4. Optický senzor polohy, měření proudu fotodiody

Rozměr: px
Začít zobrazení ze stránky:

Download "4. Optický senzor polohy, měření proudu fotodiody"

Transkript

1 4. Optický senzor polohy, měření proudu fotodiody Úkoly měření 1. Měření výstupního signálu fotoelektrických senzorů Změřte relativní závislost výstupního signálu optoelektronických snímačů na intenzitě ozáření. Předpokládejte lineární závislost svítivosti LED (použité pro osvětlení snímačů) na jejím budicím proudu. Vyneste do grafu proud fotodiody BPW34 (Vishay) nakrátko a proud fototranzistoru PT204-6C (Everlight) v závislosti budicím proudu LED alespoň pro 6 hodnot proudu. 2. Dynamické vlastnosti snímače s fototranzistorem Určete odezvu fototranzistoru PT204-6C na optický impuls. Odhadněte maximální frekvenci proměnného optického signálu, který by bylo možno sledovat fototranzistorem. Zdroj záření buďte impulsy o délce 0,5 ms a frekvenci 300 Hz z impulsního generátoru G5-6. Budicí signál LED i výstupní signál fototranzistoru pozorujte pomocí číslicového osciloskopu. Zaznamenejte odezvu. Jaká je doba náběžných a spádových hran? 3. Reflexní snímač s difuzním odrazem Ověřte vlastnosti jednoduchého snímače s difuzním odrazem tvořeného červenou diodou LED a fototranzistorem PT204-6C při snímání objektu odrazné plochy ve formě bílého papíru o rozměru 100 x 80 mm. V čem spočívá problém funkce takového jednoduchého snímače, jak se projevuje působení okolního světla? Demonstrute změnu signálu na výstupu fototranzistoru při rozsvícené LED a při zhasnuté LED. Zjistěte závislost velikosti užitečného signálu na vzdálenosti odrazné plochy pro 5, 10, 15 a 20 cm. Užitečný signál je dán rozdílem napětí na svorce U T při vstupu MOD nezapojeném (LED svítí) a vstupu MOD připojeném na (LED nesvítí). Určete, do jaké vzdálenosti je ještě rozdíl znatelný. 4. Potlačení působení rušivého světla modulací Pro vyloučení působení okolního rušivého světla na funkci reflexního snímače s difuzním odrazem využijte impuslní modulaci užitečného záření LED. Pro buzení vysílače využijte impulsní generátor a signál o frekvenci přibližně 300 Hz. Na číslicovém osciloskopu pozorujte výstupní signál přijímače v době vysílaní impulsu a v době mimo tuto dobu. Mezi vstup osciloskopu a výstup přijímače zařaďte hornopropustný filtr, který propustí pouze signál odpovídající vysílaným optickým impulsům, ale potlačí stejnosměrnou složku i složku nízkofrekvenčního rušení způsobenou proměnným světlem zářivek. Pozorujte impulsy na výstupu tohoto filtru v závislosti na změně vzdálenosti odrazné plochy od snímače. 5. Sestavení jednoduchého senzoru optické závory na kontaktním poli (nepovinné) Navrhněte uspořádání jednoduchého clonicího senzoru optické závory s využitím červené LED a fototranzistoru Everlight PT204-6C. LED a fototranzistor bodou umístěny v jedné v ose tak, ze světlo z LED bude dopadat čelo fototranzistoru. Sledovaný objekt bude přerušovat chod světlených paprsků mezi LED a fototranzistorem. (Proto se podobné snímače v malém provedení také označují jako Photointerrupter.) Tento senzor realizujte na nepájivém kontaktním poli. Proud LED volte max. 20 ma. Napětí na LED v předním směru předpokládejte +2 V. (Pro napájení ze zdroje +5 V je vhodné použít předřadný odpor v sérii s LED např. o hodnotě 330 Ohmů až 10 kohmů.) Str. 1/8

2 Výstupní signál senzoru indikujte pomocí voltmetru, případně osciloskopu. Demonstrujte funkčnost senzoru podle reakce na přiblížení objektu do aktivní oblasti senzoru. S využitím osciloskopu demonstrujte funkci snímače při určení počtu prstů prošlých aktivní oblastí a při určení doby kyvu kyvadla procházejícího snímačem. 6. Demonstrace funkce optického reflexního snímače LEGO Ověřte činnost optického snímače LEGO světelný senzor ve funkci senzoru přiblížení. Vyzkoušejte použití NXT světelného senzoru pro detekci přiblížení překážky ve formě bílého papíru o rozměru 100 x 80 mm, zhodnoťte vliv intenzity okolního osvětlení v jednotlivých režimech činnosti senzoru na spolehlivost detekce překážky. Spuštění programu: připojte NXT kostku k napájecímu zdroji (12VDC), zapněte oranžovým tlačítkem, opakovaným stiskem oranžového tlačítka spusťte program SME. Funkce senzoru: 1. Měří okolní osvětlení (LED vypnutá) 2. Měří okolní osvětlení + reflexi od LED diody (LED zapnutá) 3. Střídají se režimy LED zapnuta-vypnuta, na displeji jsou zobrazeny tři údaje: OFF (měří osvětlení), ON (osvětlení + reflexe), DIFF (rozdíl) Mezi jednotlivými funkcemi se přepíná dotykovým snímačem připojeným na senzorový port 2 (vpravo od NXT kostky). Str. 2/8

3 Poznámky a vysvětlení k úloze Ad 1) Měření výstupního signálu fotoelektrických senzorů. V přípravku jsou použity dvě sériově zapojené LED, které osvětlují fotodiodu FD BPW34 a fototranzistor FT typu PT204-6C. Celkové zjednodušené schéma zapojení přípravku je na obr. 1. Pro napájení se využije zdroj symetrického napájecího napětí +12 V a -12 V, např. BK126 (případně i +15 V a -15 V např. zdroj BK125). BK126 0 V 0 () 100 k U K + ma In i regul. zdroj + Gnd A 820 FD U F voltmetr Hi Com 1234 K FT U T Obr. 1 Uspořádání přípravku pro měření fotodiody a fototranzistoru Fotodioda FD je vyvedena na svorku označenou U F. Měří v zapojení nakrátko (propojí se svorky U F a In i ), kde se využívá převodník proud/napětí s operačním zesilovačem OP482. Fototranzistor je v zapojení podobném emitorovému sledovači, proto se méně uplatňuje parazitní kapacita přechodu kolektor báze a dosahuje se lepších dynamických vlastností. Emitorový odpor R E = 10 kohmů zde slouží pro převod proudu fototranzistoru na napětí U T. Pro nastavení proudu se používá regulovatelný laboratorní zdroj napětí E3640A. Po zapnutí napájení na jeho výstupu není napětí, to se objeví až po aktivaci výstupu tlačítkem ON. Nastavení velikosti napětí se děje pomocí rotačního ovladače, kterým se zvyšuje či snižuje číslicově nastavená velikost napětí. Nastavují se jednotky voltů, případně po změně řádu provedené tlačítky s vodorovnými šipkami desetiny, setiny a tisíciny voltu. Maximální proud LED, který se měří pomocí miliampérmetru, nemá překročit 15 až 20 ma. Pro měření ale postačuje proud i jen do 1 až 5 ma. Pro výpočet proudu lze uvažovat úbytek napětí na jedné LED v předním směru v hodnotě 2 V, tedy celkově 4 V. Napětí na svorkách U K a U T se měří číslicovým voltmetrem. Ad 2) Měření dynamických vlastností fotottranzistoru. Pro buzení LED využijte impulsní generátor. Svorka (zem) generátoru bude připojena na katody LED (svorka K), výstup označený jako A generátoru G5-6 A (out) bude připojen přes vnitřní rezistor na anodu Str. 3/8

4 LED. Generátor má mít na výstupu impulsní napětí s úrovněmi 0 pro nízkou úroveň (v přípravku jsou LED opatřeny antiparalelně zapojenou ochrannou diodou) a 4 až 6 V pro vysokou úroveň. Při napětí nižším než přibližně 4 V diodou LED neprotéká proud. Pro nastavení potřebných úrovní impulsního signálu použijte osciloskop. Výstupní signál na svorce U T pozorujte pomocí osciloskopu. BK126 0 V 0 () 100 k U K In i A 820 oscil. impuls gen. Out Gnd FD U F CH1 CH2 K FT U T Obr. 2. Zapojení pro měření dynamických vlastností fototranzistoru Ad 3) Reflexní snímač s difuzním odrazem. Demonstrační reflexní snímač s difuzním odrazem obsahuje LED a fotoranzistor s emitorovým odporem 10 kohmů. Přípravek má modulační vstup MOD, napájecí vstup +12 V a zemní vstup -. Díky vestavěnému stabilizátoru LM7805 je přípravek možno napájet napětím v rozmezí od +8 V do +15 V bez změny funkce. BK Ucc = +5 V 1n5 330k U F 0 V 2k7 240 voltmetr Hi Lo 1234 U T MOD 27 k Obr. 3 Uspořádání pro statické měření s reflexním snímačem Zkratováním modulačního vstupu MOD na zhasne LED. Tak je možno rozlišit výstupní signál fototranzistoru vyvolaný okolním osvětlením a signál způsobený odraženým Str. 4/8

5 světlem LED. Voltmetrem se měří napětí na svorce U T. Střídavým připojením (a odpojením) vstupu MOD pomocí vodiče na se zhasíná a rozsvěcuje LED. LED FT Obr. 4 Umístění odrazné plochy vzhledem k reflexnímu snímači Bílá odrazná plocha ve formě papírové krabičky se umístí do zvolené vzdálenosti kolmo k ose LED a FT. Ad 4) Potlačení působení rušivého světla modulací. Na vstup MOD se připojí modulační signál z výstupu A impulsního generátoru s napěťovými úrovněmi impulsu nízká úroveň 0 V a vysoká úroveň +3 až +5V. Délka impulsu je 0,5 ms, perioda impulsů 3 ms. Tentýž signál se přivede též na vstup kanálu 2 osciloskopu. Podle tohoto vstupu se osciloskop synchronizuje (volba trig. CH2). Na vstup kanálu 1 se nejdříve přivede signál ze svorky U T (bez filtrace), následně se využije signál ze svorky U F, kde je zařazena horní propust odstraňující stejnosměrnou složku (vyvolanou denním světlem) a případně nízkofrekvenční složku 100 Hz (vyvolanou rozsvíceným zářivkovým osvětlením). BK Ucc = +5 V 1n5 330k U F oscil. 0 V 2k7 240 CH1 CH2 impuls gen. Out Gnd MOD 27 k U T Obr. 5 Uspořádání pro dynamické měření s reflexním snímačem Ad 5). Sestavení jednoduchého optického senzoru polohy optické závory. +5 V LED1 FT výst. 2k7 LED2 Obr. 6. Uspořádání minimalizovaného senzoru - optické závory. Na nepájivém kontaktním poli lze sestavit minimalizovaný optický senzor - optickou závoru, která detekuje přítomnost objektu v prostoru mezi vysílací LED1 a fototranzistorem FT. Při přítomnosti objektu zhasne indikační LED2. Na ni je možno připojit vstup osciloskopu a pozorovat časový průběh signálu při průchodu clonícího objektu. Fototranzistor PT204 je Str. 5/8

6 v čirém pouzdře (podobném pouzdru LED) o průměru 3 mm. Vysílací LED1 je v čirém pouzdře o průměru 5 mm. Indikační dioda LED2 je v pouzdře z červeného difuzního materiálu o průměru 5 mm. Katody LED jsou označeny ploškou na boku pouzdra. Podobně je označen kolektor fototranzistoru. Ad 6) Senzor LEGO a) Na displeji se zobrazuje přímo hodnota (0-1023) z 10-ti bitového AD převodníku procesoru ATMEGA48, přičemž elektrickým zapojením senzoru je dáno, že nižší výstupní hodnota znamená vyšší osvětlení senzoru (fototranzistoru). b) Za účelem zvýšení stability údaje na displeji se naměřené hodnoty průměrují (256x ve statickém režimu, 8x při blikání). Potlačí se tak vliv zářivkového osvětlení (intenzita osvětlení modulována frekvencí 100Hz) i elektrický šum (spínaný zdroj, vliv procesoru...). Konkrétní implementace je patrná z přiloženého zdrojového kódu. Obr. 6 Schéma optického senzoru LEGO MINDSTORMS NXT Str. 6/8

7 Výpis programu řidicí jednotky LEGO pro spolupráci s optickým senzorem, autor. Ing. V. Petrucha, // Senzory a mereni - light sensor demo // unsigned char state = 0; unsigned char ready_count = 0; bool ready_flag = false; bool blink_flag = false; long avg; long avg_0; long avg_1; int i; string msg; #define TOUCH_WAIT 40 task main(){ ClearScreen(); TextOut(0, LCD_LINE1, "SENZORY A MERENI"); TextOut(0, LCD_LINE3, "LED OFF"); TextOut(0, LCD_LINE5, "out:"); SetSensorLight(IN_1,false); SetSensorTouch(IN_2); while(1){ //init if(sensor_2 && ready_flag){ state++; if(state > 2){state = 0;}; ready_flag = 0; ready_count = 0; switch(state){ case 0: blink_flag = false; ClearScreen(); Wait(10); TextOut(0, LCD_LINE1, "SENZORY A MERENI"); TextOut(0, LCD_LINE3, "LED OFF"); TextOut(0, LCD_LINE5, "out:"); SetSensorLight(IN_1,false); break; case 1: blink_flag = false; ClearScreen(); Wait(10); TextOut(0, LCD_LINE1, "SENZORY A MERENI"); TextOut(0, LCD_LINE3, "LED ON"); TextOut(0, LCD_LINE5, "out:"); SetSensorLight(IN_1,true); break; case 2: ClearScreen(); Wait(10); TextOut(0, LCD_LINE1, "SENZORY A MERENI"); Str. 7/8

8 TextOut(0, LCD_LINE3, "LED BLINKING"); TextOut(0, LCD_LINE5, "out OFF:"); TextOut(0, LCD_LINE6, "out ON:"); TextOut(0, LCD_LINE7, "out DIFF:"); blink_flag = true; break; } }//if(sensor_2 && ready_flag){ ready_count++; if (ready_count > TOUCH_WAIT){ ready_flag = true; ready_count = 0; }; //(ready_count > TOUCH_WAIT) if (blink_flag){ avg_0=0; avg_1=1; for(i=0;i<8;i++){ //filtering ready_count +=3; SetSensorLight(IN_1,true); Wait(4); avg_1 += SensorRaw(S1); Wait(1); SetSensorLight(IN_1,false); Wait(4); avg_0 += SensorRaw(S1); Wait(1); }//for(i=0;i<8;i++) avg_0 /=8; avg_1 /=8; sprintf(msg, "%+04d", (avg_0)); TextOut(60, LCD_LINE5, msg); //LED OFF sprintf(msg, "%+04d", (avg_1)); TextOut(60, LCD_LINE6, msg); //LED ON sprintf(msg, "%+04d", (avg_0 - avg_1)); TextOut(60, LCD_LINE7, msg); //DIFFERENCE }else{ //!(blink_flag) avg=0; for(i=0;i<256;i++){ //filtering avg += SensorRaw(S1); }//for(i=0;i<256;i++) avg /=256; sprintf(msg, "%+04d", (avg)); TextOut(30, LCD_LINE5, msg); }; //(blink_flag) }//while(1) }//main() Str. 8/8

4. Optické senzory polohy

4. Optické senzory polohy 4. Optické senzory polohy Úkoly měření: Měření malého proudu 1) Změřte velikost výstupního signálu fotodiody FD 1 v členu IL300 v závislosti na velikosti budicího proudu IRED (infračervené diody), jejíž

Více

4. Optické senzory 4a. Měření parametrů fotodiody

4. Optické senzory 4a. Měření parametrů fotodiody Otázky k úloze (domácí příprava): 4. Optické senzory 4a. Měření parametrů fotodiody Jaký je vstupní odpor převodníku I U dle obr. 1 a jak určíte velikosti proudu I FD1 z napětí U OZ? Jak lze určit výstupní

Více

4. Optické senzory polohy A3B38SME. 4. Optické senzory

4. Optické senzory polohy A3B38SME. 4. Optické senzory Úvod: 4. Optické senzory Fotodioda slouží pro převod optického záření na elektrický signál a je základem všech optoelektronických snímačů polohy, kde se vyhodnocuje velikost dopadajícího optického záření.

Více

ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku

ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku ETC Embedded Technology Club setkání 6, 3B 13.11. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club,6, 3B 13.11.2018, ČVUT- FEL,

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více

Kurs praktické elektroniky a kutění

Kurs praktické elektroniky a kutění Kurs praktické elektroniky a kutění Katedra měření, ČVUT FEL, Praha 12.9. 16.9.2016 19.9. 23.9.2016 Doc. Ing. Jan Holub, PhD. Vedoucí katedry měření Doc. Ing. Jan Fischer, CSc. prezentující Tento materiál

Více

ETC Embedded Technology Club setkání 5, 3B zahájení třetího ročníku

ETC Embedded Technology Club setkání 5, 3B zahájení třetího ročníku ETC Embedded Technology Club setkání 5, 3B 6.11. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club,5, 3B 30.10.2018, ČVUT- FEL,

Více

ETC Embedded Technology Club 10. setkání

ETC Embedded Technology Club 10. setkání ETC Embedded Technology Club 10. setkání 21.2. 2017 Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club -10, 21.2.2017, ČVUT- FEL, Praha 1 Náplň Výklad: Fototranzistor,

Více

MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1

MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1 MĚŘENÍ Laboratorní cvičení z měření Měření optoelektronického vazebního členu, část 3-11-1 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

ETC Embedded Technology Club setkání 4, 3B zahájení třetího ročníku

ETC Embedded Technology Club setkání 4, 3B zahájení třetího ročníku ETC Embedded Technology Club setkání 4, 3B 30.10. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 4, 3B 30.10.2018, ČVUT- FEL,

Více

NÁVOD K INSTALACI A POUŽITÍ

NÁVOD K INSTALACI A POUŽITÍ ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD AŽD NÁVOD K INSTALACI A POUŽITÍ V 1.10 Modul přejezdu EZP-01 Toto zařízení je určeno pro vytvoření zabezpečeného jednokolejného železničního přejezdu na všech modelových

Více

ETC Embedded Technology Club 6. setkání

ETC Embedded Technology Club 6. setkání ETC Embedded Technology Club 6. setkání 17.1. 2017 Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club - 6, 7.1.2017, ČVUT- FEL, Praha 1 Náplň Výklad: PWM, RC

Více

Návod k obsluze Spínací zesilovač pro světlovodná vlákna. OBF5xx 704513 / 00 04 / 2009

Návod k obsluze Spínací zesilovač pro světlovodná vlákna. OBF5xx 704513 / 00 04 / 2009 Návod k obsluze Spínací zesilovač pro světlovodná vlákna CZ OBF5xx 705 / 00 0 / 009 Obsah Předběžná poznámka. Použité symboly Použití z hlediska určení. Oblast nasazení Montáž. Připojení světlovodných

Více

Číslicový Voltmetr s ICL7107

Číslicový Voltmetr s ICL7107 České vysoké učení technické v Praze Fakulta elektrotechnická Analogové předzpracování signálu a jeho digitalizace Číslicový Voltmetr s ICL7107 Ondřej Tomíška Petr Česák Petr Ornst 2002/2003 ZADÁNÍ: 1)

Více

NÁVOD K INSTALACI A POUŽITÍ

NÁVOD K INSTALACI A POUŽITÍ ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD AŽD NÁVOD K INSTALACI A POUŽITÍ V 2.2 Modul přejezdu EZP-01 Toto zařízení je určeno pro vytvoření zabezpečeného jednokolejného železničního přejezdu na všech modelových

Více

ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD AŽD

ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD AŽD ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD AŽD NÁVOD K INSTALACI A POUŽITÍ V 2.3 Modul přejezdu EZP-01 Toto zařízení je určeno pro vytvoření zabezpečeného jednokolejného železničního přejezdu na všech modelových

Více

Návrh konstrukce odchovny 2. dil

Návrh konstrukce odchovny 2. dil 1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 2. dil Pikner Michal Elektrotechnika 19.01.2011 V minulem dile jsme si popsali návrh konstrukce odchovny. senzamili jsme se s

Více

5. A/Č převodník s postupnou aproximací

5. A/Č převodník s postupnou aproximací 5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit

Více

7. MĚŘENÍ LINEÁRNÍHO POSUVU

7. MĚŘENÍ LINEÁRNÍHO POSUVU 7. MĚŘENÍ LINEÁRNÍHO POSUVU Seznamte se s fyzikálními principy a funkcí následujících senzorů polohy: o odporový o optický inkrementální o diferenciální indukční s pohyblivým jádrem LVDT 1. Odporový a

Více

Fotobuňky série R90 a G90

Fotobuňky série R90 a G90 Fotobuňky série R90 a G90 1. Technická charakteristika Technologie Přímá optická interpolace mezi fotobuňkou TX a fotobuňkou RX s modulovaným infračerveným paprskem Napájení 12/24Vac 50Hz, 12/24Vdc Okamžitá

Více

Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Měření vlastností lineárních stabilizátorů. Návod k přípravku pro laboratorní cvičení v předmětu EOS. Měření vlastností lineárních stabilizátorů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednoduchých lineárních stabilizátorů

Více

Cvičení 2. Obsah a cíle cvičení. Obsah. A5MPL Programování mikropočítačů Digitální vstupy a výstupy - LED a tlačítka.

Cvičení 2. Obsah a cíle cvičení. Obsah. A5MPL Programování mikropočítačů Digitální vstupy a výstupy - LED a tlačítka. Cvičení 2 Digitální vstupy a výstupy - LED a tlačítka Obsah a cíle cvičení Toto cvičení: 1. Vysvětlí, co jsou digitální vstupy a výstupy mikropočítače. 2. Vysvětlí, jak k mikropočítači připojit LED a tlačítka

Více

Fotoelektrické snímače

Fotoelektrické snímače SB 272 VŠB TUO Ostrava Program 4. Fotoelektrické snímače Vypracoval: Crlík Zdeněk Spolupracoval: Jaroslav Datum měření: 6.04.2006 Zadání 1. Seznamte se s předloženými součástkami pro detekci světelného

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

2-LC: Měření elektrických vlastností výkonových spínačů (I)

2-LC: Měření elektrických vlastností výkonových spínačů (I) 2-LC: Měření elektrických vlastností výkonových spínačů (I) Cíl měření: Ověření a porovnání vlastností výkonových spínačů: BJT, MOSFET a tyristoru. Zkratování řídících vstupů Obr. 1 Přípravek pro měření

Více

Tester akčních členů M-PWM2-A (sw v1.4) - PWM generátor - (technická specifikace)

Tester akčních členů M-PWM2-A (sw v1.4) - PWM generátor - (technická specifikace) Tester akčních členů M-PWM2-A (sw v1.4) - PWM generátor - M-PWM2 je vylepšený tester - generátor signálových nebo výkonových impulsů pro zkoušku akčních členů řízených signálem PWM. Tester obsahuje dva

Více

Optoelektronické. snímače BOS 26K

Optoelektronické. snímače BOS 26K Typová řada představuje další logický vývoj již úspěšné konstrukce: jednotné pouzdro pro všechny použité typy snímačů. Z tohoto důvodu je řada kompatibilní s řadou BOS 5K a doplňuje ji novými druhy snímačů

Více

Laboratorní úloha 7 Fázový závěs

Laboratorní úloha 7 Fázový závěs Zadání: Laboratorní úloha 7 Fázový závěs 1) Změřte regulační charakteristiku fázového závěsu. Změřené průběhy okomentujte. Jaký vliv má na dynamiku filtr s různými časovými konstantami? Cíl měření : 2)

Více

MĚŘENÍ JALOVÉHO VÝKONU

MĚŘENÍ JALOVÉHO VÝKONU MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového

Více

1.3 Bipolární tranzistor

1.3 Bipolární tranzistor 1.3 Bipolární tranzistor 1.3.1 Úkol: 1. Změřte vstupní charakteristiku bipolárního tranzistoru 2. Změřte převodovou charakteristiku bipolárního tranzistoru 3. Změřte výstupní charakteristiku bipolárního

Více

Inteligentní převodníky SMART. Univerzální vícevstupový programovatelný převodník. 6xS

Inteligentní převodníky SMART. Univerzální vícevstupový programovatelný převodník. 6xS Univerzální vícevstupový programovatelný převodník 6xS 6 vstupů: DC napětí, DC proud, Pt100, Pt1000, Ni100, Ni1000, termočlánek, ( po dohodě i jiné ) 6 výstupních proudových signálů 4-20mA (vzájemně galvanicky

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs 1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti

Více

ETC Embedded Technology Club setkání 4 2B druhý ročník

ETC Embedded Technology Club setkání 4 2B druhý ročník ETC Embedded Technology Club setkání 4 2B druhý ročník Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 4_ 2roč. 31.10.2017, ČVUT- FEL, Praha 1 Náplň příště:

Více

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS. Měření vlastností jednostupňových zesilovačů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednostupňových zesilovačů a to jak

Více

1. Univerzální watchdog WDT-U2

1. Univerzální watchdog WDT-U2 1. Univerzální watchdog WDT-U2 Parametry: vstupní svorkovnice - napájení 9-16V DC nebo 7-12V AC externí galvanicky oddělený ovládací vstup napěťový od 2V nebo beznapěťový výstupní svorkovnice - kontakty

Více

Úloha- Systém sběru dat, A4B38NVS, ČVUT - FEL, 2015 1

Úloha- Systém sběru dat, A4B38NVS, ČVUT - FEL, 2015 1 Úloha Sběr dat (v. 2015) Výklad pojmu systém sběru dat - Systém sběru dat (Data Acquisition System - DAQ) je možno pro účely této úlohy velmi zjednodušeně popsat jako zařízení, které sbírá a vyhodnocuje

Více

Optoelektronické. Použití. Vlastnosti

Optoelektronické. Použití. Vlastnosti Komplexní zpracování signálů (potlačené pozadí, relé, laser) a snadné použití (číselný ukazatel, otočný konektor) je nejlépe realizovatelné právě u snímačů v kvádrovém provedení. Provedení a BOS 26K jsou

Více

ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD EZP 02 AŽD NÁVOD K INSTALACI A POUŽITÍ V 4.0

ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD EZP 02 AŽD NÁVOD K INSTALACI A POUŽITÍ V 4.0 ELEKTRONICKÝ ŽELEZNIČNÍ PŘEJEZD EZP 02 AŽD NÁVOD K INSTALACI A POUŽITÍ V 4.0 Modul přejezdu EZP-02 Toto zařízení je určeno pro vytvoření zabezpečeného jednokolejného železničního přejezdu na všech modelových

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

NÍZKOFREKVENČNÍ GENERÁTOR BG3

NÍZKOFREKVENČNÍ GENERÁTOR BG3 NÍZKOFREKVENČNÍ GENERÁTOR BG3 Popis a provoz zařízení bg3 Jiří Matějka, Čtvrtky 702, Kvasice, 768 21, e-mail: podpora@wmmagazin.cz Obsah: 1. Určení výrobku 2. Technické parametry generátoru 3. Indikační

Více

UC 485. PŘEVODNÍK LINKY RS232 na RS485 nebo RS422 S GALVANICKÝM ODDĚLENÍM. 15 kv E S D P rot ect ed

UC 485. PŘEVODNÍK LINKY RS232 na RS485 nebo RS422 S GALVANICKÝM ODDĚLENÍM. 15 kv E S D P rot ect ed UC 485 PŘEVODNÍK LINKY RS232 na RS485 nebo RS422 S GALVANICKÝM ODDĚLENÍM 15 kv E S D P rot ect ed IE C- 1000-4-2 27.1.2004 0006.00.00 POPIS Modul je použitelný pro převod linky RS232 na linku RS485 nebo

Více

1.1 Pokyny pro měření

1.1 Pokyny pro měření Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)

Více

Merkur perfekt Challenge Studijní materiály

Merkur perfekt Challenge Studijní materiály Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 10 Název úlohy: Autonomní dopravní prostředek Anotace: Úkolem

Více

On-line datový list. WTT190L-K3534 PowerProx MULTITASKINGOVÉ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list. WTT190L-K3534 PowerProx MULTITASKINGOVÉ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list WTT90L-K PowerProx A B C D E F Obrázek je pouze ilustrační Objednací informace Typ Výrobek č. WTT90L-K 606 Součástí dodávky: BEF-W90 () Další provedení přístroje a příslušenství www.sick.com/powerprox

Více

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro: Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-485 se používá pro:

Více

Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % )

Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Impulsní regulátor ze změnou střídy ( 100 W, 0,6 99,2 % ) Školní rok: 2007/2008 Ročník: 2. Datum: 12.12. 2007 Vypracoval: Bc. Tomáš Kavalír Zapojení

Více

INFRAZÁVORY SBT 30 (S) SBT 60 (S) SBT 80 (S) SBT 100 (S) SBT 150 (S) INSTALAČNÍ NÁVOD

INFRAZÁVORY SBT 30 (S) SBT 60 (S) SBT 80 (S) SBT 100 (S) SBT 150 (S) INSTALAČNÍ NÁVOD INFRAZÁVORY SBT 30 (S) SBT 60 (S) SBT 80 (S) SBT 100 (S) SBT 150 (S) INSTALAČNÍ NÁVOD SELCO SBT instal 05/2007 strana 1 Obsah 1.Popis...3 2.Doporučení pro instalaci 1...4 3.Doporučení pro instalaci 2...4

Více

REGULÁTOR TEPLOTY. typ REGU 2198. www.aterm.cz. REGU2198 Technická dokumentace. REGU2198 Technická dokumentace

REGULÁTOR TEPLOTY. typ REGU 2198. www.aterm.cz. REGU2198 Technická dokumentace. REGU2198 Technická dokumentace REGULÁTOR TEPLOTY typ REGU 2198 1. Úvod Tento výrobek byl zkonstruován podle současného stavu techniky a odpovídá platným evropským a národním normám a směrnicím. U výrobku byla doložena shoda s příslušnými

Více

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO. Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)

Více

BREAK-TDW-V4C a RDW-V4C

BREAK-TDW-V4C a RDW-V4C Optické převodníky video + RS485(RS232) + kontakty BREAK-TDW-V4C a RDW-V4C BOX* Digitální modulace 1x MM/SM univerzální optický port s WDM TDW 4x reléový výstup, video IN, 1x digitální vstup RDW 4x digitální

Více

KZPE semestrální projekt Zadání č. 1

KZPE semestrální projekt Zadání č. 1 Zadání č. 1 Navrhněte schéma zdroje napětí pro vstupní napětí 230V AC, který bude disponovat výstupními větvemi s napětím ±12V a 5V, kde každá větev musí být schopna dodat maximální proud 1A. Zdroj je

Více

Teorie elektronických obvodů (MTEO)

Teorie elektronických obvodů (MTEO) Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech

Více

On-line datový list. WTT190L-A2232 PowerProx MULTITASKINGOVÉ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list. WTT190L-A2232 PowerProx MULTITASKINGOVÉ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list WTT9L-A PowerProx A B C D E F Obrázek je pouze ilustrační Objednací informace Typ Výrobek č. WTT9L-A 66 Součástí dodávky: BEF-W9 () Další provedení přístroje a příslušenství www.sick.com/powerprox

Více

On-line datový list. WS/WE2F-F110 W2 Flat MINIATURNÍ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list. WS/WE2F-F110 W2 Flat MINIATURNÍ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list WS/WE2F-F0 W2 Flat A B C D E F Obrázek je pouze ilustrační Technická data v detailu Vlastnosti Objednací informace Typ Výrobek č. WS/WE2F-F0 6030569 Další provedení přístroje a příslušenství

Více

ETC Embedded Technology Club 7. setkání

ETC Embedded Technology Club 7. setkání T mbedded Technology lub 7. setkání 31.1. 2017 Katedra telekomunikací, Katedra měření, ČVUT- FL, Praha doc. Ing. Jan Fischer, Sc. T club - 7, 31.1.2017, ČVUT- FL, Praha 1 Náplň Výklad: ipolární tranzistor

Více

Optoelektronické. snímače BOS 65K

Optoelektronické. snímače BOS 65K V určitých aplikacích pomůže jen výkon! To platí zejména v tvrdých podmínkách. To je důvod, proč má náš výstup 3 A při 264 V AC/DC a velmi dlouhou snímací vzdálenost, resp. dosah. Přichází také s indikací

Více

VÁLCOVÉ MALÉ M12 OPTICKÉ SNÍMAČE V POUZDŘE M12 PRO RŮZNÁ POUŽITÍ VÁLCOVÉ MALÉ HLAVNÍ VÝHODY

VÁLCOVÉ MALÉ M12 OPTICKÉ SNÍMAČE V POUZDŘE M12 PRO RŮZNÁ POUŽITÍ VÁLCOVÉ MALÉ HLAVNÍ VÝHODY V POUZDŘE M12 PRO RŮZNÁ POUŽITÍ MALÉ M12 OPTICKÉ SNÍMAČE HLAVNÍ VÝHODY ü Pouzdro M12 ü Odolné kovové provedení ü Přesná detekce téměř bez ohledu na rychlost; Doba odezvy 0.5 msec (laser: 0.1 msec) ü Odolné

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

UC485P. Převodník RS232 na RS485 nebo RS422. Průmyslové provedení s krytím

UC485P. Převodník RS232 na RS485 nebo RS422. Průmyslové provedení s krytím Převodník RS232 na RS485 nebo RS422 Průmyslové provedení s krytím. UC485P Katalogový list Vytvořen: 21.1.2005 Poslední aktualizace: 5.5 2008 12:30 Počet stran: 16 2008 Strana 2 UC485P OBSAH Základní informace...

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

A8B32IES Úvod do elektronických systémů

A8B32IES Úvod do elektronických systémů A8B3IES Úvod do elektronických systémů..04 Ukázka činnosti elektronického systému DC/DC měniče a optické komunikační cesty Aplikace tranzistoru MOSFET jako spínače Princip DC/DC měniče zvyšujícího napětí

Více

7. MĚŘENÍ LINEÁRNÍHO POSUVU

7. MĚŘENÍ LINEÁRNÍHO POSUVU 7. MĚŘENÍ LINEÁRNÍHO POSUVU Úvod: Pro měření posuvu (změny polohy v daném směru) se používá řada senzorů pracujících na různých principech. Výběr vhodného typu závisí na jejich vlastnostech. 1. Potenciometrické

Více

b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu

b) Vypočtěte frekvenci f pro všechny měřené signály použitím vztahu 1. Měření napětí a frekvence elektrických signálů osciloskopem Cíl úlohy: Naučit se manipulaci s osciloskopem a používat jej pro měření napětí a frekvence střídavých elektrických signálů. Dvoukanálový

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

Optoelektronické. Vlastnosti. Použití

Optoelektronické. Vlastnosti. Použití Díky svým vyšším výkonovým parametrům jsou použitelné ve většině aplikací. Mimořádně výhodné jsou v zúžených montážních prostorách. Menší rozměry dovolují jejich snadnější vestavbu do prostoru stroje.

Více

Manuál přípravku FPGA University Board (FUB)

Manuál přípravku FPGA University Board (FUB) Manuál přípravku FPGA University Board (FUB) Rozmístění prvků na přípravku Obr. 1: Rozmístění prvků na přípravku Na obrázku (Obr. 1) je osazený přípravek s FPGA obvodem Altera Cyclone III EP3C5E144C8 a

Více

Cvičení předmětu A4B38NVS Návrh vestavěných systémů, kat. měření, ČVUT FEL, Praha, 2011

Cvičení předmětu A4B38NVS Návrh vestavěných systémů, kat. měření, ČVUT FEL, Praha, 2011 Úloha č. 1 Měření statických parametrů logických obvodů CMOS Úkol: Nastudujte katalogové listy obvodů 74HC04 a 74HCT04. Navrhněte a realizujte obvody pro měření vybraných statických parametrů logických

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

On-line datový list VT12-2P110S01 V12-2 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list VT12-2P110S01 V12-2 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list VT2-2P0S0 V2-2 A B C D E F H I J K L M N O P Q R S T Obrázek je pouze ilustrační Technická data v detailu Vlastnosti Princip senzoru/ detekce Provedení pouzdra (výstup světla) Délka

Více

On-line datový list VL18-4P3640 V18 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list VL18-4P3640 V18 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list VL8-P60 V8 A B C D E F H I J K L M N O P Q R S T Obrázek je pouze ilustrační Technická data v detailu Vlastnosti Princip senzoru/ detekce Provedení pouzdra (výstup světla) Délka pouzdra

Více

On-line datový list WL45-P260 W45 KOMPAKTNÍ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list WL45-P260 W45 KOMPAKTNÍ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list WL45-P260 W45 B C D E F Obrázek je pouze ilustrační Objednací informace Typ Výrobek č. WL45-P260 1008668 Další provedení přístroje a příslušenství www.sick.com/w45 H I J K L N O P R

Více

Jak pracovat s LEGO energometrem

Jak pracovat s LEGO energometrem Obnovitelná energie Jak pracovat s LEGO energometrem Obsah 1. Energometr popis zařízení... 3 2. Připojení zásobníku energie... 3 3. Nabití a vybití... 4 3.1 Nabití a vybití s použitím LEGO bateriového

Více

ETC Embedded Technology Club setkání 3, 3B zahájení třetího ročníku

ETC Embedded Technology Club setkání 3, 3B zahájení třetího ročníku ETC Embedded Technology Club setkání 3, 3B 9.10. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 3, 3B 23.10.2018, ČVUT- FEL,

Více

- + C 2 A B V 1 V 2 - U cc

- + C 2 A B V 1 V 2 - U cc RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo

Více

Spektrální charakteristiky

Spektrální charakteristiky Spektrální charakteristiky Cíl cvičení: Měření spektrálních charakteristik filtrů a zdrojů osvětlení 1 Teoretický úvod Interakcí elektromagnetického vlnění s libovolnou látkou vzniká optický jev, který

Více

Digitální panelové přístroje typové řady N24, N25 rozměr 96 x 48 x 64 mm

Digitální panelové přístroje typové řady N24, N25 rozměr 96 x 48 x 64 mm Digitální panelové přístroje řady N24, N25 jsou určeny k přímému měření teploty, odporu, úbytku napětí na bočnících, stejnosměrného napětí a proudu, střídavého napětí a proudu z převodových traf Vyrábí

Více

On-line datový list VS/VE18-4P3712 V18 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list VS/VE18-4P3712 V18 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list VS/VE8-4P72 V8 A B C D E F Obrázek je pouze ilustrační Technická data v detailu Vlastnosti Objednací informace Typ Výrobek č. VS/VE8-4P72 60765 Další provedení přístroje a příslušenství

Více

VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD

VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD Universita Pardubice Ústav elektrotechniky a informatiky Elektronické součástky Laboratorní cvičení č.1 VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD Jméno: Pavel Čapek, Aleš Doležal, Lukáš Kadlec, Luboš Rejfek Studijní

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úvod: 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Termočlánky patří mezi nejpoužívanější senzory teploty v průmyslu. Fungují v širokém rozsahu teplot od kryogenních (- 200 C) po velmi vysoké (2500 C). Jsou velmi robustní

Více

On-line datový list VS/VE18-4P3240 V18 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list VS/VE18-4P3240 V18 VÁLCOVÉ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list VS/VE8-P0 V8 A B C D E F H I J K L M N O P Q R S T Obrázek je pouze ilustrační Technická data v detailu Vlastnosti Princip senzoru/ detekce Provedení pouzdra (výstup světla) Délka pouzdra

Více

Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů

Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů Diagnostika a testování elektronických systémů Úloha A2: 1 Operační zesilovač Jméno: Datum: Obsah úlohy: Diagnostika chyb v dvoustupňovém operačním zesilovači Úkoly: 1) Nalezněte poruchy v operačním zesilovači

Více

Unipolární tranzistor aplikace

Unipolární tranzistor aplikace Unipolární tranzistor aplikace Návod k praktickému cvičení z předmětu A4B34EM 1 Cíl měření Účelem tohoto měření je seznámení se s funkcí a aplikacemi unipolárních tranzistorů. Během tohoto měření si prakticky

Více

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Projekt - Voltmetr Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň Projekt Voltmetr Princip převodu Obvodové řešení

Více

DIGITÁLNÍ MULTIMETR AX-585

DIGITÁLNÍ MULTIMETR AX-585 DIGITÁLNÍ MULTIMETR AX-585 HASZNÁLATI ÚTMUTATÓ 1.Obecné informace Multimetr umožňuje měření střídavého a stejnosměrného napětí a proudu, odporu, kapacity, teploty, kmitočtu, test spojitosti, test diody.

Více

idrn-st Převodník pro tenzometry

idrn-st Převodník pro tenzometry idrn-st Převodník pro tenzometry Základní charakteristika: Převodníky na lištu DIN série idrn se dodávají v provedení pro termočlánky, odporové teploměry, tenzometry, procesní signály, střídavé napětí,

Více

Převodník sériového rozhraní RS-485 na mnohavidové optické vlákno ELO E171 Uživatelský manuál

Převodník sériového rozhraní RS-485 na mnohavidové optické vlákno ELO E171 Uživatelský manuál Převodník sériového rozhraní RS-485 na mnohavidové optické vlákno ELO E171 Uživatelský manuál 1.0 Úvod...3 1.1 Použití převodníku...3 2.0 Principy činnosti...3 3.0 Instalace...3 3.1 Připojení rozhraní

Více

Fotodioda ve fotovodivostním a fotovoltaickém režimu OPTRON

Fotodioda ve fotovodivostním a fotovoltaickém režimu OPTRON Cvičení 13 Fotodioda ve fotovodivostním a fotovoltaickém režimu OPTRON Přenosová charakteristika optronu Dynamické vlastnosti optronu Elektronické prvky A2B34ELP cv.13/str.2 cv.13/str.3 Fotodioda fotovodivostní

Více

MĚŘENÍ NA INTEGROVANÉM ČASOVAČI Navrhněte časovač s periodou T = 2 s.

MĚŘENÍ NA INTEGROVANÉM ČASOVAČI Navrhněte časovač s periodou T = 2 s. MĚŘENÍ NA INTEGOVANÉM ČASOVAČI 555 02-4. Navrhněte časovač s periodou T = 2 s. 2. Časovač sestavte na modulovém systému Dominoputer, startovací a nulovací signály realizujte editací výstupů z PC.. Změřte

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

MĚŘENÍ PLANCKOVY KONSTANTY

MĚŘENÍ PLANCKOVY KONSTANTY Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf

Více

Ultrazvukový senzor 0 10 V

Ultrazvukový senzor 0 10 V Ultrazvukový senzor 0 10 V Produkt č.: 200054 Rozměry TECHNICKÝ POPIS Analogový výstup: 0 10V Rozsah měření: 350 6000mm Zpoždění odezvy: 650 ms Stupeň ochrany: IP 54 integrovaný senzor a převodník POUŽITÍ

Více

Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita?

Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita? PEDAGOGICKÁ FAKULTA ZČU V PLZNI KATEDRA TECHNICKÉ VÝCHOVY Virtuální a reálná elektronická měření: Virtuální realita nebo Reálná virtualita? Pavel Benajtr 17. dubna 2010 Obsah 1 Úvod... 1 2 Reálná elektronická

Více

Uživatelská příručka

Uživatelská příručka Česky DMX 15-LED Dimmer 75 A, 20 V DMX 30-LED Dimmer 75 A, 30 V DMX 30-LED Dimmer 75 A, 100 V http://www.soh.cz Uživatelská příručka Úvodní informace..... 2 Obsah balení..... 2 Zapojení kabelu DMX512...

Více

UC485. Převodník linky RS232 na RS485 nebo RS422 s galvanickým oddělením

UC485. Převodník linky RS232 na RS485 nebo RS422 s galvanickým oddělením Převodník linky RS232 na RS485 nebo RS422 s galvanickým oddělením. Katalogový list Vytvořen: 22.6.2004 Poslední aktualizace: 5.listopadu 2007 08:30 Počet stran: 20 2007 Strana 2 OBSAH Základní informace...

Více

On-line datový list. WS/WE2F-E010 S04 W2 Flat MINIATURNÍ OPTOELEKTRONICKÉ SNÍMAČE

On-line datový list. WS/WE2F-E010 S04 W2 Flat MINIATURNÍ OPTOELEKTRONICKÉ SNÍMAČE On-line datový list -E00 S04 W2 Flat A B C D E F Obrázek je pouze ilustrační Technická data v detailu Vlastnosti Objednací informace Typ Výrobek č. -E00 S04 604874 Další provedení přístroje a příslušenství

Více

Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný

Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů Zdeněk Oborný Freescale 2013 1. Obecné vlastnosti Cílem bylo vytvořit zařízení, které by sloužilo jako modernizovaná náhrada stávající

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Úvod: 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Odporové senzory teploty (například Pt100, Pt1000) použijeme pokud chceme měřit velmi přesně teplotu v rozmezí přibližně 00 až +

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více