Analýza obalu dat úvod

Rozměr: px
Začít zobrazení ze stránky:

Download "Analýza obalu dat úvod"

Transkript

1 Analýza obalu dat úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010

2 Analýza obalu dat (DEA) Analýza obalu dat (Data envelopement analysis) se používá pro hodnocení technické efektivity produkčních jednotek, které (obecně) mají několik vstupů a několik výstupů. Hodnocenými jednotkami mohou být pobočky potravinářských řetězců, pobočky bank, nemocnice, školy, úřady atd. Jsou jednotky opravdu porovnatelné?

3 DEA a lineární programování literatura Modely DEA analýzy vedou na úlohy lineárního programování. Problematika lineárního programování není náplní těchto lekcí a více o této problematice lze nastudovat z jakékoliv publikace zabývající se operačním výzkumem: Jablonský, J.: Operační výzkum (skripta VŠE nebo kniha (Professional Publishing)), Friebelová, J.: Kapitoly z operační analýzy (skripta EF JU), a mnoho jiných.

4 DEA a lineární programování software Řešení úloh lineárního programování je implementováno v mnoha softwarech, připomeňme: doplněk MS Excelu Řešitel (Solver) (součást standartní instalace MS Excel), výukový program POM-QM for Windows, řeší pouze jednoduché příklady, ale ilustrativně (modul pro LP je ve free verzi profesionální software pro řešení úloh LP Lindo i free verze řeší relativně velké úlohy (možnost využití free verze, jednoduchá syntaxe

5 DEA základní pojmy Efektivita jednotek Základním pojem v analýze obalu dat je míra technické efektivity jednotky, což vlastně není nic jiného než poměr váženého součtu výstupů a váženého součtu vstupů. Efektivitou rozumíme zlomek e = y x, (1) kde x jsou vstupy (v případě více vstupů je to vážený součet vstupů) a y výstupy (resp. vážený součet výstupů).

6 DEA základní pojmy efektivita Poznámka Všimněme si, že zlomek dává velmi dobrý smysl. Naším cílem je maximalizovat efektivitu a protože efektivita je poměrem výstupu ku vstupu, potom jejích maximálních hodnot dosáhneme maximalizací výstupů a minimalizací vstupů.

7 DEA princip Efektivní hranice Rozhodovací jednotky s největší hodnotou efektivity jsou tzv. efektivní a určují efektivní hranici. Efektivní hranice vymezuje tzv. množinu produkčních možností. Množina produkčních možností Efektivní jednotky leží na efektivní hranici, neefektivní uvnitř množiny produkčních možností.

8 DEA princip Pro DEA analýzu potřebujeme znát jednotlivé vstupy a výstupy všech analyzovaných jednotek. A na základě těchto znalostí nám tato analýza poskytne informaci, které jednotky jsou efektivní a které neefektivní. Za efektivní se považuje taková jednotka, pro kterou existují takové váhy vstupů a váhy výstupů, pro něž je míra technické efektivity zkoumané jednotky větší nebo rovna míře technické efektivity (při těchto vahách) všech ostatních jednotek.

9 DEA post optimalizační analýza Z výsledků DEA analýzy lze navíc vyčíst, jakým způsobem je možné z neefektivní jednotky udělat jednotku efektivní. Tedy, jakým způsobem má neefektivní jednotka upravit (snížit) své vstupy nebo naopak jakým způsobem má tato jednotka upravit (zvýšit) své výstupy, aby se stala efektivní. (Aby vyrovnala svou míru technické efektivity s nějakou jinou, v tomto případě pro ni vzorovou (peer) jednotkou.)

10 DEA příklad Pro lepší ilustraci problematiky, kterou se DEA zabývá, uveďme zadání typického příkladu na DEA. Řešení zatím neuvádíme. Příklad Obchodní řetězec má patnáct poboček, přičemž každá z těchto poboček je charakterizována počtem zaměstnanců, režijními náklady, celkovými náklady, prodejní plochou, počtem obsloužených zákazníků a denními tržbami. Které z patnácti poboček jsou a které nejsou efektivní? Které vstupy a do jaké míry je nutné u neefektivních jednotek redukovat, popřípadě které výstupy navyšovat?

11 DEA jeden vstup a jeden výstup Poznámka Pokud si představíme nejjednodušší příklad, jednotky, které hodnotíme jen podle jednoho vstupu a jednoho výstupu, potom je zřejmé, že žádné váhy nemá smysl uvažovat, neboť pokud přenásobíme všechny vstupy stejnou vahou a všechny výstupy obecně jinou, ale též stejnou vahou, potom výsledný poměr vážený výstup ku váženému vstupu je pouze násobkem poměru zadaných vah a poměru výstupu ku vstupu bez vah. A tedy na výsledné efektivitě se nic změnit nemohlo.

12 DEA volba vstupních proměnných Počet hodnocených jednotek Má-li mít DEA analýza smysl, je zapotřebí mít dostatečný počet hodnocených jednotek (vůči počtu vstupů a výstupů dle nichž se hodnotí). Pokud bychom měli málo jednotek, potom bychom mohli všechny jednotky považovat za efektivní. Korelace jednotlivých vstupů a výstupů Také je zapotřebí vhodně zvolit kritéria, podle nichž budeme jednotky hodnotit. Obecně platí, že bychom měli použít, pouze kritéria, která jsou skutečně zásadní a jejichž hodnoty známe u všech uvažovaných jednotek. Zároveň bychom se měli vyhnout výběru příliš korelovaných kritérií. (Představme si, že si vybereme dvě kritéria, jejichž korelace je 1. Potom ve skutečnosti máme v hodnocení jedno kritérium dvakrát.)

13 Původ metody DEA Farrell Modely DEA analýzy vycházejí z Farrellova modelu (Farrell, The measurement of productive efficiency. Journal of the Royal Statistical Society Series A 120 (3), ) Charnes, Cooper a Rhodes Tento model později rozšířili Charnes, Cooper a Rhodes (Charnes, Cooper a Rhodes, Measuring the efficiency of decision making units.) CCR model a Banker, Charnes a Cooper BCC model (R. D. Banker, A. Charnes, W. W. Cooper, Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. MANAGEMENT SCIENCE Vol. 30, No. 9, September 1984, pp ).

14 Podstata analýzy obalu dat DEA modely jsou založeny na představě, že pro dané jednotky existuje množina produkčních možností, ve které jsou všechny přípustné kombinace vstupů a výstupů jednotlivých jednotek. Množina produkčních možností je ohraničena efektivní hranicí. Pokud kombinace vstupů a výstupů hodnocené jednotky leží na efektivní hranici, potom říkáme, že se jedná o efektivní jednotku. Jednotka je efektivní, pokud spotřebovává malé množství vstupů a produkuje velké množství výstupů. V případě, že jednotka efektivní není (neleží na hranici produkčních možností), DEA analýza nám dává návod, jak upravit velikost jejích vstupů, popřípadě výstupů, aby se tato jednotka stala efektivní.

15 Hodnocení jednotek s jedním vstupem a jedním výstupem V případě, že uvažujeme pouze jeden vstup a jeden výstup, efektivita jednotek, která je dána vztahem (1), je pouze poměrem mezi velikostí výstupů a vstupů. Tedy efektivita nám udává, velikost výstupu na jednotku vstupu. Je zřejmé, že za efektivní se bude považovat ta jednotka, jejíž výstup na jednotkový vstup bude maximální (uvažujeme konstantní výnosy z rozsahu).

16 Hodnocení jednotek s jedním vstupem a jedním výstupem Příklad Obchodní řetězec má osm poboček, přičemž každá z těchto poboček je charakterizována počtem zaměstnanců a denními tržbami v 10 tis. Kč, viz tabulka. A B C D E F G H Zam. (x) Tržby (y) y/x Podíl y/x udává denní tržby (v 10 tis. Kč) pobočky na jednoho zaměstnance. Čím je podíl y/x větší, tím je pobočka efektivnější (větší objem tržeb na zaměstnance).

17 Hodnocení jednotek s jedním vstupem a jedním výstupem Příklad závěr Jak je vidět, pobočky obchodního řetězce mají produkční možnosti dosáhnout podílu y/x ve výši 2. Efektivní je tedy pobočka B, která jako jediná tohoto poměru dosahuje. Ostatní pobočky jsou neefektivní, v tomto jednoduchém příkladu, chceme-li zjistit, z kolika procent jsou jednotlivé pobočky efektivní, stačí podělit dosaženou efektivitu zkoumané jednotky maximální dosaženou efektivitou.

18 Hodnocení jednotek s jedním vstupem a jedním výstupem Příklad závěr postoptimalizační analýza Spočítejme tedy, z kolika procent je efektivní jednotka A. Jednotka A dosahuje efektivity 0, 5 a efektivní jednotka B efektivity 2. A tedy míra efektivity jednotky A je 0, 5/2 = 0, 25. Dospěli jsme tedy k závěru, že jednotka A je efektivní pouze z 25%. V tomto případě jsme tedy zjistili, že jednotka A by musela snížit své vstupy na 25% původních vstupů, aby se stala efektivní. A nebo naopak navýšit své výstupy čtyřikrát oproti původním výstupům. (V tuto chvíli jsou výstupy jednotky A pouze 25% možných (z hlediska produkčních možností) výstupů této jednotky.)

19 Normalizace efektivity Pro porovnávání efektivnosti jednotlivých jednotek se ukazuje jako praktické, aby maximální dosažitelná efektivita byla 1. Úprava maximální efektivity na hodnotu 1 Toho se docílí znormováním efektivit získaných podle vzorce (1). Stačí každou efektivitu získanou dle tohoto vzorce podělit maximální dosaženou efektivitou, tedy e i = e i max j {1,...,n} e j, (2) kde e i je znormovaná efektivita i. jednotky, e j je efektivita j. jednotky vypočtená podle vzorce (1) a n je počet hodnocených jednotek.

20 Maximální efektivita rovna jedné Používáme-li pro analýzu znormovanou efektivitu, docílíme toho, že efektivní jednotka (resp. jednotky) bude mít míru efektivity 1 a neefektivní jednotky budou mít míru efektivity ostře menší než 1. Tato míra neefektivity bude v podstatě udávat, z kolika procent je jednotka efektivní. Tato míra bude také udávat na kolik procent (ze současných) by musela jednotka snížit své vstupy, aby se stala efektivní. Pokud by jednotka nechtěla (či nemohla) upravovat jednotky vstupů, potom by jí toto číslo udávalo, kolika procent výstupů v této době dosahuje a k tomu, aby se stala efektivní by musela tato jednotka dosáhnout 100% svého výstupu.

21 Ilustrace normované efektivity na příkladu Příklad Uvažujme předchozí příklad, a spočtěme normovanou efektivitu podle vzorce (2) (maximální dosažená efektivita je 2, tedy každou efektivitu vydělíme 2): A B C D E F G H Zam. (x) Tržby (y) y/x e

22 Ilustrace normované efektivity na příkladu postoptimalizační analýza Závěr příkladu Podle hodnot normované efektivity zjistíme, že efektivní je jednotka B. Za touto jednotkou všechny ostatní velmi zaostávají. Nejlepší z ostatních jednotek je jednotka E, která je efektivní na 40%. Tedy, pokud by se tato jednotka chtěla stát efektivní, buď by musela snížit své vstupy na 40% současné hodnoty, tj. dosahovat těchto tržeb při 0, 4 5 = 2 zaměstnanci nebo by při stávajícím počtu zaměstnanců musela dosáhnout tržeb 4 : 0, 4 = 10.

Metoda analýzy datových obalů (DEA)

Metoda analýzy datových obalů (DEA) Kapitola 1 Metoda analýzy datových obalů (DEA) Modely datových obalů slouží pro hodnocení technické efektivity produkčních jednotek na základě velikosti vstupů a výstupů. Hodnocenými jednotkami mohou být

Více

Metoda analýzy datových obalů (DEA)

Metoda analýzy datových obalů (DEA) Kapitola 1 Metoda analýzy datových obalů (DEA) Modely datových obalů slouží pro hodnocení technické efektivity produkčních jednotek na základě velikosti vstupů a výstupů. Hodnocenými jednotkami mohou být

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat

Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat Západočeská univerzita v Plzni Fakulta aplikovaných věd SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MATEMATICKÉ MODELOVÁNÍ Ivana Kozlová Modely analýzy obalu dat Plzeň 2010 Obsah 1 Efektivnost a její hodnocení 2 2 Základní

Více

Data Envelopment Analysis (Analýza obalu dat)

Data Envelopment Analysis (Analýza obalu dat) Data Envelopment Analysis (Analýza obalu dat) Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Optimalizace s aplikací ve financích

Více

Modely analýzy obalu dat a jejich aplikace při hodnocení efektivnosti bankovních poboček

Modely analýzy obalu dat a jejich aplikace při hodnocení efektivnosti bankovních poboček Modely analýzy obalu dat a jejich aplikace při hodnocení efektivnosti bankovních poboček Josef Jablonský VŠE Praha, fakulta informatiky a statistiky nám. W. Churchilla 4, 13067 Praha 3 jablon@vse.cz, http://nb.vse.cz/~jablon

Více

Vícekriteriální programování příklad

Vícekriteriální programování příklad Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)

Více

Vícekriteriální hodnocení variant úvod

Vícekriteriální hodnocení variant úvod Vícekriteriální hodnocení variant úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Vícekriteriální hodnocení variant

Více

POROVNÁNÍ OČNÍCH ODDĚLENÍ NEMOCNIC KRAJE VYSOČINA POMOCÍ DEA MODELŮ

POROVNÁNÍ OČNÍCH ODDĚLENÍ NEMOCNIC KRAJE VYSOČINA POMOCÍ DEA MODELŮ POROVNÁNÍ OČNÍCH ODDĚLENÍ NEMOCNIC KRAJE VYSOČINA POMOCÍ DEA MODELŮ Jana Borůvková, Martina Kuncová* Úvod Tento článek hledá odpověď na otázku, jak hodnotit efektivitu očních oddělení ve všech nemocnicích,

Více

T T. Think Together 2013. Jan Rydval THINK TOGETHER

T T. Think Together 2013. Jan Rydval THINK TOGETHER Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 4. února 2013 T T THINK TOGETHER Think Together 2013 Měření efektivnosti jazykových kurzů pomocí DEA modelů

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

Vícekriteriální hodnocení variant metody

Vícekriteriální hodnocení variant metody Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Metody vícekriteriální hodnocení variant (VHV) Jak jsme již zmiňovali, VHV obecně neposkytuje

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Obchodní přirážka. Procento obchodní přirážky

Obchodní přirážka. Procento obchodní přirážky Obchodní přirážka Žádná maloobchodní firma by nemohla přežít, kdyby nabízela zboží k prodeji za ceny, za které je nakoupila. O jakou částku může prodejní cena zboží převyšovat nákupní cenu, jak jsme již

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE. COST BENEFIT ANALÝZA Část II.

FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE. COST BENEFIT ANALÝZA Část II. FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE COST BENEFIT ANALÝZA Část II. Diskontní sazba Diskontní sazba se musí objevit při výpočtu ukazatelů ve stejné podobě jako hotovostní toky. Diskontní sazba = výnosová

Více

Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005

Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005 PROPOJENÍ OPTIMALIZAČNÍHO A SIMULAČNÍHO MODELU PRO PLÁNOVÁNÍ A ŘÍZENÍ 1. Úvod FARMACEUTICKÉ VÝROBY Ing Petra Vegnerová Prof. Ing. Ivan Gros, CSc. Vysoká škola chemicko-technologická v Praze Fakulta chemicko-inženýrská,

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice OPERAČNÍ VÝZKUM 11. TEORIE ZÁSOB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

KALKULACE Pojem a druhy kalkulací Kalkulace jsou podkladem pro stanovení cen Z hlediska času rozlišujeme:...

KALKULACE Pojem a druhy kalkulací Kalkulace jsou podkladem pro stanovení cen Z hlediska času rozlišujeme:... KALKULACE KALKULACE... 1 1. Pojem a druhy kalkulací... 1 2. Kalkulace jsou podkladem pro stanovení cen... 2 2.1. Z hlediska času rozlišujeme:... 2 2.2. Předběžná kalkulace se může dále členit na:... 2

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Odhadnutí citlivosti nákladů v hromadné výrobě - process costing

Odhadnutí citlivosti nákladů v hromadné výrobě - process costing Analýza bodu zvratu Zdůvodnění Krátkodobý charakter analýzy bodu zvratu - CVP analysis Časový interval, během kterého nemůže management firmy změnit dopady určitých minulých rozhodnutí V praxi období krratší

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem

3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Zisk, funkce zisku, EBIT, EAT, EBT, Bod zvratu

Zisk, funkce zisku, EBIT, EAT, EBT, Bod zvratu Zisk, funkce zisku, EBIT, EAT, EBT, Bod zvratu I. Úloha zisku v podnikání Zisk je cílem veškerého podnikání, ne však jediným. Podnikatelé sledují další monetární cíle: - zajištění platební pohotovosti

Více

Slučování tabulek. Sloučení dvou tabulek

Slučování tabulek. Sloučení dvou tabulek Slučování tabulek Newsletter Statistica ACADEMY Téma: Příprava dat Typ článku: Návody Máte informace ve více tabulkách a chcete je sloučit dohromady? Pak je tento článek právě pro Vás. Vysvětlíme, jaké

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu

Tento materiál byl vytvořen v rámci projektu Operačního programu Tento materiál byl vytvořen v rámci projektu Operačního programu Projekt MŠMT ČR Číslo projektu Název projektu Klíčová aktivita Vzdělávání pro konkurenceschopnost EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.3349

Více

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem

Více

Téma 1b: Ukazatelé hospodárnosti a rentability

Téma 1b: Ukazatelé hospodárnosti a rentability Téma 1b: Ukazatelé hospodárnosti a rentability Ing Vlastimil Vala, CSc. Předmět : Ekonomická efektivnost LH Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Více

Pareto analýza. Průmyslové inženýrství. EduCom. Jan Vavruška Technická univerzita v Liberci

Pareto analýza. Průmyslové inženýrství. EduCom. Jan Vavruška Technická univerzita v Liberci Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Pareto analýza Technická univerzita v Liberci Průmyslové inženýrství Technická univerzita

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Téma 9: Vícenásobná regrese

Téma 9: Vícenásobná regrese Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Popis výukového materiálu

Popis výukového materiálu Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_I.4.2 Autor Petr Škapa Datum vytvoření 05. 09. 2012 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, předmět Marketing a management, okruh Plánování

Určeno studentům středního vzdělávání s maturitní zkouškou, předmět Marketing a management, okruh Plánování Určeno studentům středního vzdělávání s maturitní zkouškou, předmět Marketing a management, okruh Plánování Materiál vytvořil: Ing. Karel Průcha Období vytvoření VM: listopad 2013 Klíčová slova: plánování,

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

Úvod do programovacího jazyka Python

Úvod do programovacího jazyka Python Úvod do programovacího jazyka Python Co je to Python? Python je objektově-orientovaný programovací jazyk. Tento programovací jazyk je velice výkonný, čitelný a dá se snadno naučit. Jeho použití je velice

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Návrh metodiky financování vysokých škol

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Návrh metodiky financování vysokých škol ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Návrh metodiky financování vysokých škol - Disertační práce - Autor: Ing. Martin Flégl Školitelka: doc. RNDr. Helena Brožová, CSc. 2014 Návrh

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

Práce s oknem, nastavení

Práce s oknem, nastavení VY_32_INOVACE_In 6.,7.01 Práce s oknem, nastavení Anotace: Žák se seznámení s druhy oken, jejich funkcemi, částmi a možnostmi. Ve cvičení a procvičování dle prezentace pracuje na svém žákovském počítači,

Více

Korelace. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec

Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97. Vybrané části Excelu. Ing. Petr Adamec INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Střední škola informačních technologií a sociální péče, Brno, Purkyňova 97 Vybrané části Excelu Ing. Petr Adamec Brno 2010 Cílem předmětu je seznámení se s programem Excel

Více

Výsledný graf ukazuje následující obrázek.

Výsledný graf ukazuje následující obrázek. Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V

Více

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů

Více

Kvantitativní metody v rozhodování. Marta Doubková

Kvantitativní metody v rozhodování. Marta Doubková Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA... 3 2 DISTRIBUČNÍ ÚLOHA... 7 3 ANALÝZA KRITICKÉ CESTY METODA CPM... 13 4 MODEL HROMADNÉ

Více

Josef Keder, Lenka Janatová Český hydrometeorologický ústav

Josef Keder, Lenka Janatová Český hydrometeorologický ústav ZHODNOENÍ MOŽNOSTI SNÍŽENÍ ČETNOSTI VÝSKYTU PŘEKRAČOVÁNÍ IMISNÍH LIMITŮ ESTOU REGULAE EMISÍ Josef Keder, Lenka Janatová Český hydrometeorologický ústav MOTIVAE Potřeba aplikace vhodných opatření k expozici

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání

Více

Manažerská ekonomika přednáška Výroba Co rozumíme výrobou? V nejširším pojetí se výrobou rozumí každé spojení výrobních

Manažerská ekonomika přednáška Výroba Co rozumíme výrobou? V nejširším pojetí se výrobou rozumí každé spojení výrobních Manažerská ekonomika přednáška Výroba Co rozumíme výrobou? V nejširším pojetí se výrobou rozumí každé spojení výrobních faktorů (práce, kapitálu, půdy) za účelem získání určitých výrobků (výrobků a služeb

Více

Nejvhodnější rozhodovací styl v daném kontextu

Nejvhodnější rozhodovací styl v daném kontextu FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ Nejvhodnější rozhodovací styl v daném kontextu Individuální projekt SPM1 Vypracoval: Bc. Martin Petruželka Studijní obor: K-IM2 Emailová adresa:

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC PROJEKTOVÉ ŘÍZENÍ STAVEB FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České

Více

CO JE TO SWOT ANALÝZA

CO JE TO SWOT ANALÝZA SWOT analýza CO JE TO SWOT ANALÝZA Univerzálně používaný nástroj, který mapuje a analyzuje daný jev (například určitý stav, situaci, úkol, problém, pracovní tým, projekt atd.) Umožňuje dívat se na analyzovanou

Více

Mít přehled o nákladech

Mít přehled o nákladech Přednosti: Mít přehled o nákladech srovnání předměžné a konečné kalkulace výpočet ukazatelů, např. reprodukční náklady na 1 okno, čistá tržba atd. Cesta ke zvyšování rentability Abychom mohli účinně kontrolovat

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

KRITÉRIA EKONOMICKÉ EFEKTIVNOSTI

KRITÉRIA EKONOMICKÉ EFEKTIVNOSTI KRITÉRIA EKONOMICKÉ EFEKTIVNOSTI INVESTICE - Investiční rozhodování má dlouhodobé účinky - Je nutné se vyrovnat s faktorem času - Investice zvyšují poptávku, výrobu a zaměstnanost a jsou zdrojem dlouhodobého

Více

Přehled matematického aparátu

Přehled matematického aparátu Přehled matematického aparátu Ekonomie je směsí historie, filozofie, etiky, psychologie, sociologie a dalších oborů je tak příslovečným tavicím kotlem ostatních společenských věd. Ekonomie však často staví

Více

ROZHODOVÁNÍ ROZHODOVACÍ PROBLÉM A PROCES

ROZHODOVÁNÍ ROZHODOVACÍ PROBLÉM A PROCES ROZHODOVÁNÍ ROZHODOVACÍ PROBLÉM A PROCES doc. Ing. Monika MOTYČKOVÁ (Grasseová), Ph.D. Univerzita obrany Fakulta ekonomika a managementu Katedra vojenského managementu a taktiky Kounicova 44/1. patro/kancelář

Více

PDM Managment výrobních dat

PDM Managment výrobních dat Vše na první pohled Management produkčních dat slouží jako báze pro další technické plánování. Všechny informace jsou ve správném čase na správném místě k dispozici, to znamená: Maximalizace času výkonu!

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní

Více

4.Řešení optimalizačních úloh v tabulkových kalkulátorech

4.Řešení optimalizačních úloh v tabulkových kalkulátorech 4.Řešení optimalizačních úloh v tabulkových kalkulátorech Tabulkové kalkulátory patří mezi nejpoužívanější a pro běžného uživatele nejdostupnější programové systémy. Kromě základních a jim vlastních funkcí

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty

Více

Seminární práce Modely produkčních systémů

Seminární práce Modely produkčních systémů Seminární práce Modely produkčních systémů Předmět: 4EK425 Název projektu: Výroba hokejových dresů Jméno: Období: ZS 2007/2008 Číslo cvičení (kurzu): 001 (ST 12.45) OBSAH 1. ZADÁNÍ ÚLOHY... 3 2. URČENÍ

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více