5. Minimální kostry. Minimální kostry a jejich vlastnosti. Definice:

Rozměr: px
Začít zobrazení ze stránky:

Download "5. Minimální kostry. Minimální kostry a jejich vlastnosti. Definice:"

Transkript

1 5. Minimální kostry Tato kapitola uvd problém minimální kostry, základní věty o kostrách a klasické algoritmy na hldání minimálních kostr. Budm s inspirovat Tarjanovým přístupm z knihy[1]. Všchny grafy v této kapitol budou norintované multigrafy a jjichhranybudouohodnocnyvahami w:e Ê. Minimální kostry a jjich vlastnosti Dfinic: Podgrafm budm v této kapitol mínit libovolnou podmnožinu hran, vrcholy vždy zůstanou zachovány. Přidáníaodbráníhranybudmznačit T+:= T {}, T := T\{}. Kostra(Spanning Tr) souvislého grafu G j libovolný jho podgraf, ktrý j strom. Kostru nsouvislého grafu dfinujm jako sjdnocní kostr jdnotlivých komponnt.[altrnativně: kostra j minimální podgraf, ktrý má komponnty s týmiž vrcholy jako komponnty G.] Váhapodgrafu F Ej w(f):= F w(). Minimální kostra(minimum Spanning Tr, mzi přátli též MST) budm říkat každé kostř, jjíž váha j mzi všmi kostrami daného grafu minimální. Toto j sic standardní dfinic MST, al jinak j dosti nšikovná, protož vyžaduj, aby bylo váhy možné sčítat. Ukážm, ž to nní potřba. Dfinic:Buď T Gnějakákostragrafu G.Pak: T[x,y]budznačitcstuvT,ktráspojuj xay.(cstouopětmíním množinu hran.) T[]:= T[x,y]prohranu =xy.tétocstěbudmříkatcstapokrytá hranou. Hrana E \ T jlhkávzhldmkt T[]:w() < w( ). Ostatním hranám nlžícím v kostř budm říkat těžké. Věta:Kostra Tjminimální nxistujhranalhkávzhldmkt. Tato věta nám dává pěknou altrnativní dfinici MST, ktrá místo sčítání vah váhy pouz porovnává, čili jí místo čísl stačí linární(kvazi)uspořádání na hranách. Nž s dostanm k jjímu důkazu, prozkoumjm njdřív, jak s dá mzi jdnotlivými kostrami přcházt. Dfinic:Prokostru Tahrany, zavďmswap(t,, ):= T +. Pozorování:Pokud Ta T[ ],jswap(t,, )opětkostra.stačísiuvědomit, žpřidáním do Tvzniknkružnic(konkrétně T[ ]+ )avynchánímlibovolné hrany z této kružnic získám opět kostru

2 T[] Kostra T,csta T[]avýsldkopracswap(T,,) T T T[ ] Ť Jdn krok důkazu swapovacího lmmatu Lmmaoswapování:Mám-lilibovolnékostry Ta T,paklzzTdostat T končným počtm oprací swap. Důkaz:Pokud T T,musíxistovathrana T \T,protož T = T.Kružnic T[ ]+ nmůžbýtcláobsažnavt,takžxistujhrana T[ ] \ T a Ť:=swap(T,, )jkostra,proktrou Ť T = T T 2.Pokončnémpočtu těchtokrokůtdymusímdojítkt. Monotónní lmma o swapování: J-li T kostra, k níž nxistují žádné lhké hrany, a T libovolnákostra,paklzod T k T přjítposloupnostíswapů,přiktréváha kostry nklsá. Důkaz: Podobně jako u přdchozího lmmatu budm postupovat indukcí podl T T.Pokudzvolímlibovolněhranu T \ T akní T[ ] \ T,musí Ť:=swap(T,, )býtkostrabližšíkt a w(ť) w(t),jlikož nmůžbýtlhká vzhldmkt,takžspciálně w( ) w(). Aby mohla indukc pokračovat, potřbujm jště dokázat, ž ani k nové kostř nxistujílhkéhranyvt \ Ť.Ktomunámpomůžzvolitsizvšchmožných hran tusnjmnšívahou.uvažmnyníhranu f T \ Ť.Csta Ť[f]pokrytá toutohranouvnovékostřjbuďtopůvodnít[f](topokud T[f])nboT[f] C, kd Cjkružnic T[ ]+.Prvnípřípadjtriviální,vdruhémsistačíuvědomit, ž w(f) w( )aostatníhranyna Cjsoulhčínž. Důkaz věty: lhkáhrana Tnníminimální. Nchť lhká.najdm T[]:w() < w( )(tamusíxistovat zdfiniclhkéhrany).kostra T :=swap(t,, )jlhčínž T. K T nxistuj lhká hrana T j minimální

3 Uvažmnějakouminimálníkostru T min apoužijmmonotónníswapovacílmmana T a T min.znějplyn w(t) w(t min ),atdy w(t)= w(t min ). Věta: Jsou-li všchny váhy hran navzájm různé, j MST určna jdnoznačně. Důkaz:Mám-lidvěMSTT 1 at 2,nobsahujípodlpřdchozívětylhkéhrany,takž podl monotónního lmmatu mzi nimi lz přswapovat bz poklsu váhy. Pokud jsoualváhyrůzné,musíkaždéswapnutíostřzvýšitváhu,aprotokžádnému nmohlo dojít. Poznámka: Často s nám bud hodit, aby kostra, ktrou hldám, byla určna jdnoznačně. Thdy můžm využít přdchozí věty a váhy změnit o vhodné psilony, rspktiv kvaziuspořádání rozšířit na linární uspořádání. Črvnomodrý mta-algoritmus Všchny tradiční algoritmy na hldání MST lz popsat jako spciální případy násldujícího mta-algoritmu. Rozbrm si tdy rovnou tn. Formulujm ho pro případ, kdy jsou všchny váhy hran navzájm různé. Mta-algoritmus: 1. Na počátku jsou všchny hrany bzbarvé. 2. Dokud to lz, použijm jdno z násldujících pravidl: 3. Modré pravidlo: Vybr řz takový, ž jho njlhčí hrana nní modrá, 1 aobarvijinamodro. 4. Črvné pravidlo: Vybr cyklus takový, ž jho njtěžší hrana nní črvná, a obarvi ji na črvno. Věta: Pro Črvnomodrý mta-algoritmus spuštěný na libovolném grafu s hranami linárně uspořádanými podl vah platí: 1. Vždy s zastaví. 2. Po zastavní jsou všchny hrany obarvné. 3. Modř obarvné hrany tvoří minimální kostru. Důkaz: Njdřív si dokážm několik lmmat. Jlikož hrany mají navzájm různé váhy, můžm přdpokládat, ž algoritmus má sstrojit jdnu konkrétní minimální kostru T min. Modré lmma: J-li libovolná hrana algoritmm kdykoliv obarvna na modro, pak T min. Důkaz: Sporm: Hrana byla omodřna jako njlhčí hrana nějakého řzu C. Pokud T min,musícsta T min []obsahovatnějakoujinouhranu řzu C.Jnž jtěžšínž,takžopracíswap(t min,,)získámjštělhčíkostru,cožnní možné. 1 Zatoutopodmínkounhldjtžádnákouzla,jtupouzproto,abysalgoritmus nmohl zacyklit nustálým prováděním pravidl, ktrá nic nzmění

4 T y T x C T y C Situac v důkazu Modrého a Črvného lmmatu Črvné lmma: J-li libovolná hrana algoritmm kdykoliv obarvna na črvno, pak T min. Důkaz: Opět sporm: Přdpokládjm, ž byla obarvna črvně jako njtěžší nanějakékružnici Caž T min.odbráním snám T min rozpadnnadvě komponntyt x at y.něktrévrcholykružnicpřipadnoudokomponntyt x,ostatní dot y.nacalmusíxistovatnějakáhrana,jjížkrajnívrcholylžívrůzných komponntách,ajlikožhrana bylanakružnicinjtěžší,j w( ) < w().pomocí swap(t min,, )protozískámlhčíkostru,atojspor. Bzbarvé lmma: Pokud xistuj nějaká nobarvná hrana, lz jště použít něktré zpravidl. Důkaz:Nchťxistujhrana=xy,ktrájstálbzbarvá.OznačímsiMmnožinu vrcholů,donichžslzzxdostatpomodrýchhranách.nynímohounastatdvě možnosti: y M(tj.xistujmodrácstazxdo y):modrácstajvminimální kostř a k minimální kostř nxistují žádné lhké hrany, takž hrana j njdražšínacyklutvořnémmodroucstouatoutohranouamohunani použít črvné pravidlo. x M M M y y x Situac v důkazu Bzbarvého lmmatu y / M:Thdyřz δ(m)nobsahujžádnémodréhrany,takžnatnto řz můžm použít modré pravidlo. Důkaz věty: Zastavís:Zčrvnéhoamodréholmmatuplyn,žžádnouhranunikdy npřbarvím. Každým krokm přibud alspoň jdna obarvná hrana, takž s algoritmus po njvýš m krocích zastaví

5 Obarví vš: Pokud xistuj alspoň jdna nobarvná hrana, pak podl bzbarvého lmmatu algoritmus pokračuj. NajdmodrouMST: PodlčrvnéhoamodréholmmatulžívT min právě modré hrany. Poznámka: Črvné a modré pravidlo jsou v jistém smyslu duální. Pro rovinné grafy j na sb přvd obyčjná rovinná dualita(stačí si uvědomit, ž kostra duálního grafu j komplmnt duálu kostry primárního grafu), obcněji j to dualita mzi matroidy, ktrá prohazuj řzy a cykly. Klasické algoritmy na hldání MST KruskalůvnboliHladový: 2 1. Střídím hrany podl vah vzstupně. 2. Začnm s prázdnou kostrou(každý vrchol j v samostatné komponntě souvislosti). 3. Brm hrany v vzstupném pořadí. 4. Pro každou hranu s podívám, zda spojuj dvě různé komponnty pokudano,přidámjidokostry,jinakjizahodím. Črvnomodrý pohld: pěstujm modrý ls. Pokud hrana spojuj dva stromčky, j určitě minimální v řzu mzi jdním z stromčků a zbytkm grafu(ostatní hrany téhož řzu jsm jště nzpracovali). Pokud nspojuj, j maximální na nějakém cyklu tvořném touto hranou a nějakými dřív přidanými. PotřbujmčasO(mlogn)nastříděníhranadáldatovoustrukturuproudržování komponnt souvislosti(union-find Problm), s ktrou provdm m oprací Find a n oprací Union. Njlpší známá implmntac této struktury dává složitost obou oprací O(α(n)) amortizovaně, takž clkově hladový algoritmus doběhn v čas O(mlogn+mα(n)). Borůvkův: Opět si budm pěstovat modrý ls, avšak tntokrát jj budm rozšiřovat v fázích. V jdné fázi nalznm k každému stromčku njlvnější incidntní hranu a všchny tyto nalzné hrany naráz přidám(aplikujm několik modrých pravidl najdnou). Pokud jsou všchny váhy různé, cyklus tím nvznikn. Počt stromčků klsá xponnciálně fází j clkm log n. Pokud každou fázi implmntujm linárním průchodm clého grafu, dostanm složitost O(m log n). Mimo to lz každou fázi výtčně parallizovat. Jarníkův: Jarníkův algoritmus j podobný Borůvkovi, al s tím rozdílm, ž nnchám růst clý ls, al jn jdn modrý strom. V každém okamžiku nalznm njlvnější hranu vdoucí mzi stromm a zbytkm grafu a přidám ji k stromu(modré pravidlo); hrany vdoucí uvnitř stromu průběžně zahazujm(črvné pravidlo). Kroky 2 Možnáhladovýsmalým h,altntoalgoritmusjpradědčkmvšchostatních hladových algoritmů, tak mu tu čst přjm

6 opakujm, dokud s strom nrozrost přs všchny vrcholy. Při šikovné implmntaci pomocí haldy dosáhnm časové složitosti O(m log n), v příští kapitol ukážm implmntaci jště šikovnější. Cviční: Nalznět jdnoduchý algoritmus pro výpočt MST v grafch ohodnocných vahami {1,...k}ssložitostí O(mk)nbodokonc O(m+nk). Litratura [1] R. E. Tarjan. Data structurs and ntwork algorithms, volum 44 of CMBS-NSF Rgional Conf. Sris in Appl. Math. SIAM,

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

Minimální kostry. Teorie. Štěpán Šimsa

Minimální kostry. Teorie. Štěpán Šimsa Minimální kostry Štěpán Šimsa Abstrakt. Cílem příspěvku je seznámit s tématem minimálních koster, konkrétně s teoretickými základy, algoritmy a jejich analýzou. Problém.(Minimální kostra) Je zadaný graf

Více

8 Přednáška z

8 Přednáška z 8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TEHNIKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADEH VIČENÍ Č. Ing. Ptra Schribrová, Ph.D. Ostrava Ing. Ptra Schribrová, Ph.D. Vsoká škola báňská Tchnická univrzita

Více

1. Minimální kostry. 1.1. Od mìsteèka ke kostøe

1. Minimální kostry. 1.1. Od mìsteèka ke kostøe . Minimální kostry Napadl sníh a přikryl peřinou celé městečko. Po ulicích lze sotva projít pěšky, natož projet autem. Které ulice prohrneme, aby šlo dojet odkudkoliv kamkoliv, a přitom nám házení sněhu

Více

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

TGH09 - Barvení grafů

TGH09 - Barvení grafů TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019 Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.

Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů

Více

Měrný náboj elektronu

Měrný náboj elektronu Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,

Více

Použití dalších heuristik

Použití dalších heuristik Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),

Více

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?

Více

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2

( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2 I Drivac jdnoduchých funkcí pomocí pravidl a vzorců Užitím P U druhého a třtího člnu použijm P Nní podl V a posldní čln podl V Použijm P Dál V a na drivaci trojčlnu v poldní závorc V a V Výsldk upravím

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Matematika III 10. přednáška Stromy a kostry

Matematika III 10. přednáška Stromy a kostry Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 20. 11. 2007 Obsah přednášky 1 Izomorfismy stromů 2 Kostra grafu 3 Minimální kostra Doporučené zdroje

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Jan Březina. 7. března 2017

Jan Březina. 7. března 2017 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

Barevnost grafů MFF UK

Barevnost grafů MFF UK Barevnost grafů Z. Dvořák MFF UK Plán vztah mezi barevností a maximálním stupněm (Brooksova věta) hranová barevnost (Vizingova věta) příště: vztah mezi barevností a klikovostí, perfektní grafy Barevnost

Více

11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0

11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0 11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 0 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

Fyzikální podstata fotovoltaické přeměny solární energie

Fyzikální podstata fotovoltaické přeměny solární energie účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda

Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Zdeněk Dvořák 12. prosince 2017 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

TGH08 - Optimální kostry

TGH08 - Optimální kostry TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení

Více

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

H {{u, v} : u,v U u v }

H {{u, v} : u,v U u v } Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo

Více

8. Geometrie vrací úder (sepsal Pavel Klavík)

8. Geometrie vrací úder (sepsal Pavel Klavík) 8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

Vyhláška děkana č. 2D/2014 o organizaci akademického roku 2014/15 na FEL ZČU v Plzni

Vyhláška děkana č. 2D/2014 o organizaci akademického roku 2014/15 na FEL ZČU v Plzni Vyhláška děkana č. 2D/2014 o organizaci akadmického roku 2014/15 na FEL ZČU v Plzni 1/8 Plzň 12. 3. 2014 I. V souladu s harmonogramm akadmického roku na ZČU pro 2014/15 upřsňuji organizaci základních studijních

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

Paralelní grafové algoritmy

Paralelní grafové algoritmy Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

07 Základní pojmy teorie grafů

07 Základní pojmy teorie grafů 07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná

Více

Vybíravost grafů, Nullstellensatz, jádra

Vybíravost grafů, Nullstellensatz, jádra Vybíravost grafů, Nullstellensatz, jádra Zdeněk Dvořák 10. prosince 2018 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1 10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 1 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

Rovinné grafy Kostra grafu Minimální kostra Toky v sítích Problém maximálního toku v síti. Stromy a kostry. Michal Bulant

Rovinné grafy Kostra grafu Minimální kostra Toky v sítích Problém maximálního toku v síti. Stromy a kostry. Michal Bulant Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 1. 12. 20 Obsah přednášky 1 Rovinné grafy Platónská tělesa Barvení map 2 Kostra grafu 3 Minimální kostra

Více

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:

, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty: Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi

Více

Kreslení grafů na plochy Tomáš Novotný

Kreslení grafů na plochy Tomáš Novotný Kreslení grafů na plochy Tomáš Novotný Úvod Abstrakt. V první části příspěvku si vysvětlíme základní pojmy týkající se ploch. Dále si ukážeme a procvičíme možné způsoby jejich zobrazování do roviny, abychom

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu?

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV L KH ROBLÉM ČTYŘ BAREV Vytvoříme graf Kraje = vrcholy

Více

Algoritmy na ohodnoceném grafu

Algoritmy na ohodnoceném grafu Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule. Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY

MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY MATEMATICKÝ MODEL POHODLÍ CESTUJÍCÍCH NA LINCE VEŘEJNÉ HROMADNÉ DOPRAVY Jaroslav Klprlík 1 Anotac: Článk uvádí algoritmus pro přiřazní dopravních prostřdků na linky s cílm dosáhnout maximální pohodlí cstujících.

Více

02 Systémy a jejich popis v časové a frekvenční oblasti

02 Systémy a jejich popis v časové a frekvenční oblasti Modul: Analýza a modlování dynamických biologických dat Přdmět: Linární a adaptivní zpracování dat Autor: Danil Schwarz Číslo a názv výukové dnotky: Systémy a ich popis v časové a frkvnční oblasti Výstupy

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

Vrcholová barevnost grafu

Vrcholová barevnost grafu Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní

Více

Postup tvorby studijní opory

Postup tvorby studijní opory Postup tvorby studijní opory RNDr. Jindřich Vaněk, Ph.D. Klíčová slova: Studijní opora, distanční studium, kurz, modl řízní vztahů dat, fáz tvorby kurzu, modl modulu Anotac: Při přípravě a vlastní tvorbě

Více

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014 Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová

Více

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z

Polarizací v podstatě rozumíme skutečnost, že plně respektujeme vektorový charakter veličin E, H, D, B. Rovinnou vlnu šířící se ve směru z 7. Polarizované světlo 7.. Polarizac 7.. Linárně polarizované světlo 7.3. Kruhově polarizované světlo 7.4. liptick polarizované světlo (spc.případ) 7.5. liptick polarizované světlo (obcně) 7.6. Npolarizované

Více

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA Martin Radina a, Ivo Schindlr a, Tomáš Kubina a, Ptr Bílovský a Karl Čmil b Eugniusz Hadasik c a) VŠB Tchnická univrzita Ostrava,

Více

Diskrétní matematika. DiM /01, zimní semestr 2015/2016

Diskrétní matematika. DiM /01, zimní semestr 2015/2016 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2015/2016 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

1. Toky, řezy a Fordův-Fulkersonův algoritmus

1. Toky, řezy a Fordův-Fulkersonův algoritmus 1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

e C Ocenění za design Produktová řada PowerCube získala několik ocenění. Mezi nejvýznamnější

e C Ocenění za design Produktová řada PowerCube získala několik ocenění. Mezi nejvýznamnější porc b Po r r u b bu ur r Po Ocnění za dsign Produktová řada r získala několik ocnění. Mzi njvýznamnější řadím Rd Dot Dsign Aard. Uchytit kdkoliv Na stůl, pod stůl, na zď,... Jdnoduš kdkoliv mějt zásuvku

Více

Trivium z optiky 37. 6. Fotometrie

Trivium z optiky 37. 6. Fotometrie Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit

Více

TEORIE GRAFŮ TEORIE GRAFŮ 1

TEORIE GRAFŮ TEORIE GRAFŮ 1 TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý

Více

Zadání témat. Řešení témat. Zadání úloh. Úloha 3.3 Baterie na β-radioaktivitu (5b) Téma5 Fontány. Téma 1 Pravidelné mnohostěny

Zadání témat. Řešení témat. Zadání úloh. Úloha 3.3 Baterie na β-radioaktivitu (5b) Téma5 Fontány. Téma 1 Pravidelné mnohostěny 2 Studntský matmaticko-fyzikální časopis ročník VIII číslo 3 Trmín odslání: 14. 1. 2002 Zadání témat Téma5 Fontány Podívjt s na obrázk, na ktrém j namalovaná fontána a vysvětlt, jak funguj. Odhadnět, do

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity

Difúze. 0 m n pu p m n pu kbt n. n u D n n m. Fickův zákon Po dosazení do rovnice kontinuity Dfúz Fckův zákon dfúz v plynu Přdpokládjm dální plyn s konstantní tplotou T a konstantním tlakm p v kldu, v ktrém j nízká nhomognní hmotnostní koncntrac příměs Pak v staconárním stavu musí být clková síla

Více

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole

Otázka č.3 Veličiny používané pro kvantifikaci elektromagnetického pole Otázka č.4 Vličiny používané pro kvantifikaci lktromagntického pol Otázka č.3 Vličiny používané pro kvantifikaci lktromagntického pol odrobnější výklad základu lktromagntismu j možno nalézt v učbním txtu:

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Učební texty k státní bakalářské zkoušce Matematika Teorie grafů. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Teorie grafů. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Teorie grafů študenti MFF 15. augusta 2008 1 17 Teorie grafů Požiadavky Základní pojmy teorie grafů, reprezentace grafu. Stromy a jejich základní vlastnosti,

Více

10 Podgrafy, isomorfismus grafů

10 Podgrafy, isomorfismus grafů Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší

Více

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD 40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc

Více

8 Rovinnost a kreslení grafů

8 Rovinnost a kreslení grafů 8 Rovinnost a kreslení grafů V přímé návaznosti na předchozí lekci se zaměříme na druhý důležitý aspekt slavného problému čtyř barev, který byl původně formulován pro barevné rozlišení států na politické

Více

Definice 1 eulerovský Definice 2 poloeulerovský

Definice 1 eulerovský Definice 2 poloeulerovský Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá

Více