Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Hydraulické odpory třecí odpory místní odpory třecí odpory laminární proudění turbulentní proudění"

Transkript

1 Hyrauické oory Při rouění reáných tekutin znikají násekem iskozity hyrauické oory, tj. síy, které ůsobí roti ohybu částic tekutiny. Hyrauický oor ři rouění zniká zájemným třením částic rouící tekutiny ři rozíných rychostech a třením tekutiny o stěny. Hyrauické oory se ěí na třecí oory a místní oory. Při rouění skutečné tekutiny je rozožení rychostí o růtočném růřezu neronoměrné a jenotiých rstách a na stěnách znikají tečné síy a naětí zůsobené iskozitou kaainy. Při turbuentním rouění ochází k ýměně hybnosti a energie mezi jenotiými rstami, což zyšuje hyrauický oor. Tyto ruhy hyrauických oorů se označují jako třecí oory a jsou charakteristické tím, že záisí na éce otrubí nebo kanáu. Ztrátoý součinite třecího ooru ξ je římo úměrný éce otrubí. Daší ruh hyrauického ooru zniká ři otržení rouu o obtékaných stěn. Při změně eikosti nebo směru rychosti rouu mohou být setračné síy tak eké, že takoé síy nestačí řitačit tekutinu na obtékané ochy a ochází k otržení rouu. Mezi stěnami a okrajoou rounicí otrženého rouu zniká obast s ířící tekutinou. Její ohyb je sojený s řekonááním hyrauických oorů a otřebná energie se oebírá hanímu rouu tekutiny. Těmto hyrauickým oorům se říká místní. Ztrátoý součinite místního ooru ξ záisí na geometrii uažoaného místa (změně růřezu, zakřiení,...) a rouění (ruhu kaainy, rychosti). Při maých rychostech rouu se ohyb ěje e rstách a částice tekutiny se neromícháají. Takoéto rouění se nazýá aminární rouění. Zýší-i se rychost na kritickou honotu, ochází k intenzinímu romícháání částic násekem jejich oružných (turbuentních, fuktuačních) ohybů e šech směrech. Částice tekutiny neustáe řecházejí z jené rsty o ruhé, řičemž ochází k ýměně kinetické energie a jejich rychosti o růřezu se yronáají. Takoéto rouění se nazýá turbuentní rouění. Protože ři řemisťoání částic ochází také ke změně hybnosti, což je sojeno s brzícím účinkem, bue ýsený oor roti rouění u turbuentního rouění ětší, než ooíá smykoému naětí o iskozity ři aminárním rouění. U aminárního rouění je hyrauický oor roti ohybu ineárně záisý na rychosti, u turbuentního rouění je záisý na ruhé mocnině rychosti. Přecho aminárního rouění turbuentní je určen ynosoým čísem:

2 , (3.) ke je stření rychost tekutiny, je charakteristický rozměr, nař. ři rouění otrubí jeho nitřní růměr a je kinematická iskozita tekutiny. ynosoo číso je bezrozměrné a kritická honota je k 30. Pro < k je rouění aminární a ři > k je turbuentní. Veikost ztráty třením otrubí se yjařuje jako takoá ztráta, která řestauje roztýenou energii objemoé jenotky rouící tekutiny nebo jako ztrátoá ýška h, která řestauje roztýenou energii ztaženou na tíhoou jenotku rouící tekutiny. Patí ro ně: h g (3.) Ztrátoá ýška se yjařuje jako násobek kinetické energie: h ξ, (3.3) g ke je rychost rouění a ξ je ztrátoý součinite, který záisí na éce a růměru otrubí: ξ λ. (3.) Bezrozměrný součinite λ se nazýá součinite tření. Obecně záisí na číse a oměrné rsnosti omočených och ε λ f(, ε ), (3.) ke oměrná rsnost je yjářena oměrem stření honoty ýstuků neroností orchu k růměru otrubí: k ε. (3.) U aminárního rouění kruhoém otrubí ro součinite tření atí: λ, < k 30. (3.7)

3 Při neronoměrném rychostním rofiu, který je zůsoben nař. místním oorem, jsou třecí ztráty ětší o 0 až 30 %, [Bukoski, J.: Mechanika ynow. Warszawa, 97] tey A λ, (3.8) ke A 70 až 8. V těchto říaech je k 00. U turbuentního rouění jsou ztráty třením ětší než u rouění aminárního. Vztah ro součinite tření λ ři turbuentním rouění hakém otrubí ooi Basius: 0.3 λ (3.9) který atí ro k 80. Pro rozsah 0 až 0 je možno oužít ztah 0.8 λ. (3.0) Při rouění rsném otrubí se křiky ro různé oměrné rsnosti ε ooutáají o Basioy římky a s rostoucím ynosoým čísem řecházejí soustau čar ronoběžných s ooronou osou. O určitého ynosoa čísa, které záisí na oměrné rsnosti, má součinite tření stáou honotu. V této obasti, zané yinuté turbuentní rouění je součinite tření yjářen Nikuraseho ztahem λ (3.) og +.38 k k který atí ro λ > 9.. Mezi obastí aminárního rouění a obastí yinutého turbuentního rouění je obast řechooá., níž součinite tření λ záisí jak na ynosoě číse, tak na oměrné rsnosti. Tuto záisost yjařuje Mooyho zorec 3

4 k λ, (3.) který atí rozmezí 0 3 < < 0 7. Pro snané určení součinitee tření otrubí souží iagram na obr. 3.. Z iagramu λ f(,ε ) je atrné, že ro turbuentní rouění se křiky ro různé rsnosti řimykají ři nižších čísech k Basioě římce a o určité honoty se ooutáají a řibižují se ooroné římce. Obr. 3. Diagram záisosti λ f(,ε ) Pro oození ooru ři rouění reáné tekutiny yjeme ze ztahu (3.) a (3.3): g g g h ξ. (3.3) Úraou ztahu (3.3) ostaneme: ξ ξ. (3.)

5 Dosaíme za ztrátoý součinite ξ ze ztahu (3.) : λ, (3.) a úraou získáme záisost mezi takoou ztrátou a rouícím množstím : λ. (3.) Pro aminární rouění osaíme za součinite tření λ ze ztahu (3.7) a za ynosoo číso ze ztahu (3.) : (3.7) Pro aminární rouění tey ostááme ztah ro oor R: R (3.8) Poobně můžeme ooit ztah ro oor ři turbuentním rouění. Do ztahu (3.) osaíme za součinite tření λ ze ztahu (3.9) a za ynosoo číso ze ztahu (3.) : (3.9) Při turbuentním rouění hakém otrubí můžeme tey oor yjářit: 0.3 R. (3.0) Viskozita oy záisosti na teotě Dynamická iskozita i kinematická iskozita oy kesá s rostoucí teotou oy. Honoty iskozity oy uáí náseující tabuka: Dynamická iskozita a kinematická iskozita oy záisosti na teotě

6 Teota [ C] Dynamická iskozita 0-3 [Pa.s] Kinematická iskozita 0 - m s - 0,787,787,9,9 0,307,307 0,00, ,798 0,80 0 0,3 0,8 0 0,7 0,3 0 0,7 0,7 70 0,0 0,3 80 0,3 0,3 90 0,3 0,3 00 0,8 0,9 objemoý růtok m^3/s hmotnostní růtok kg/s

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4.

V. Stacionární proudové pole... 2 V.1. Elektrický proud... 2 V.2. Proudová hustota... 2 V.3. Rovnice kontinuity proudu... 3 V.4. tconární rouové oe ektrcký rou Prouová hustot ovnce kontnuty rouu 4 Ohmův zákon v ferencáním tvru 5 oueův zákon 5 6 Anoge eektrosttckého stconárního rouového oe 6 7 Pomínky n rozhrní 7 8 Oor rezstorů řzených

Více

SDÍLENÍ TEPLA A PROUDĚNÍ

SDÍLENÍ TEPLA A PROUDĚNÍ Vysoká škola báňská Technická unierzita Ostraa SDÍLENÍ TEPLA A PROUDĚNÍ učební tet Aéla Macháčkoá, Raim Kocich Ostraa 0 Recenze: Prof. Ing. Pael Kolat, DrSc., Ing. Kateřina Kostolányoá, Ph.D. Náze: Sílení

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

4.3. Teoretický rozbor manipulace s primárním kalem

4.3. Teoretický rozbor manipulace s primárním kalem 6 Pro etrojení oau buouí onot čaoé řay, tey oau buouío ýoje množtí rimárnío alu alší měíí, by bylo zaotřebí íe onot minulý (min. za roy). Celoé množtí za leoané obobí 5 790,00 m 3 Průměrné enní množtí

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Kmitavý pohyb trochu jinak

Kmitavý pohyb trochu jinak Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ DIPLOMOVÁ PRÁCE Modeloání proudění ody na měrném přeliu Vedoucí práce: Ing. Jiří Palásek, Ph.D. Diplomant: Roman Kožín 009 Prohlášení Prohlašuji,

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Návody do cvičení z předmětu Využití počítačů v oboru

Návody do cvičení z předmětu Využití počítačů v oboru VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA fakulta trojní katera hyromechaniky a hyraulických zařízení Náoy o cičení z přemětu Využití počítačů oboru Tomáš Blejchař Vikozita oleje.50e-04.00e-04

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5 Obsah Historický přehled 5 Plynný sta hmoty 8. Jednotky tlaku................ 8.. Použíané jednotky tlaku.......... 9.. Rozlišení oblastí akua podle tlaku...... 9. Staoá ronice................ 9.. Gay

Více

ř é ů ř ř š Š ě ř é ů Š ě ř é ů ř ř é ě š ů ď ě ý ů ú é ú é ú é ú é ý ú é ř ř ů ř ě ý é ů ě é ř ě Ž é ú ř ý ě ý ř ď ů é Í ě é ě ý Š ěř é ýř é ř ů ó ě ý ř ě ř ě ý ů ě ě š ř ů ú ýš ě ů ú ý ť ě ý ý ď ě ď

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Hádanka kněží boha Ra

Hádanka kněží boha Ra Háanka kněží boha Ra Stojíš pře stěno, a ktero je stna Lotos jako krh Slnce. Vele stny je položen jeen kámen, jeno láto a va stvoly třtiny. Jeen stvol je lohý tři míry, rhý vě míry. Stvoly (opřené ve stabilní

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

Frézování. Rovinné plochy frézujeme válcovými a čelními frézami, resp. frézovacími hlavami.

Frézování. Rovinné plochy frézujeme válcovými a čelními frézami, resp. frézovacími hlavami. Frézování je výrobní metod, omocí níž obrábíme rovinné nebo zkřivené ochy vícebřitým nástrojem frézou rovádí se většinou n stroji, který se nzývá frézk. 1.1.1 Chrkteristik výrobní metody Hvní rotční ohyb

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

Dopplerovský měřič traťové rychlosti

Dopplerovský měřič traťové rychlosti Doppleroský měřič traťoé ryclosti Záklaní unkcí Doppleroa měřiče ryclosti je nepřetržité určoání ektoru traťoé ryclosti ůči zemskému porcu. Poku je měření tooto ektoru konertoáno o ormátu zemskýc zeměpisnýc

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Á ý ř ř ý ý Ž ó ř ř ě ř ě ý ř ý ý ě ý ý ů ý ř ř Ž ě ú ů ý ý ů ř ý ů ť ěř ý ř ě ř š ě Ž ě ř ě ř Ž š ř ě ě ý ě ř Ž ě ř ě ě ř š ř ě Ž ě ř ě š ý š ř ě ě ě ý ř Ž ě ř ě ř ř ú ě š ě ě ř Ž ý ě ř ě ě ě ň š ě ě

Více

í š ě í š š í í ě úř š ří Š ý š Č É š í í ú í Ů ří ú í Ů í ř ě ýš í ř Ž í í í ě í í š Č í Ž í í ň í í í ř ě í ú í í í š ě ú í ý í í í í ú ú š í í í í ú ě í ýš ě ří ý ěř í ýš ý ú í úř ý š ě í ě ř ě ě í

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Ě Á Í ř ř é č č ř ů ě ě ž ů Š č ř ý ě č č ě č ú Í Í š č Ě é ř ě é é č ř č ř Í ý Š Í Á Ž Ě Ý ť ř ě ú ň Ě Á Í Í š ě ř č č ú ř Ě ř Š Í Č ě é ř ř ě ý ý ř ě ý ř é ř ě ř ě ů ý ř ě ý ů ř ý ů ř ý Š Á Ž Ě Ý ř žé

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004

OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004 OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 posední úprava 25. června 2004 1. ía současně působící na eektrický náboj v eektrickém a magnetickém poi (Lorentzova sía) [ ] F m = Q E

Více

Š ŘÁ É É Š ŘÁ É É Ú š ř ř ř ř ý š ě ě ě š ů ý š ě ě š ř ů ý ň ě ě ý ěř ě ů ý ý ě ů ě ě ý ř ě ů ý ř ý ů ý ř ř š ů ř ř ě š ř ě š ů š ř ý ě š ř ý ř ů ř ř ůž ě ě ů ř ě ř ř ě ř Žš ů ř š ů ř ý ý Ž ě ý ř ř Ž

Více

č í í žá é ý í í č é ý á íč ř íž é ě ýš á áš ů š í ů ří š á č á ě Š ří é í š ž í ř í é č í č ž í í á á í ě Ž é č á á á ý ě í í á íč č ř ří í š í á ě í ž í čí á ž í á ě í ý č ý ě ý ě í ř í ě ř š ě í í ě

Více

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami Fréování obrábění rovinných nebo tvarových loch vícebřitým nástrojem réou mladší ůsob než soustružení (rvní réky 18.stol., soustruhy 13.stol.) Podstata metody řený ohyb: složen e dvou ohybů cykloida (blížící

Více

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO Pufr ze slabé kyseliny a její soli se silnou zásaou např CHCOOH + CHCOONa Násleujíí rozbor bue vyházet z počátečního stavu, ky konentrae obou látek jsou srovnatelné (největší pufrační kapaita je pro ekvimolární

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK ermomechanika 2. řenáška Doc. Dr. RNDr. Mirosla HOLEČEK Uozornění: ao rezenace slouží ýhraně ro ýukoé účely Fakuly srojní Záaočeské unierziy Plzni. Byla sesaena auorem s yužiím cioaných zrojů a eřejně

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

Č ó š ě š ě Í šť Č šť Č Č Č ř ě ž š ě ř Č Č ř š ě ř š ě ř š š ě ř Ň š ň š ě š ě š ě š ě š ě ě š ě š ě ě šť šť š ě ě ř ě šť š ě š ě Č š ě Č š ě š ě ě š ě š ě ě šť šť š ě Ě ř ě šť š ě š ě Č š ě Č š ě š ě

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

TECHNICKÝ KATALOG GRUNDFOS. Série 100. Oběhová čerpadla série 100 50 Hz

TECHNICKÝ KATALOG GRUNDFOS. Série 100. Oběhová čerpadla série 100 50 Hz TECNICKÝ KATALOG GRUNDFOS Série Oběhová čeradla série z Obsah Všeobecné údaje Výkonový rozsah Výrobní rogram, x V, z Tyové klíče 6 GRUNDFOS ALPA 6 GRUNDFOS ALPA+ 6 UP, UPS 6 GRUNDFOS COMFORT 6 Použití

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

ř ž ř š ř ů ř ž ř ř ž ž ř Č Ú Č Ř Ě Ř É Á ř ř ž ř ř ř ř ž Č ú ž Č ř š ř Č ž ř ň ř ž ř ů Ů ř ž ž ú ř š ř úř ř ř ň ř ů ů ř ř ž ů Č ž ř š ř ň ů ú ů ž ů ů š ž ř ů ů š ó š ů ů ř š ů ů ř ů ř ž š ř ú ůč Ú š ú

Více

ČERPACÍ TECHNIKA A POTRUBÍ NÁVODY DO CVIČENÍ

ČERPACÍ TECHNIKA A POTRUBÍ NÁVODY DO CVIČENÍ VSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta trojí katedra hydromechaiky a hydraulických zařízeí ČERPACÍ TECHNIKA A POTRUBÍ NÁVOD DO CVIČENÍ Tomáš Blejchař Syla Drábkoá OSTRAVA 00 Sezam oužitých

Více

Datová centra a úložiště. Jaroslav G. Křemének g.j.kremenek@gmail.com

Datová centra a úložiště. Jaroslav G. Křemének g.j.kremenek@gmail.com Datová centra a úložiště Jaroslav G. Křemének g.j.kremenek@gmail.com České národní datové úložiště Součást rojektu CESNET Rozšíření národní informační infrastruktury ro VaV v regionech (eiger) Náklady

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

Ú ú ú ú Ž Ž ŽÁ ú ň Í ú ú ť Ž Ž ú Ó ú ú ú Í Í Í ú ú ú ú ť ú Ž ň Á Í ň ť Ú Ž Ř Š Í ú Ú ť Ž ú ú ú ú ú ť Ž ú Á Í Í ť Ž ň Á ň Ó ú Š Ž Ž ň ú ť Ž ú ú ú ň Ž Ž Í ú Ž Ž ú Ž ú ň ť ň ú ň ú ú ň ú Ž Ž Ž Ž Ť ú Ž ú ň

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

» Omezení prašnosti, prachového podílu» Zlepšení tokových vlastností» Úprava sypné hmotnosti» Zlepšení tabletovatelnosti» Fixace homogenity

» Omezení prašnosti, prachového podílu» Zlepšení tokových vlastností» Úprava sypné hmotnosti» Zlepšení tabletovatelnosti» Fixace homogenity Proč zvyšovat velikost části Úrava velikosti části - vlhká granulae - fluidní granulae» Omezení rašnosti, rahového odílu» Zlešení tokovýh vlastností» Úrava syné hmotnosti» Zlešení tabletovatelnosti» Fixae

Více

í é í íč š Č é š ří í ů é č í ř ý í í ří í ř Č š ý ř í í ů é é Č č Č í ě ší í ý ě í í ř í í ř í í ř í ř í ř ý í ří ý š ý í íč í ý ěř í ě í ř ěř ří ý é é í Ž č é í ů ů í í ů í ů Ů í í č í í úč ů ů í í ý

Více

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text ro řešitele FO a ostatní zájemce o fyziku Bohumil ybíral Obsah Předmluva 3 Základní veličiny a zákony ideálního lynu 4 Stavové veličiny lynu 4 eličiny oisující lyn

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

ó Á Í ý ý š š ť š š š Ú Ý ř Ž š ř Í ř ř ě ř ě ě ř ě ř ř ň ř Š ř Í ť ú ýž ě š ý ů ú ňě Óř ú š ó É ýž ř ý ť ď ýý ť ř ěř ř ř ž ě ř ě ě ě ř š ž ý Ž ů Ž ě Ž Í Ó ů ř ž ů ě ě ů ř ě ř Í ě ř ý ř ý ž ý ě ž ž Éš

Více

š ý ó ř ó ýš ž ó ř ž ý ý ů ž ž ř ě ěř ěř ý š ě ý ý ý ří ě ě ě Ž ě ř ě ě ř ě ě Í Í š ř Ž ý ř ř ř Ž ř Ž ř Ž ý ř Í Á ý ó Ó Í ě ý ů š ř ť Ť Ó ř ě ě ě Ž ě ř ě ě ř ě ě Í š ř ý ř ř ř Ž ř Ž ř ý ý ě ý ů š Í š ó

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

Zesilování a rekonstrukce pomocí nabetonovaných vrstvev pro mosty, tunely a ostatní infrastrukturu

Zesilování a rekonstrukce pomocí nabetonovaných vrstvev pro mosty, tunely a ostatní infrastrukturu Neautorizoaný překlad originál angličtině je k dispozici. Zesiloání a rekonstrukce pomocí nabetonoaných rste pro mosty, tunely a ostatní infrastrukturu Konstrukční zásady a narhoání pro staticky neurčité

Více

1.7 Magnetické pole stacionárního proudu

1.7 Magnetické pole stacionárního proudu 1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru

Více

ŘÍ ó Ý Ň É Ť Í ň ó Ř Í Í Ň ď ď ď Ě Í Á Ý ó Á ó ď ó Í ó Ř Č ó Ř Ř Á Š Ď ď ď Č Ý Ý Í ň Ý ň Ý Ý ň Í Ý Ó Í Ý ň Ň ď ň ó ó ó ď ň Á Á Á Ě Ě ň ň ň Á Á ó ď Í Ě ď Ď ň Ý ď ó ň Š Í Á ÁŠ Ě Š Í Á ď ď ď ď Ý ň ň Í Ž

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

í í ž á ů č ř í Íý ú ě é íč ě áčě ěř Í á ě čč áď ě á ý ý ěš é ú ě í é š ě í ž ří ě é šá ě ý á ě á é á ě é č Í í ě á ě ě é š Í á á Í Í ž á í á š š řě ě ř á Ž ě Í í í čí š á š ě ý ží č á ě í í š ě í ý á

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

Abychom obdrželi všechna data za téměř konstantních podmínek, schopných opakování:

Abychom obdrželi všechna data za téměř konstantních podmínek, schopných opakování: 1.0 Vědecké přístupy a získávání dat Měření probíhalo v reálném čase ve snaze získat nejrelevantnější a pravdivá data impulzivní dynamické síly. Bylo rozhodnuto, že tato data budou zachycována přímo z

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět fyzika, který je realizován prostřednictvím

Více

Ě í ě ýúř é ý á ě Í Í é ř í Í Ý ň ůř Ží á í í ř ř á á ě áúř ř ý ě é úř é íúř ří š ý í á ú á á řá é ě á íá íúř ě ří š ý í á Íá řá í é ě í á á řáí é ú í í ř ř žá ř é é í é á ě é é é í á Íú í í ě í ě é ří

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0 Úloha 4 - Koupě DVD reoréru SPOTŘEBITELSKÝ ÚVĚR Mlaá roina si chce poříit DVD reorér v honotě 9 900,-Kč. Má možnost se rozhonout mezi třemi splátovými společnosti, teré mají násleující pomíny: a) První

Více

3. SIMULTÁNNÍ REAKCE

3. SIMULTÁNNÍ REAKCE 3. IMULTÁNNÍ REKCE 3. Protsměrné (vratné) reae... 3.. Reae, obě ílčí reae prvého řáu... 3.. Reae D E, D, D E...4 3..3 Kneta & termoynama (vratné reae & hemá rovnováha)...4 Příla 3- Protsměrné reae...6

Více

Ú Ř Š Ř Ě Ý Ý Ř Č Ý Ř Á É Š Í Ě Ř Ě Š Á Á Í Í Í Á É Ř É Í Á Á Ž Í Ž Í Á Á Á Í Í Í Š Í Á ť ž ó Í š š ú ž ž ó ó ů Ž ť š Ž Ž ť Ž Ž Ž ú ů Ž ž Í ť ž Ý ě š ž ě š Ů ň Í ó ú ú ž É Ř É Ř ó Ž ž Í Ú ť Ú ť š ů ě š

Více

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral.

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Tabuka III Mechanické vastnosti některých křehkých konstrukčních materiáů Pevnost v tahu Pevnost v taku Pevnost v ohybu Materiá σ pt/mpa σ pd /MPa σ po/mpa Šedá itina 4 4 1 10 500 80 Šedá itina 4 4 4 40

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

ý Í Á ě Ě Á Í ý ě ě ů Š ů ý ě ú ě ě Í ě ý ů ě ý ý ě ě ě ý Ť ě ý Á Ž ě Ěú Á ě ý Í ú ú Ž Í Ž ě ý ý ó ó ď ě ě ý ě ú ý Á ě Ěú Á Š ě ě ý ě ě ý ě ú ě ý ě ě ú ý ě ó Áý Í ť ě Ěú Á Í ě Ž ě ý ý ě ě ý ě ě Á ě ě ý

Více

í Š í í ď í í é č ř čí ě ěř é é íč š ří č ř Ž é č í í é ř Ž é č í Š Š í í ěř é č í ý č ř í é í č í ý é ě í í í í í ř ě Ž í Ť ě úř í í úř í ý é ě í ř í Ž ří č š í é í ří é í ě í í ď ě ř ý š ěř í ěř íč š

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Platnost zásad normy:

Platnost zásad normy: musí zajistit Kotvení výztuže -spolehlivé přenesení sil mezi výztuží a betonem musí zabránit -odštěpování betonu -vzniku podélných trhlin Platnost zásad normy: betonářská prutová výztuž výztužné sítě předpínací

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI

- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI - 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI Ing. K. Šplíchal, Ing. R. Axamit^RNDr. J. Otruba, Prof. Ing. J. Koutský, DrSc, ÚJV Řež 1. Úvod Rozvoj trhlin za účasti koroze v materiálech

Více

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více