Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění

Rozměr: px
Začít zobrazení ze stránky:

Download "Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění"

Transkript

1 Hyrauické oory Při rouění reáných tekutin znikají násekem iskozity hyrauické oory, tj. síy, které ůsobí roti ohybu částic tekutiny. Hyrauický oor ři rouění zniká zájemným třením částic rouící tekutiny ři rozíných rychostech a třením tekutiny o stěny. Hyrauické oory se ěí na třecí oory a místní oory. Při rouění skutečné tekutiny je rozožení rychostí o růtočném růřezu neronoměrné a jenotiých rstách a na stěnách znikají tečné síy a naětí zůsobené iskozitou kaainy. Při turbuentním rouění ochází k ýměně hybnosti a energie mezi jenotiými rstami, což zyšuje hyrauický oor. Tyto ruhy hyrauických oorů se označují jako třecí oory a jsou charakteristické tím, že záisí na éce otrubí nebo kanáu. Ztrátoý součinite třecího ooru ξ je římo úměrný éce otrubí. Daší ruh hyrauického ooru zniká ři otržení rouu o obtékaných stěn. Při změně eikosti nebo směru rychosti rouu mohou být setračné síy tak eké, že takoé síy nestačí řitačit tekutinu na obtékané ochy a ochází k otržení rouu. Mezi stěnami a okrajoou rounicí otrženého rouu zniká obast s ířící tekutinou. Její ohyb je sojený s řekonááním hyrauických oorů a otřebná energie se oebírá hanímu rouu tekutiny. Těmto hyrauickým oorům se říká místní. Ztrátoý součinite místního ooru ξ záisí na geometrii uažoaného místa (změně růřezu, zakřiení,...) a rouění (ruhu kaainy, rychosti). Při maých rychostech rouu se ohyb ěje e rstách a částice tekutiny se neromícháají. Takoéto rouění se nazýá aminární rouění. Zýší-i se rychost na kritickou honotu, ochází k intenzinímu romícháání částic násekem jejich oružných (turbuentních, fuktuačních) ohybů e šech směrech. Částice tekutiny neustáe řecházejí z jené rsty o ruhé, řičemž ochází k ýměně kinetické energie a jejich rychosti o růřezu se yronáají. Takoéto rouění se nazýá turbuentní rouění. Protože ři řemisťoání částic ochází také ke změně hybnosti, což je sojeno s brzícím účinkem, bue ýsený oor roti rouění u turbuentního rouění ětší, než ooíá smykoému naětí o iskozity ři aminárním rouění. U aminárního rouění je hyrauický oor roti ohybu ineárně záisý na rychosti, u turbuentního rouění je záisý na ruhé mocnině rychosti. Přecho aminárního rouění turbuentní je určen ynosoým čísem:

2 , (3.) ke je stření rychost tekutiny, je charakteristický rozměr, nař. ři rouění otrubí jeho nitřní růměr a je kinematická iskozita tekutiny. ynosoo číso je bezrozměrné a kritická honota je k 30. Pro < k je rouění aminární a ři > k je turbuentní. Veikost ztráty třením otrubí se yjařuje jako takoá ztráta, která řestauje roztýenou energii objemoé jenotky rouící tekutiny nebo jako ztrátoá ýška h, která řestauje roztýenou energii ztaženou na tíhoou jenotku rouící tekutiny. Patí ro ně: h g (3.) Ztrátoá ýška se yjařuje jako násobek kinetické energie: h ξ, (3.3) g ke je rychost rouění a ξ je ztrátoý součinite, který záisí na éce a růměru otrubí: ξ λ. (3.) Bezrozměrný součinite λ se nazýá součinite tření. Obecně záisí na číse a oměrné rsnosti omočených och ε λ f(, ε ), (3.) ke oměrná rsnost je yjářena oměrem stření honoty ýstuků neroností orchu k růměru otrubí: k ε. (3.) U aminárního rouění kruhoém otrubí ro součinite tření atí: λ, < k 30. (3.7)

3 Při neronoměrném rychostním rofiu, který je zůsoben nař. místním oorem, jsou třecí ztráty ětší o 0 až 30 %, [Bukoski, J.: Mechanika ynow. Warszawa, 97] tey A λ, (3.8) ke A 70 až 8. V těchto říaech je k 00. U turbuentního rouění jsou ztráty třením ětší než u rouění aminárního. Vztah ro součinite tření λ ři turbuentním rouění hakém otrubí ooi Basius: 0.3 λ (3.9) který atí ro k 80. Pro rozsah 0 až 0 je možno oužít ztah 0.8 λ. (3.0) Při rouění rsném otrubí se křiky ro různé oměrné rsnosti ε ooutáají o Basioy římky a s rostoucím ynosoým čísem řecházejí soustau čar ronoběžných s ooronou osou. O určitého ynosoa čísa, které záisí na oměrné rsnosti, má součinite tření stáou honotu. V této obasti, zané yinuté turbuentní rouění je součinite tření yjářen Nikuraseho ztahem λ (3.) og +.38 k k který atí ro λ > 9.. Mezi obastí aminárního rouění a obastí yinutého turbuentního rouění je obast řechooá., níž součinite tření λ záisí jak na ynosoě číse, tak na oměrné rsnosti. Tuto záisost yjařuje Mooyho zorec 3

4 k λ, (3.) který atí rozmezí 0 3 < < 0 7. Pro snané určení součinitee tření otrubí souží iagram na obr. 3.. Z iagramu λ f(,ε ) je atrné, že ro turbuentní rouění se křiky ro různé rsnosti řimykají ři nižších čísech k Basioě římce a o určité honoty se ooutáají a řibižují se ooroné římce. Obr. 3. Diagram záisosti λ f(,ε ) Pro oození ooru ři rouění reáné tekutiny yjeme ze ztahu (3.) a (3.3): g g g h ξ. (3.3) Úraou ztahu (3.3) ostaneme: ξ ξ. (3.)

5 Dosaíme za ztrátoý součinite ξ ze ztahu (3.) : λ, (3.) a úraou získáme záisost mezi takoou ztrátou a rouícím množstím : λ. (3.) Pro aminární rouění osaíme za součinite tření λ ze ztahu (3.7) a za ynosoo číso ze ztahu (3.) : (3.7) Pro aminární rouění tey ostááme ztah ro oor R: R (3.8) Poobně můžeme ooit ztah ro oor ři turbuentním rouění. Do ztahu (3.) osaíme za součinite tření λ ze ztahu (3.9) a za ynosoo číso ze ztahu (3.) : (3.9) Při turbuentním rouění hakém otrubí můžeme tey oor yjářit: 0.3 R. (3.0) Viskozita oy záisosti na teotě Dynamická iskozita i kinematická iskozita oy kesá s rostoucí teotou oy. Honoty iskozity oy uáí náseující tabuka: Dynamická iskozita a kinematická iskozita oy záisosti na teotě

6 Teota [ C] Dynamická iskozita 0-3 [Pa.s] Kinematická iskozita 0 - m s - 0,787,787,9,9 0,307,307 0,00, ,798 0,80 0 0,3 0,8 0 0,7 0,3 0 0,7 0,7 70 0,0 0,3 80 0,3 0,3 90 0,3 0,3 00 0,8 0,9 objemoý růtok m^3/s hmotnostní růtok kg/s

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

HYDROMECHANIKA 3. HYDRODYNAMIKA

HYDROMECHANIKA 3. HYDRODYNAMIKA . HYDRODYNAMIKA Hydrodynamika - část hydromechaniky zabývající se říčinami a důsledky ohybu kaalin. ZÁKLADY PROUDĚNÍ Stavové veličiny roudění Hustota tekutin [kgm - ] Tlak [Pa] Telota T [K] Rychlost [ms

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, Fakulta staební Katedra hydrauliky a hydroloie (K4) Přednáškoé slidy ředmětu 4 HYA (Hydraulika) erze: /04 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu df souborů složených

Více

Další velmi užitečné výsledky kinetické teorie

Další velmi užitečné výsledky kinetické teorie Daší emi užitečné ýsedky kinetické teorie Kinetická teorie nám umožní definoat a yočítat daší zajímaé eičiny, které jsou emi řínosné e akuoé fyzice a technice :. Částicoý déšť Veičina částicoý déšť určuje

Více

SDÍLENÍ TEPLA A PROUDĚNÍ

SDÍLENÍ TEPLA A PROUDĚNÍ Vysoká škola báňská Technická unierzita Ostraa SDÍLENÍ TEPLA A PROUDĚNÍ učební tet Aéla Macháčkoá, Raim Kocich Ostraa 0 Recenze: Prof. Ing. Pael Kolat, DrSc., Ing. Kateřina Kostolányoá, Ph.D. Náze: Sílení

Více

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4.

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4. tconární rouové oe ektrcký rou Prouová hustot ovnce kontnuty rouu 4 Ohmův zákon v ferencáním tvru 5 oueův zákon 5 6 Anoge eektrosttckého stconárního rouového oe 6 7 Pomínky n rozhrní 7 8 Oor rezstorů řzených

Více

čerpadla přednáška 9

čerpadla přednáška 9 HYDROMECHANIKA HYDRODYNAMIKA hyralcké stroje, čerala řenáška 9 Lteratra : Otakar Maštoský; HYDROMECHANIKA Jaromír Noskječ, MECHANIKA TEKUTIN Frantšek Šob; HYDROMECHANIKA Nechleba Mrosla, Hšek Josef, Hyralcké

Více

ς = (R-2) h ztr = ς = v p v = (R-4)

ς = (R-2) h ztr = ς = v p v = (R-4) Stanoení součinitele ooru a relatiní ekialentní élky araturního rku Úo: Potrubí na orau tekutin (kaalin, lynů) jsou ybaena araturníi rky, kterýi se regulují růtoky (entily, šouata), ění sěry toku (kolena,

Více

Vzorové příklady - 4.cvičení

Vzorové příklady - 4.cvičení Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Odolnost vozidel proti smyku

Odolnost vozidel proti smyku TU Lierci akuta strojní atedra ozide a motorů ooé dopraní a manipuační stroje II 04 Odonost ozide proti smyku Odonost ozide proti smyku Smyk porušení ronoáy si půsoícíc na ozido oční skouznutí přední nápray

Více

PROCESNÍ INŽENÝRSTVÍ 7

PROCESNÍ INŽENÝRSTVÍ 7 UNIERZITA TOMÁŠE BATI E ZÍNĚ AKUTA APIKOANÉ INORMATIKY PROCENÍ INŽENÝRTÍ 7 ýočty sojené s filtrací Dagmar Janáčová Hana Carvátová Zlín 01 Tento studijní materiál vznikl za finanční odory Evroskéo sociálnío

Více

4.3. Teoretický rozbor manipulace s primárním kalem

4.3. Teoretický rozbor manipulace s primárním kalem 6 Pro etrojení oau buouí onot čaoé řay, tey oau buouío ýoje množtí rimárnío alu alší měíí, by bylo zaotřebí íe onot minulý (min. za roy). Celoé množtí za leoané obobí 5 790,00 m 3 Průměrné enní množtí

Více

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

Teorie. iars 1/9 Čepové a kolíkové spoje

Teorie. iars 1/9 Čepové a kolíkové spoje Čeové a kolíkové soje V článku jsou oužita ata, ostuy, algoritmy a úaje z oborné literatury a norem ANSI, ISO, DIN a alších. Seznam norem: ANSI B8.8., ANSI B8.8., ISO 338, ISO 339, ISO 30, ISO 3, ISO 8733,

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Ř ó Í é Í ž ú Í Č Ú ň Š ň é é é Í ó Š ů é ů é é é é é é Š é ú ů é Ž é é Ž é Ž é ů Ž Č é ď Š Ž Ú ž ů Ž ů Ž é ď ž ž ž é é é é é ů ó é é Ž ů ů Í ž Ž ú Ž é ž Ž ú ů É Á Ú Í Ř É Á ó é ů Č Ť Í ů ů ú ú Í é Š Ř

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

PROCESY V TECHNICE BUDOV cvičení 7, 8

PROCESY V TECHNICE BUDOV cvičení 7, 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV cvičení 7, 8 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento stuijní materiál vznikl za finanční popory Evropského

Více

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu.

Více

Inženýrství chemicko-farmaceutických výrob

Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace

Více

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin. Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace

Více

1.7.5 Rovnováha na páce II

1.7.5 Rovnováha na páce II 75 Rovnováha na áce II Přeokay: 70 Peaoická oznámka: Hoinu je možné obře reuovat tím, koika zůsoby necháme některé říkay žáky očítat Peaoická oznámka: V náseujícím říkau nechám žáky nakresit obrázek a

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Identifikátor materiálu: ICT 1 11 Registrační číslo projektu Náze projektu Náze příjemce podpory náze materiálu (DUM) Anotace Autor Jazyk Očekáaný ýstup Klíčoá sloa Druh učebního materiálu Druh interaktiity

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

K141 HY3V (VM) Neustálené proudění v potrubích

K141 HY3V (VM) Neustálené proudění v potrubích Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter.

Válečkové řetězy. Tiskové chyby vyhrazeny. Obrázky mají informativní charakter. Válečkové řetězy Technické úaje IN 8187 Hlavními rvky válečkového řevoového řetězu jsou: Boční tvarované estičky vzálené o sebe o šířku () Čey válečků s růměrem () Válečky o růměru () Vzálenost čeů určuje

Více

POHYB SPLAVENIN. 8 Přednáška

POHYB SPLAVENIN. 8 Přednáška POHYB SPLAVENIN 8 Přenáška Obsah: 1. Úvo 2. Vlastnosti splavenin 2.1. Hustota splavenin a relativní hustota 2.2. Zrnitost 2.3. Efektivní zrno 3. Tangenciální napětí a třecí rychlost 4. Počátek eroze 5.

Více

VYHODNOCENÍ MĚŘENÍ (varianta "soulodí")

VYHODNOCENÍ MĚŘENÍ (varianta soulodí) VYHODNOCENÍ MĚŘENÍ (varanta "soulodí") Měřl (Jméno, Příjmení, skuna):... Datum:... Vyhodnocení hydrometrckého měření na Berounce (soulodí) Z vyočtených rychlostí ve všech bodech svslce určíme střední svslcovou

Více

Nelineární model pneumatického pohonu

Nelineární model pneumatického pohonu XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření činitele zvukové pohltivosti materiálů v akustickém interferometru

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření činitele zvukové pohltivosti materiálů v akustickém interferometru ČESKÉ VYSOKÉ ČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméno: Petr Česák Datum měření: 0..000 Stuijní rok: 000-00, Ročník: Datum oezání: 3..000 Stuijní skupina: 5 Laboratorní skupina:

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Mechanická silová pole

Mechanická silová pole Mechanická siloá pole siloé pole mechanice je ekooé pole chaakeizoané z. inenziou siloého pole (inenziou síly): E m [ms ] inenzia je oožná se zychlením, keé siloé pole aném mísě uělí liboolnému ělesu Siloé

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ

Více

Opakování Napětí. Opakování Základní pojmy silového působení. Opakování Vztah napětí a deformace. Opakování Vztah napětí a deformace

Opakování Napětí. Opakování Základní pojmy silového působení. Opakování Vztah napětí a deformace. Opakování Vztah napětí a deformace Tektiny ve famacetickém ůmys Tektiny Chaakteistika, odění tektin» Kaainy» ozoštěda» kaané I, ékové fomy» diseze» yny» Vzdchotechnika» Sšení» Fidní oeace Oakování Zákadní ojmy siového ůsobení» o účinek

Více

Modelování a simulace regulátorů a čidel

Modelování a simulace regulátorů a čidel Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

kde p pč pdisp - účinný tlak okruhu [Pa] - dopravní tlak oběhového čerpadla [Pa] - celková tlaková ztráta okruhu [Pa] - dispoziční rozdíl tlaků [Pa]

kde p pč pdisp - účinný tlak okruhu [Pa] - dopravní tlak oběhového čerpadla [Pa] - celková tlaková ztráta okruhu [Pa] - dispoziční rozdíl tlaků [Pa] VYTÁPĚNÍ - cvičení č.6 Návrh otopné soustavy s nuceným oběhem voy Ing. oman Vavřička Vavřička,, Ph.D Ph.D.. ČVUT v Praze, Fakuta strojní Ústav techniky prostřeí oman.vavricka@ oman.vavricka @fs.cvut.cz

Více

CÍL V této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, výpočtu a regulace.

CÍL V této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, výpočtu a regulace. 1 ČERPADLA! čerpadla, tlak, objemoý průtok, ýtlačná ýška, regulace čerpadel, oběžné kolo CÍL této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, ýpočtu

Více

5. Servopohony se synchronními motory s permanentními magnety

5. Servopohony se synchronními motory s permanentními magnety 5. Servoohony se synchronními motory s ermanentními magnety V sočasné obě nabývají stále více na význam stříavé reglační ohony se synchronními motory, nichž je bicí vintí nahrazeno ermanentními magnety.

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Metody měření rychlosti světla

Metody měření rychlosti světla Metody měření ryhlosti sětla a) metody římé Prní (neúsěšný) okus o změření ryhlosti sětla roedl Galileo s oužitím dou lueren s dířky umístěnýh na dou několik kilometrů zdálenýh ršíh. 1. Roemeroa metoda

Více

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány

Více

Vírové průtokoměry princip, vlastnosti a použití

Vírové průtokoměry princip, vlastnosti a použití měření průtoku Víroé průtokoměry princip, lastnosti a použití Víroé průtokoměry patří o skupiny rychlostních průtokoměrů, které yhonocují objemoý průtok na záklaě měření rychlosti prouícího méia při znalosti

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B) Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

OOP HRANICE, PURGEŠOVA 2

OOP HRANICE, PURGEŠOVA 2 HAVNÍ ROJEKTANT: ROJEKTANT STAVEBNÍ: ING.ARCH. UKÁŠ DOUBRAVA ING.ARCH. UKÁŠ DOUBRAVA ODIS A RAZÍTKO: ROJEKČNÍ KANCEÁŘ Tř.7. ISTOADU 6/43 OOMOUC 77 www.architekt-doubrava.com OBJEDNATE: ČESKÁ REUBIKA -

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

II. TERMOMECHANIKA SMĚSI PLYNŮ, PAR A VLHKÉHO VZDUCHU

II. TERMOMECHANIKA SMĚSI PLYNŮ, PAR A VLHKÉHO VZDUCHU II. ERMOMECHANIKA SMĚSI PLYNŮ, PAR A VLHKÉHO VZDUCHU.0 Směsi ynů Nejběžnější směsí ynů je atmosférický vzduch. Je to směs dusíku, kysíku a v menší míře jsou zastoueny oid uhičitý, vodík a neatrné množství

Více

7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová

7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová 7 Usazování Lenka Schreiberová, Pavlína Basařová I Základní vztahy a definice Usazování neboli sedimentace slouží k oddělování částic od tekutiny v gravitačním oli. Hustota částic se roto musí lišit od

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

Předpjatý beton Přednáška 12

Předpjatý beton Přednáška 12 Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inooaných technicko-ekonomických VUT, FAST, Brno ústa Technických zařízen zení budo GG . Úod Cykly lze cháat jako oběhy dějůd ři i kterých sledoaný objekt měním sůj j sta cestami, jež mají

Více

Mezní napětí v soudržnosti

Mezní napětí v soudržnosti Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ DIPLOMOVÁ PRÁCE Modeloání proudění ody na měrném přeliu Vedoucí práce: Ing. Jiří Palásek, Ph.D. Diplomant: Roman Kožín 009 Prohlášení Prohlašuji,

Více

Kmitavý pohyb trochu jinak

Kmitavý pohyb trochu jinak Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE Datum: 01/2016 Stupeň dokumentace: Dokumentace pro stavební povolení Zpracovatel: Ing. Karel

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

13 Analytická geometrie v prostoru

13 Analytická geometrie v prostoru Anlytická geometrie v rostoru Nyní se změříme n tříimenzionální rostor využijeme vlstností, které ze ltí ozor v rovině neltí.. Poznámk: Okování u = (u,u,u ), v = (v,v,v ) - vektory sklární součin vektorů

Více

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPO

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPO Stereometrie je mtemtiká ění isiplin zýjíí se prostoroými útry jejih zthy. Je to geometrie prostoru. 1. HRANOL ) kolmý hrnol pětioký hrnol trojoký hrnol kár Horní post hrnolu Boční stěny toří plášť hrnolu

Více

Rostislav Jedlička Tepelný a pevnostní výpočet výměníku VUT Brno, FSI-ÚE

Rostislav Jedlička Tepelný a pevnostní výpočet výměníku VUT Brno, FSI-ÚE Rostisla Jedlička Teelný a enostní ýočet ýěníku VUT Brno, FSI-ÚE Obsah Úod 5 Teelný ýočet ýěníku 6 Předběžný ýočet 7 Výočet součinitele rostuu tela 8 Výočet součinitele řestuu tela na straně áry 9 Výočet

Více

Tekutiny. tekutiny (plyny a kapaliny) se výrazně liší z hlediska vnitřní struktury od pevných látek

Tekutiny. tekutiny (plyny a kapaliny) se výrazně liší z hlediska vnitřní struktury od pevných látek Tekutin Tekutin tekutin (ln a kaalin) se ýazně liší z hleiska nitřní stuktu o ených látek Pená látka Kaalina Pln molekul nejsou ázán na neoměnné onoážné oloh, ale mohou se zájemně olně osouat (tekutin

Více

Identifikátor materiálu: ICT 1 18

Identifikátor materiálu: ICT 1 18 Identifikátor ateriálu: ICT 8 Reistrační číslo rojektu Náze rojektu Náze říjece odory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýstu Klíčoá sloa Dru učenío ateriálu Dru interaktiity Cíloá skuina

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

MMEE cv Určení energetického obsahu zboží plynná paliva

MMEE cv Určení energetického obsahu zboží plynná paliva MMEE c.2-2011 Určení energetického obsahu zboží lynná alia Cíl: Procičit ýočtu energetického obsahu lynných ali 1. Proč je nutné řeočítáat energetický obsah (ýhřenost, salné telo) lynných ali? 2. Jak řejít

Více

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1) říklad S1 Stanovte potřebný výkon spalovacího motoru siničního vozidla pro jízdu do stoupání 0 % rychlostí 50 km.h -1 za bezvětří. arametry silničního vozidla jsou: Tab S1.1: arametry zadání: G 9,8. 10

Více

Návody do cvičení z předmětu Využití počítačů v oboru

Návody do cvičení z předmětu Využití počítačů v oboru VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA fakulta trojní katera hyromechaniky a hyraulických zařízení Náoy o cičení z přemětu Využití počítačů oboru Tomáš Blejchař Vikozita oleje.50e-04.00e-04

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 2

PROCESNÍ INŽENÝRSTVÍ cvičení 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AULTA APLIOVANÉ INORMATIY PROCESNÍ INŽENÝRSTVÍ cvičení iltrace část 1 Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Třetí Dušan Hložanka 30. 4. 2014. Název zpracovaného celku: MECHANISMY OBECNÉHO POHYBU ŠROUBOVÉ MECHANISMY

Třetí Dušan Hložanka 30. 4. 2014. Název zpracovaného celku: MECHANISMY OBECNÉHO POHYBU ŠROUBOVÉ MECHANISMY řeět: Roční: Vytvoři: Datu: tavba a provoz strojů Třetí Dušan Hožana 0. 4. 014 Název zpracovaného ceu: ECHANIY OBECNÉHO OHYBU ŠROUBOVÉ ECHANIY A. Charateristia Šroubový echanisus tvoří ineaticá vojice

Více