semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)"

Transkript

1 Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude na ni brán zřetel při udělování zápočtů. Naopak budu rád, když někdo, koho výklad zajímat nebude, bude trávit čas jinde, než aby rušil ty, které to zajímat bude. Samozřejmě pak dotyčný člověk nesmí předpokládat, že mu celou látku vysvětlím individuálně na konzultacích. Naopak při jakékoliv nejasnosti konzultace využívejte, než vznikne informační šum typu: kamarád říkal, na mrkvi to maj takhle apod. 2 Harmonogram odevzdávání domácích cvičení Úkoly, v papírové podobě, je nutné odevzdávat na nejbližším cvičení po termínu uvedeném na internetových stránkách případně během celého následujícího pracovního týdne. Pokud se tak nestane je úkol hodnocen ja ko pozdě odevzdaný. NEJVÝŠE je možné odevzdat 3 úkoly po termínu. 3 Obecné požadavky Aby byly všechny úkoly uznány a nedocházelo k oboustranným nedorozuměním, je nutné dodržet několik následujících zásad. U veškerých výpočtů je nutné vypsat kompletní postup, aby byla možná jeho kontrola. Nestačí tedy pouze zapsat výsledek, ale nejprve napsat obecné rovnice případně výrazy do těch následně dosadit a nakonec zapsat výsledek. (je to ulehčení pro opravujícího a také je dobré zažít si tento postup ke zkoušce, kde výsledek bez předešlého postupu nic neznamená ). Příklad 1

2 zápisu 0 1 x 2 dx = [ x3 3 ] 1 0 = [ ] = 1 3 Pokud je v daném příkladě požadován navíc grafický výstup (vykreslení průběhů vnitřních sil, vykreslení elipsy setrvačnosti...), je nutné tyto průběhy narýsovat v měřítku,které si sami zvolíte. U paraboly a vyššího stupně stačí nakreslit danou křivku od ruky, totéž platí i pro elipsu setrvačnosti přičemž současně platí, že KRESLÍME OD RUKY ALE PŘESNĚ!!! Jestliže se na daném intervalu nachází extrém ohybového momentu, je nezbytné uvést polohu tohoto extrému x ex, hodnotu M ex a také postup výpočtu, kterým se k němu dospělo. Nestačí pouze kóta a hodnota M ex. Požadovaná forma: Analytické vyjádření funkce popisující průběh ohybového momentu, podmínka existence extrému (vyhledání stacionárních bodů), dosazení hodnoty do analytického vyjádření ohybového momentu. Příklad zápisu výpočtu polohy extrému na hodnoty extrémního momentu na intervalu a, b Průběh posouvající síly Podmínka stacionarity 1 V (x) = 3x + 9 a, b V z (x) = 3x 9 = 0 x ex = 3 m Výpočet extrémního ohybového momentu M y (x) = 3 2 x2 9x + 1 M ex = M y (x ex ) = Domácí cvičení číslo 1 Prostorový prut Uvést zda počítáte zleva nebo zprava, doplnit zda se jedná o kladný nebo záporný průřez a nakreslit příslušnou konvenci vnitřních sil. Proved te redukci zatížení ke střednici prutu. 1 užití Schwedlerovy věty V (x) = dm(x) dx 2

3 Pro zadnou konstrukci a souřadný systém: - určete hodnoty vnitřních sil v řezech A, B, C - vykreslete průběhy vnitřních sil 6 + a 6b F1 = 50c F2 = 10b f2 = 8 + c 0,4b A f1 = 6 + a B C 0,3a 0,3a x z osu y volte tak, aby výsledný souřadný systém byl pravotočivý Obrázek 1: Zadaní domácího cvičení číslo 1 5 Domácí cvičení číslo 4 Složená soustava Ve styčníku b proved te Vypočtěte a vykreslete kontrolu průběhy vnitřních rovnováhy, sil M, N, V na zadané složené vnitřní soustavě. Proveďte sílykontrolu vykreslete i na prutech, které nejsou požadovány ke kontrole v systému. Doplňte obrázek před- rovnováhy ve styčníku b. Hodnoty zatížení a rozměry kostrukce uvažujte následující: F = 3 [kn], M = 5 [knm], pokládaných a výsledných f1 = 3b [kn/m], vnitřních f2 = 2c [kn/m], f3 = a1,5a vnějších [kn/m], reakcí. Na intervalech, kde lab = 3a [m], lcb = 1,5b [m], působí spojité zatížení odvod te analytické vyjádření všech vnitřních lbd = 2c [m], lde = 2.5 [m], sil. lef = 3c [m], lfg = 3c [m], lgh = 3a [m], hfg = 2.5 [m] Pro kontrolu budete potřebovat následující hodnoty vniřních sil: Obrázek 2: Zadaní domácího cvičení číslo 4 Na, Va, Ma, Nba, Vba, Mba, Nbc, Vbc, Mbc, Nbd, Vbd, Mbd, Ndb, Vdb, Mdb, Nde, Vde, Mde, Ned, Ved, Nef, Vef, Nfe, Vfe, Nfg, Vfg, Ngf, Vgf, Mgf, Ngh, Vgh, Mgh, Nh, Vh. 6 Domácí cvičení číslo 5 Složená soustava Ve styčníku e a h proved te kontrolu rovnováhy. Doplňte obrázek předpokládaných a výsledných vnitřních a vnějších reakcí. Na intervalech, kde 3

4 působí spojité zatížení odvod te analytické vyjádření všech vnitřních sil. Obrázek 3: Zadaní domácího cvičení číslo 5 7 Domácí cvičení číslo 6 Kružnicový oblouk Odvod te obecné vyjádření funkcí pro normálovou sílu, posouvající sílu a ohybový moment v polárních souřadnicích N(φ), V (φ) a M(φ) tzn. v souřadnicích závislých na průvodiči r a úhlu φ. Následný výpočet je možný provést v excelu případně v jiném programu. Každý bude mít svůj excel a každý bude schopen odpovědět na mé zvídavé dotazy. 8 Domácí cvičení číslo 7 Prostorový prut Uvést zda počítáte zleva nebo zprava, doplnit zda se jedná o kladný nebo záporný průřez a nakreslit příslušnou konvenci vnitřních sil. Proved te redukci zatížení ke střednici prutu. Vnitřní síly vykreslujte v příslušných rovinách!! 4

5 Prodanoukonstrukciasouřadnýsystém {x, y, z} určete hodnotu vnitřních sil ve vyznačeném průřezu(a) a ve vetknutí(b), Obrázek 4: Zadaní domácího cvičení číslo 6 vykreslete průběhy vnitřních sil. F x = 100b 3 + a 2 + a fz = 75b A f y = 50b x z B ,3(1 + c) ,2(1 + c) [m,kn,knm 1 ] Osu y zvolte tak, aby byl Obrázek výsledný 5: Zadaní souřadný domácího systémcvičení pravotočivý. číslo 7 Ke kontrole budete potřebovat hodnoty vnitřních sil, pro odevzdání pak správně vykreslené průběhy. 9 Domácí cvičení číslo 8 - Průřezové charakteristiky Do obrázku zakreslete souřadnice těžiště, narýsujte elipsu setrvačnosti, popište osy, ke kterým přísluší I max a I min. Okótujte poloměry setrvačnosti - tzn. 5

6 hlavní a vedlejší osy elipsy i max a i max. Výslednou elipsu setrvačnosti narýsujte viz Konstruktivní geometrie. Obrázek 6: Zadaní domácího cvičení číslo 8 10 Domácí cvičení číslo 9 - Průřezové charakteristiky Do obrázku zakreslete souřadnice těžiště, narýsujte elipsu setrvačnosti, popište osy, ke kterým přísluší I max a I min. Okótujte poloměry setrvačnosti - tzn. hlavní a vedlejší osy elipsy i max a i max. Výslednou elipsu setrvačnosti narýsujte viz Konstruktivní geometrie. 11 Závěr Nesplnění výše uvedených požadavků má za následek neuznání příslušného domácího úkolu a jeho vrácení k přepracování. Nesplnění podmínky pozdě 6

7 centrální momenty setrvačnosti a vykreslete v měřítku odpovídající elipsu setrvačnosti. Pro kontrolu budete potřebovat y c (vodorovnou vzdálenost těžiště obrazce od bodu P), z c (svislou vzdálenost těžiště obrazce od bodu P), I yc (moment setrvačnosti k vodorovné těžišťové ose), I zc (moment setrvačnosti ke svislé těžišťové ose), D yczc (deviační moment setrvačnosti k vodorovné a svislé těžišťové ose), I max (maximální moment setrvačnosti), I min (minimální moment setrvačnosti), 0 (úhel mezi vodorovnou těžišťovou osou a bližší z os I max, I min, kladný směr 0 - proti směru hodinových ručiček), i max a i min (maximální a minimální poloměr setrvačnosti). UPE P IPE L Koef. Profil ObrázekKoef. 7: Zadaní Profil domácího cvičeníkoef. číslo 9 Profil a IPE č. b UPE č. c L č x45x4 0.6 odevzdaných 160 domácích úkolů, 0.6 at 200 už na internetu nebo 0.6 v papírové 45x45x5 podobě, 0.7 má za 160 následek neudělení0.7 zápočtu!!! x50x x50x x55x5 Mnoho úspěchů při studiu Stavební mechaniky x60x x60x x70x x70x x80x x80x10 Pro potřeby tohoto příkladu byly hodnoty průřezových charakteristik válcovaných výrobků z oceli převzaty z knihy TECHNICKÝ PRŮVODCE 51 Hořejší, J. - Šafka, J. a kol.: Statické tabulky (SNTL, Praha 1987) 7

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA BAKALÁŘSKÝ PROJEKT Ubytovací zařízení u jezera v Mostě Vypracoval: Ateliér: Konzultace: Paralelka: Vedoucí cvičení: Jan Harciník Bočan, Herman, Janota, Mackovič,

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS)

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) Výstavba nového objektu ZPS na LKKV Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) D.1.2 - STAVEBNĚ KONSTRUČKNÍ ŘEŠENÍ Statický posudek a technická zpráva

Více

Cvičebnice stavební mechaniky

Cvičebnice stavební mechaniky Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Obsah Síly působící v jednom paprsku 7. Dvě síly

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Tabulkový procesor Excel tvorba grafů v Excelu

Tabulkový procesor Excel tvorba grafů v Excelu Předmět: Ročník: Vytvořil: Datum: Informační 1. a 2. Ing. Andrea a komunikační (podle oboru srpen 213 Modrovská technologie zaměření) Název zpracovaného celku: Tabulkový procesor Excel Tabulkový procesor

Více

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter RIBtec BEST výpočet a zadání zatížení sloupu korespondující s průběhem jeho vnitřních sil v globálním výpočetním modelu (FEM) nosné konstrukce Běžným pracovním postupem, zejména u prefabrikovaných betonových

Více

Lineární pole Rotační pole

Lineární pole Rotační pole Lineární pole Rotační pole Projekt SIPVZ 2006 3D Modelování v SolidWorks Autor: ing. Laďka Krejčí 2 Obsah úlohy Vytvoření základu těla Vytvoření skici (přímka) Zakótování skici Zaoblení skici Vytvoření

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady: Předložený statický výpočet řeší založení objektu SO 206 most na přeložce silnice I/57 v km 13,806 přes trať ČD v km 236,880. Obsahem tohoto výpočtu jsou pilotové základy krajních opěr O1 a O6 a středních

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy I. Praha 2011 Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení Tato sbírka

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

Popis základního prostředí programu AutoCAD

Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD CÍL KAPITOLY: CO POTŘEBUJETE ZNÁT, NEŽ ZAČNETE PRACOVAT Vysvětlení základních pojmů: Okno programu AutoCAD Roletová

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

IDEA CSS 5 Obecný průřez

IDEA CSS 5 Obecný průřez Uživatelská příručka IDEA CSS IDEA CSS 5 Obecný průřez Uživatelská příručka Uživatelská příručka IDEA CSS Obsah 1.1 Požadavky programu... 3 1.2 Pokyny k instalaci programu... 3 2 Základní pojmy... 4 3

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W Schöck Isokorb typ Schöck Isokorb typ Používá se u volně vyložených stěn. Přenáší záporné ohybové momenty a kladné posouvající síly. Navíc přenáší i vodorovné síly působící střídavě opačnými směry. 115

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Univerzita Palackého v Olomouci. Základy kreslení 2D výkresů v AutoCADu 2013

Univerzita Palackého v Olomouci. Základy kreslení 2D výkresů v AutoCADu 2013 CAD - počítačem podporované technické kreslení do škol CZ.1.07/1.1.26/02.0091 Univerzita Palackého v Olomouci Pedagogická fakulta Základy kreslení 2D výkresů v AutoCADu 2013 doc. PhDr. Milan Klement, Ph.D.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

IDEA Corbel 5. Uživatelská příručka

IDEA Corbel 5. Uživatelská příručka Uživatelská příručka IDEA Corbel IDEA Corbel 5 Uživatelská příručka Uživatelská příručka IDEA Corbel Obsah 1.1 Požadavky programu... 3 1.2 Pokyny k instalaci programu... 3 2 Základní pojmy... 4 3 Ovládání...

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Univerzita Palackého v Olomouci. Pokročilé kreslení 3D výkresů v AutoCADu 2013

Univerzita Palackého v Olomouci. Pokročilé kreslení 3D výkresů v AutoCADu 2013 CAD - počítačem podporované technické kreslení do škol CZ.1.07/1.1.26/02.0091 Univerzita Palackého v Olomouci Pedagogická fakulta Pokročilé kreslení 3D výkresů v AutoCADu 2013 doc. PhDr. Milan Klement,

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI

URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI URČITÝ INTEGRÁL OBSAH PLOCHY ROVINNÉHO OBRAZCE OHRANIČENÉHO ZADANÝMI KŘIVKAMI Co je kýženým výsledkem je zřejmé ze zadání obsah, respektive obsah jistého obrazce omezeného zadanými křivkami který je samozřejmě

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

Grafické znázorňování

Grafické znázorňování Grafické znázorňování Grafy a grafická znázorňování umožňují přehlednou orientaci a větší názornost. Nevýhodou je určité zjednodušení a menší přesnost, zároveň i obtížnost zpracování. Grafické prostředky

Více

NEXIS 32 rel. 3.60 Samostatný betonový průřez

NEXIS 32 rel. 3.60 Samostatný betonový průřez SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

Programování jako nástroj porozumění matematice (seriál pro web modernivyuka.cz)

Programování jako nástroj porozumění matematice (seriál pro web modernivyuka.cz) Programování jako nástroj porozumění matematice (seriál pro web modernivyuka.cz) Autor: Radek Vystavěl Díl 8: Analytická geometrie Polární souřadnice, kružnice, elipsa, spirála MATEMATIKA Pro úlohy aplikované

Více

14.10 Čelní válcová soukolí s přímými zuby - korigovaná evolventní ozubení, vnitřní ozubení. Střední průmyslová škola strojnická Vsetín

14.10 Čelní válcová soukolí s přímými zuby - korigovaná evolventní ozubení, vnitřní ozubení. Střední průmyslová škola strojnická Vsetín Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Lukáš Vráblík, Vladimír Křístek 1. Úvod Jedním z nejzávažnějších faktorů ovlivňujících hlediska udržitelné výstavby mostů

Více

Prezentace dat. Grafy Aleš Drobník strana 1

Prezentace dat. Grafy Aleš Drobník strana 1 Prezentace dat. Grafy Aleš Drobník strana 1 8.3 GRAFY Užití: Grafy vkládáme do textu (slovního popisu) vždy, je-li to vhodné. Grafy zvýší přehlednost sdělovaných informací. Výhoda grafu vůči tabulce či

Více

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk

Více

Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy

Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy Střední škola stavebních řemesel Brno Bosonohy Pražská 38b, 642 00 Brno Bosonohy Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: 39_základní zásady kótování Téma: Základy normalizace v

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 3 PŘEVODY

Více

TECHNICKÁ ZPRÁVA OCELOVÉ KONSTRUKCE MATEŘSKÉ ŠKOLY

TECHNICKÁ ZPRÁVA OCELOVÉ KONSTRUKCE MATEŘSKÉ ŠKOLY Investor Město Jiříkov Projekt číslo: 767-13 Stran: 8 Stavba MATEŘSKÁ ŠKOLA JIŘÍKOV Příloh: 0 Místo stavby Jiříkov STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ OCELOVÉ KONSTRUKCE MATEŘSKÉ ŠKOLY MĚSTO JIŘÍKOV - JIŘÍKOV

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D Schöck Isokorb typ Schöck Isokorb typ Schöck Isokorb typ Používá se u ových desek pronikajících do stropních polí. Prvek přenáší kladné i záporné ohybové momenty a posouvající síly. 105 Schöck Isokorb

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM ČOS 235003 1. vydání ČESKÝ OBRANNÝ STANDARD ČOS GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM Praha ČOS 235003 1. vydání (VOLNÁ STRANA) 2 Český obranný standard květen 2003 Geometrie styčné plochy mezi

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

MS Excel druhy grafů

MS Excel druhy grafů MS Excel druhy grafů Nejčastější typy grafů: Spojnicový graf s časovou osou Sloupcový graf a pruhový graf Plošný graf Výsečový a prstencový graf (koláčový) Ostatní typy grafů: Burzovní graf XY bodový graf

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Excel tabulkový procesor

Excel tabulkový procesor Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

STROJTECH Inovace a zefektivnění vzdělávání podle ŠVP 3D modelování ve strojírenství a stavebnictví

STROJTECH Inovace a zefektivnění vzdělávání podle ŠVP 3D modelování ve strojírenství a stavebnictví METODIKA ArchiCAD Ing. Petra Chytilová, Ing. Jitka Šenková, Ing. Kamil Šoupal Tento materiál vznikl v rámci projektu: STROJTECH Inovace a zefektivnění vzdělávání podle ŠVP 3D modelování ve strojírenství

Více

3.2.4 Huygensův princip, odraz vlnění

3.2.4 Huygensův princip, odraz vlnění ..4 Huygensův princip, odraz vlnění Předpoklady: 0 Izotropní prostředí: prostředí, které je ve všech bodech a směrech stejné vlnění se všech směrech šíří stejnou rychlostí ve všech směrech urazí za čas

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více