). Proto je povrch raketoplánu (zejm. části, které se zahřívají nejvíce, např. špička nosu, náběžné hrany křídel a v menší míře spodní strany trupu a křídel) pokryt tepelně izolačním systémem zesílený uhlík-uhlíkový laminát na kritických místech, izolační obkladové destičky z křemičité keramiky (která má vysoký bod tání a rychle chladne (viz obrázek vpravo nahoře) a ohebné izolační materiály na chladnějších místech. Úkol : Zjistěte, jaký materiál se používá na která místa raketoplánu. Pro jaký rozsah teplot se každý materiál používá? Úkol : Jaký je hlavní rozdíl mezi tepelně izolačním systémem raketoplánu a systémem, který se používal dříve pro rakety, např. kapsle (návratové pouzdro) lodi Apollo? Proč si myslíte, že se tento systém změnil? Jaké teploty ve skutečnosti raketoplán dosahuje? Zeptejte se týmu Teplota!

6 Pracovní list 4 rychlost Jak rychle letí raketoplán? Jak uvidíte, raketoplán rozhodně nemá konstantní rychlost, takže by otázka, jak rychle letí, měla být okamžitě doplněna o dotazy v jakém okamžiku a vzhledem k čemu. Koneckonců, rychlost je relativní! Pro zbytek této hodiny předpokládejme, že mluvíme o rychlosti vzhledem k Zemi. Úkol : Od okamžiku vzletu má raketoplán po dobu asi 6 sekund průměrné zrychlení 6,6 m/s. Toto zrychlení je zajištěno dvěma pomocnými startovacímu stupni (Solid Rocket Boosters [SRB]), což jsou dvě válcové rakety po stranách raketoplánu, a v menší míře i hlavními motory. Jak rychle letí raketoplán, když jeho spodní část míjí nejvyšší část startovací rampy (vzdálenost asi 05,8 m)? Úkol : Za 4 sekund letu SRB vyhoří a oddělí se od raketoplánu, který je pak poháněn pouze hlavními motory. V tomto okamžiku je rychlost km/h. Vypočítejte průměrné zrychlení raketoplánu od vzletu do oddělení SRB. Úkol 3: Na konci startovací fáze, 8 minut 30 sekund po vzletu, jsou hlavní motory vypojeny a raketoplán dosahuje své (téměř) konečné a maximální rychlosti km/h (zajímavý fakt: k určitému zvýšení rychlosti může dojít díky odpálení pomocných raket, ale je minimální). Jaké je průměrné zrychlení raketoplánu od oddělení SRB do vypojení hlavních motorů? A průměrné zrychlení během celého startu? Tak to byl start! A jak rychlý je raketoplán na začátku a na konci horké fáze během přistávání? Zeptejte se týmu Čas!

7 Let do vesmíru Přistání raketoplánu List s řešením teplota E kin m v kinetická energie E th mct tepelná energie Konverze energie: Rozdíl kinetické energie = rozdíl tepelné energie Teď vezměme v úvahu, že pouze 4 % konvertované energie zahřívají raketoplán: Rozdíl kinetické energie = 4% rozdílu tepelné energie E 0, 04 th E kin m c T m v m v 0,04 m 0,04 v v v v 0,04 T c Protože provádíme výpočty v metrickém systému, všechny jednotky (zde obzvláště rychlos musí být převedeny na standardní jednotky. Pro rychlost jsou to m/s. Faktor převodu mezi km/h a m/s je 3,6, tj. m/s = 3,6 km/h. Tak dojdeme k v 794 m/s av 3700 m/s. Teď můžeme vypočítat rozdíl teplot: T v 0,04 c v , Protože Celsiova a Kelvinova stupnice mají stejné jednotky relativní stupnice, můžeme také napsat, že teplotní rozdíl je 5 C.

8 Let do vesmíru Přistání raketoplánu List s řešením čas Začneme tím, že najdeme funkci, která vyjadřuje vztah mezi rychlostí v a časem t. Připomeneme si, že zpomalení je změna rychlosti v čase, tj. dv a S výše uvedenou rovnicí pro zpomalení odporem vzduchu dostaneme dv a v m A eff c d Toto je diferenciální rovnice, kterou můžeme vyřešit např. pomocí programu Computer Algebra System. Řešení je m A eff c d t 0,0004 Teď musíme jen vypočítat zbývající proměnné: hustotu vzduchu ρ, a účinný povrch objektu Aeff (hmotnost a koeficient odporu vzduchu, stejně jako rychlost raketoplánu v době, kdy opouští horkou fázi, jsou známy). Pokud jde o hustotu, předpokládáme, že je to konstantní : 55000m e kg 0,008 3 m Pokud jde o účinný povrch, mohli bychom se domnívat, že je stejný plocha křídel (50 m ), ale raketoplán přilétá pod úhlem 40. Skutečný úhel se může lišit díky letovým manévrům, které provádí palubní počítač, ale po většinu vstupu do atmosféry je to skutečně 40, tj. účinný povrch se snižuje o faktor sin 40 (když se podíváme na list papíru z úhlu 90, vidíme celý povrch, z jiného úhlu se povrch jeví menší): A eff 50 m sin m Nakonec dosadíme všechny hodnoty do rovnice pro rychlost a vypočítáme čas t: 0,0004 t A eff c d m 3653s 60min Doba mezi sestupem raketoplánu z oběžné dráhy a koncem rádiového mlčení je asi 60 minut..

9 List s řešením a čas Začneme funkcí vyjadřující vztah mezi rychlostí v a časem t. Připomeneme si, že zpomalení je změna rychlosti v čase, tj. a = dv S výše uvedenou rovnicí pro zpomalení odporem vzduchu dostaneme dv a v m A eff c d Toto je příslušná diferenciální rovnice v k v 0, s k A eff cd m Je snadné najít řešení, např. pomocí separace proměnných dv k v v dv k k t c, i.e. v k t c Protože máme hraniční podmínku 0) = v = km = 7 94 m/s, dostaneme c = 0,0004, a funkce pro rychlost je m A eff c d t 0,0004 Teď musíme jen vypočítat zbývající proměnné: hustotu vzduchu ρ, a účinný povrch objektu Aeff (ostatní hodnoty jsou známy). Pokud jde o hustotu, předpokládáme, že je to konstantní : 55,000m e kg 0,008 3 m Pokud jde o účinný povrch, mohli bychom se domnívat, že je stejný plocha křídel (50 m ), ale raketoplán přilétá pod úhlem 40, tj. účinný povrch se musí snížit o faktor sin 40 : A eff 50m sin 40 60m Nakonec dosadíme všechny hodnoty do rovnice pro rychlost a vypočítáme čas t: 0,0004 t A eff c d m 3653s 60min Doba mezi sestupem raketoplánu z oběžné dráhy a koncem rádiového mlčení je asi 60 minut.

Titul: Letectví Spotřeba paliva letadla

Titul: Letectví Spotřeba paliva letadla Titul: Letectví Spotřeba paliva letadla Témata: procenta, modelování, rychlost, vzdálenost, čas, hmotnost, hustota Čas: 90 minut Věk: 13-14 Diferenciace: Vyšší úroveň: Může být vzat v úvahu odpor vzduchu

Více

Název: Letectví Rozmrazování letadla

Název: Letectví Rozmrazování letadla Název: Letectví Rozmrazování letadla Témata: povrch a objem, rozměry, váha, hustota, bod mrazu kapalin Čas: 90 minut Vek: 13-14 Diferenciace: Vyšší úroveň: diskuze na téma chemických procesů při snižování

Více

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m 1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m

Více

Název: Ekologie Solární a větrná energie

Název: Ekologie Solární a větrná energie Název: Ekologie Solární a větrná energie Témata: procenta, povrch, energie, solární panely, větrné elektrárny Čas: 90 minut Věk: 13-14 let Diferenciace: Vyšší úroveň: Fyzikální principy výroby energie

Více

Rovnoměrně zrychlený = zrychlení je stále stejné = velikost rychlosti se každou sekundu zvýší (případně sníží) o stejný díl

Rovnoměrně zrychlený = zrychlení je stále stejné = velikost rychlosti se každou sekundu zvýší (případně sníží) o stejný díl Rovnoměrně zrychlený přímočarý pohyb Rovnoměrně zrychlený = zrychlení je stále stejné = velikost rychlosti se každou sekundu zvýší (případně sníží) o stejný díl Rychlost v = a t v okamžitá rychlost a zrychlení,

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

Reg.č.. CZ.1.07/1.4.00/21.1720 kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp. spěvková organizace

Reg.č.. CZ.1.07/1.4.00/21.1720 kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp. spěvková organizace Reg.č.. CZ.1.07/1.4.00/21.1720 Příjemce: ZákladnZ kladní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspp spěvková organizace Název projektu: Kvalitní podmínky nky- kvalitní

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

Diferenciální rovnice kolem nás

Diferenciální rovnice kolem nás Diferenciální rovnice kolem nás Petr Kaplický Den otevřených dveří MFF UK 2012 Praha, 29. 11. 2012 Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 1 / 24 Plán 1 Let Felixe B. 2 Pád (s odporem

Více

Řešení příkladů na rovnoměrně zrychlený pohyb I

Řešení příkladů na rovnoměrně zrychlený pohyb I ..9 Řešení příkladů na rovnoměrně zrychlený pohyb I Předpoklady: 8 Pedagogická poznámka: Cílem hodiny je, aby se studenti naučili samostatně řešit příklady. Aby dokázali najít vztah, který umožňuje příklad

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

R 4 U 3 R 6 R 20 R 3 I I 2

R 4 U 3 R 6 R 20 R 3 I I 2 . TEJNOMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 6 chéma. = V = Ω = Ω = Ω = 6 Ω = 9 Ω 6 = Ω rčit: celkový odpor C,,,,,,,,

Více

Měření hodnoty g z periody kmitů kyvadla

Měření hodnoty g z periody kmitů kyvadla Měření hodnoty g z periody kmitů kyvadla Online: http://www.sclpx.eu/lab2r.php?exp=8 Úvod Při určení hodnoty tíhové zrychlení z periody kmitů kyvadla o délce l vycházíme ze známého vztahu (2.4.1) pro periodu

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN

DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN y y g v H y x x v vodorovná rovina H z z z x g vodorovná rovina vztažné úrovně Z J V S z g MĚŘENÍ VÝŠKY LETU DEFINICE VÝŠEK METODY MĚŘENÍ VÝŠEKY

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Kalorimetrická měření I

Kalorimetrická měření I KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet objemu a hmotnosti technických sít

Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet objemu a hmotnosti technických sít Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Výpočet objemu a hmotnosti technických sít Věk žáků: 13 15 let Časová dotace: 1

Více

Teplo, práce a 1. věta termodynamiky

Teplo, práce a 1. věta termodynamiky eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

Test obsahuje látku 5. ročníku z učiva o vesmíru. Ověřuje teoretické znalosti žáků. Časově odpovídá jedné vyučovací hodině.

Test obsahuje látku 5. ročníku z učiva o vesmíru. Ověřuje teoretické znalosti žáků. Časově odpovídá jedné vyučovací hodině. Vzdělávací oblast : Předmět : Téma : Člověk a jeho svět Přírodověda Vesmír Ročník: 5. Popis: Očekávaný výstup: Druh učebního materiálu: Autor: Poznámky: Test obsahuje látku 5. ročníku z učiva o vesmíru.

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle Při výstřelu lodního protiletadlového děla projektil neboli střela ráže 3 mm o hmotnosti 190 gramů zrychlí z klidu na rychlost 880 km/h za 0,01 s. Předpokládáme, že: pohybující se projektil v hlavni je

Více

Příklady jednoduchých technických úloh ve strojírenství a jejich řešení

Příklady jednoduchých technických úloh ve strojírenství a jejich řešení Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Příklady jednoduchých technických úloh ve strojírenství a jejich řešení doc.

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

1 Duty cycle & lifetime Thomas, Florian 26th March 2012

1 Duty cycle & lifetime Thomas, Florian 26th March 2012 1 Duty cycle & lifetime Thomas, Florian 26th March 2012 ZETALIFT - výpočtový program Výběr velikosti pohonu? 2 ZETALIFT - výpočtový program / výběr motoru Užitná kategorie a pracovní cyklus jako kritéria

Více

Cvičení z termomechaniky Cvičení 8.

Cvičení z termomechaniky Cvičení 8. Příklad Vzduch o tlaku,5 [MPa] a teplotě 27 [ C] vytéká Lavalovou dýzou do prostředí o tlaku 0,7 [MPa]. Nejužší průřez dýzy má průměr 0,04 [m]. Za jakou dobu vyteče 250 [kg] vzduchu a jaká bude výtoková

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

VY_32_INOVACE_MIK_I-1_1. Šablona č. I, sada č. 1. Ročník 6. Materiál slouží k procvičení a upevnění učiva o procentech.

VY_32_INOVACE_MIK_I-1_1. Šablona č. I, sada č. 1. Ročník 6. Materiál slouží k procvičení a upevnění učiva o procentech. Šablona č. I, sada č. 1 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Matematika a její aplikace Matematika a její aplikace Číslo a proměnná Procenta Ročník 6. Materiál slouží k procvičení a upevnění

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:

Více

Zápočet z fyzikálního semináře 102XFS

Zápočet z fyzikálního semináře 102XFS Zápočet z fyzikálního semináře 102XFS Splněná docházka (max. 2 absence). Písemka na poslední hodině v semestru. Kalkulačka je povolená. 100 minut. 5 příkladů, jeden správně vyřešený příklad 2 body. Pro

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Nadpis: GPS Najdi si cestu

Nadpis: GPS Najdi si cestu Nadpis: GPS Najdi si cestu Témata: průsečík koulí, soustava souřadnic, vzdálenost, rychlost a čas, přenos signálu Čas: 90 minut Věk: 16+ Diferenciace: Vyšší úroveň: Diskuze na téma oprava chyb v přijímačích

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)

Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2) Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel

Více

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti

Více

kosmických lodí (minulost, současnost, budoucnost)

kosmických lodí (minulost, současnost, budoucnost) Záchranné systémy kosmických lodí (minulost, současnost, budoucnost) Jiří Kroulík, Planetarium Praha Vystřelovací sedadlo pro bombardér B-58 Jednotlivé typy SAS pro kosmické lodě Sojuz měly údajně

Více

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace Číslo projektu Číslo materiálu Název školy Autor Průřezové téma Tematický celek Ročník 1. CZ.1.07/1.5.00/34.0565 VY_3_INOVACE_348_ Chemické výpočty Masarykova střední škola zemědělská a Vyšší odborná škola,

Více

Létající komín. Daniela Mrázková. Gymnázium Cheb Nerudova 7, 350 02 Cheb

Létající komín. Daniela Mrázková. Gymnázium Cheb Nerudova 7, 350 02 Cheb Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT Létající komín Daniela Mrázková Gymnázium Cheb Nerudova 7, 350 02 Cheb Úvod do problému Válec (sáček od čaje) hoří,

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

V případě, že je rychlost letadla větší jak 400 km/h je třeba provést korekci na stlačenost vzduchu a změnu hustoty vzduchu.

V případě, že je rychlost letadla větší jak 400 km/h je třeba provést korekci na stlačenost vzduchu a změnu hustoty vzduchu. VLASTNOSTI PLYNŮ LÉTÁNÍ Letecký výškoměr Výškoměr u letadla je vlastně barometr, kterým se měří atmosférický tlak v dané výšce. Jeho stupnice je cejchována v metrech podle vztahu pro tlak v různých nadmořských

Více

ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168

ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 HLAVA 5 ÚSEK KONEČNÉHO PŘIBLÍŽENÍ 5.1 VŠEOBECNĚ 5.1.1 Účel Toto je úsek, kde se provádí vyrovnání do směru a klesání na přistání. Konečné přiblížení může být provedeno

Více

Řešení úloh 1. kola 48. ročníku FO. Kategorie E a F. Závislost rychlosti vlaku na čase

Řešení úloh 1. kola 48. ročníku FO. Kategorie E a F. Závislost rychlosti vlaku na čase Řešení úloh 1. kola 48. ročníku FO. Kategorie E a F 1. úloha: a) Závislost rychlosti vlaku na čase 30 5 0 v/m/s 15 5 0 0 50 0 150 00 t/s b)s 1 = v p1.t 1 = 7,5.0 = 150 m c) s = s 1 + s + s 3 + s 4 = v

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.

Termodynamika. Děj, který není kvazistatický, se nazývá nestatický. Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Číslo materiálu Mgr. Vladimír Hradecký 8_F_1_13 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

Rovnoměrný pohyb IV

Rovnoměrný pohyb IV 2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí

Více

ČÁST I DÍL 2 - HLAVA 3 PŘEDPIS L 8168

ČÁST I DÍL 2 - HLAVA 3 PŘEDPIS L 8168 ČÁST I DÍL 2 - HLAVA 3 PŘEDPIS L 8168 HLAVA 3 - KONSTRUKCE OCHRANNÉHO PROSTORU ZATÁČKY 3.1 VŠEOBECNĚ 3.1.1 Tato hlava poskytuje přehled metod používaných při konstrukci zatáček a uvádí parametry, které

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Termodynamika - určení měrné tepelné kapacity pevné látky

Termodynamika - určení měrné tepelné kapacity pevné látky I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 3 Termodynamika - určení měrné

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství Výška dráhy střely y [m] VUT v Brně Fakulta strojního inženýrství 0.03 10 Přechodová a vnější balistika HPZ 0.025 0.02 0.015 0.01 0.005 0 1 0.5 60 0 40 Stranová odchylka z [m] -0.5-1 0 20 Dráha střely

Více

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166,

Více

Rovnoměrný pohyb II

Rovnoměrný pohyb II 2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí

Více

Pohyb tělesa po nakloněné rovině

Pohyb tělesa po nakloněné rovině Pohyb tělesa po nakloněné rovině Zadání 1 Pro vybrané těleso a materiál nakloněné roviny zjistěte závislost polohy tělesa na čase při jeho pohybu Výsledky vyneste do grafu a rozhodněte z něj, o jakou křivku

Více

Přijímací zkoušky FYZIKA

Přijímací zkoušky FYZIKA Přijímací zkoušky 2014 2015 FYZIKA 1. Soustava SI je: a) mezinárodní soustava fyzikálních jednotek a veličin b) skupina prvků s podobnými vlastnostmi jako křemík c) přehled fyzikálních vzorců 2. 500 cm

Více

Datum, období vytvoření:

Datum, období vytvoření: Identifikátor materiálu: EU-OPVK-ICT2/3/1/14 Datum, období vytvoření: říjen 2013 Vzdělávací oblast : Člověk a příroda Vzdělávací obor, tematický okruh: Elektrická práce, energie a výkon Předmět: Fyzika

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.

Více

TECHNICKÉ ODSTŘELY A JEJICH ÚČINKY

TECHNICKÉ ODSTŘELY A JEJICH ÚČINKY TECHNICKÉ ODSTŘELY A JEJICH ÚČINKY Přednáška č.2 2. Přednáška Technické odstřely Při rozpojování pevných hornin, ale i zpevněných zemin a stavebních hmot, zůstávají trhací práce stále jediným efektivním

Více