Teorie her pro FJFI ČVUT řešené úlohy

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie her pro FJFI ČVUT řešené úlohy"

Transkript

1 Tyto úlohy volně doplňují přednášky z kursu teorie her. Rozsah látky a použité značení odpovídá slajdům dostupným na stránce věnované výuce. Γ S S Γ 3 o = o = o 3 = vítězná o o Γ u u(o ) = u(o ) = u(o 3 ) = 0 (s, s ) S S v = u (s, s ) := u(o i ) {, 0, } o i s, s s s v = u (s, s ) = s v = u (s, s ) = s v = u (s, s ) = 0 3 j {,, 3} j {,, 3} 4 j zpětné indukce N = {,, 3}

2 3 a b a 3 c 3 b 3 a b c d e f g h c d e f (3,, 4) (0, 0, 5) (0, 0, 5) (0,, 3) (, 5, 0) (5, 4, 0) (0,, 5) (0, 0, 3) (, 3, 4) (,, 3) c d 3 a b a 3 c 3 b 3 a b c d e f g h c d e f (3,, 4) (0, 0, 5) (0, 0, 5) (0,, 3) (, 5, 0) (5, 4, 0) (0,, 5) (0, 0, 3) (, 3, 4) (,, 3) 3 3 a b a 3 f c 3 a b (3,, 4) (0,, 3) (, 5, 0) (0,, 5) (, 3, 4)

3 a b (3,, 4) (, 3, 4) 3 a b a 3 c 3 b 3 a b c d e f g h c d e f (3,, 4) (0, 0, 5) (0, 0, 5) (0,, 3) (, 5, 0) (5, 4, 0) (0,, 5) (0, 0, 3) (, 3, 4) (,, 3) i N s i V i s i (x) A(v i ) A(v i ) i x V i (a, c, f ) G = (N, (S i ) i N, (u i ) i N ) n = N β i : S i R i N β i (s i ) = max t i S i u(t i, s i ), s i S i, s i S i i N nejlepší odezvou na (n )-tici strategií s i S i u i (s i, s i ) = β i (s i ). n (s i ) i N S S n s i s i i N u i (s i, s i) u i (t i, s i) t i S i u i (s i, s i) = β i (s i)

4 Test rovnovážného řešení pomocí čistých strategií. G = (N, (S i ) i N, (u i ) i N ) G = (N, ( i ) i N, (U i ) i N ) p := n n i U i (p ) U i (p i, p i), p i i p G i S i = {s i,..., s m i i s j i S i δ s j i δ s j(s k i ) = i { k = j, 0 k j, } m i N k =,..., m i. m i i p i i m i p i = p i (s j i )δ s j. i U i ( mi ) U i (p i, p i) = U i p i (s j i )δ m i ( s j, p i = p i (s j i )U i i j= j= j= δ s j i ), p i U i (p ), p Partnerský spor. K F u (s, s ) u (s, s ) K F K, 0, 0 F 0, 0,

5 (K, K) (F, F ) x := p (K) y := p (K) p (K) K p (K) K p (F ) = p (K) = x p (F ) = p (K) = y [0, ] ({, }, ([0, ], [0, ]), (U, U )), U (x, y) = xy + ( x)( y) U (x, y) = xy + ( x)( y) x, y [0, ] P([0, ]) [0, ] BR, BR : [0, ] P([0, ]) { BR (y) := x [0, ] U (x, y) = max BR (x) := x [0,] { y [0, ] U (x, y) = max U (x, y ) y [0,] } U (x, y), y [0, ], }, x [0, ]. 0 0 y <, x <, 3 BR (y) = [0, ] y = 3, BR (x) = [0, ] x = < y,, 3 < x. 3 3 BR BR 0 y 0 x (x, y ) [0, ] x BR (y ) y BR (x ).

6 BR BR x 0 y (x, y ) [0, ] BR BR {(0, 0), (, ), (, )} 3 3 (F, F ) (K, K) (p, p ) p (K) = 3 p (K) = 3 Matching Pennies. 0 0 u (s, s ) u (s, s ) = u (s, s ) (s, s ) {0, } x := p (0) y := p (0) [0, ] G = ({, }, ([0, ], [0, ]), (U, U )), U (x, y) = 4xy x y + U (x, y) = U (x, y) x, y [0, ] x 0 x <, Λ(x) := min U (x, y) = 0 x = y [0,], x < x, y 0 y <, Λ(y) := max U (x, y) = 0 y = y [0,], y < y.

7 max Λ(x) = min Λ(y) = 0, x [0,] y [0,] G 0 (x, y ) = (, ) S = S = [0, ] u (s, s ) = + (s s ), (s, s ) [0, ]. u [0, ] dolní horní cenu Λ(s ) = min s [0,] u (s, s ), Λ(s ) = max u (s, s ). s [0,] v = max Λ(s ), s [0,] v = min s [0,] Λ(s ). { Λ(s ) = +(s 0 s ), < s +s, Λ(s ) =, s [0, ]. v = Λ( ) = 4 5 < v = Cournotův model duopolu. i =, q i 0 i c > 0 P (q, q ) = a b(q + q ) a, b > 0 a c

8 i f i : [0, ) R f i (q, q ) = P (q, q )q i cq i = (a c)q i bq i bq q. S = S = [0, ) (q, q ) [0, ) f (q, q ) f (q, q ) f (q, q ) f (q, q ) q, q [0, ) (q, q) [0, ) f (., q) f (q,.) [0, ) f q = a c bq bq, f q = a c bq bq. a c bq bq = 0 a c bq bq = 0 q = q = a c 3b f q = f q = b < 0, f (., q) f (q,.) (q, q) = ( a c, a c) 3b 3b ( a b A = c d ), a, b, c, d R. x = (x, x) T y = (x, y) T x, y [0, ] U : [0, ] R U(x, y) = x T Ay = (a + d b c)xy + (b d)x + (c d)y + d, (x, y ) U x (x, y ) = U y (x, y ) = 0.

9 (a + d b c)y + b d = (a + d b c)x + c d = 0 a + d b c 0 x = (x, x ) T = a+d b c (d c, a b)t, y = (y, y ) T = a+d b c (d b, a c)t. a + d b c = 0 U U(x, y) = (b d)x + (c d)y + d. b d c d a = b + c d a c a b A ( ) 0 4 A =. 5 x = (, 0) T y = (0, ) T b d c < d b < d c d b < d c < d 0 A =. 0 x 0 x = (x, x, x 3 ) T x 0 A T x x 0 0, 3 x i =, i= x 0.

10 y 0 y = (y, y ) T y 0 Ay y 0 0, y i =, i= y 0. x 0 x + x 3 x 0 0, x + x x 0 0, x + x + x 3 =, x, x, x 3 0, y 0 y y 0 0, y + y y 0 0, y y 0 0, y + y =, y, y 0. x = (0, 3, 3 )T, y = ( 3, 3 )T, x 0 = y 0 = 3 p U v p min p U(p, p ) = v. p U(p, p ) v

11 p v U(p, p ) = v {, } x x x C x 4 T C T x 3 C T C x 5 T x 6 x 7 x 8 x 9 x 0 b p x 3 x 8 ρ(x j, (b, b )) b b W = {x } W = {x 4, x 5 } b (α, β) [0, ] b (C, W ) = α b (C, W ) = β W W x 0 p s : {W, W } {C, T, C, T } s (W ) {C, T } s (W ) {C, T } p (s ) = b (s (W ), W ) b (s (W ), W ). ρ (x 8, b ) x 8 b ρ (x 8, b ) = b (T, W ) b (T, W ) = ( α) ( β). s S(x 8 ) x 0 x 8 s (W ) = T s (W ) = T ρ (x 8, p ) = p (s ) = b (T, W ) b (T, W ) = ( α) ( β).

12 ρ (x 3, b ) ρ (x 3, p ) ρ (x 3, b ) = b (C, W ) = α. x 3 s (W ) = C s (W ) = C s (W ) = C s (W ) = T S (x 3 ) = {s, s } ρ (x 3, p ) = p (s ) + p (s ) = = b (C, W ) b (C, W ) + b (C, W ) b (T, W ) = αβ + α( β) = α. ρ(x j, (b, b )) x j b (C, W ) = b (T, W ) = ρ(x 3, (b, b )) = 5 ρ (x 3, b )ρ (x 3, b ) = 5 α, ρ(x 7, (b, b )) = ρ 5 (x 7, b )ρ (x 7, b ) = ( α)β, 5 ρ(x 8, (b, b )) = ρ 5 (x 8, b )ρ (x 8, b ) = ( α)( β), 5 ρ(x 9, (b, b )) = 3ρ 5 (x 9, b )ρ (x 9, b ) = 3 5 ρ(x 0, (b, b )) = 3 5 ρ (x 0, b )ρ (x 0, b ) = 3 5 ρ(x 6, (b, b )) = 3 5 ρ (x 6, b )ρ (x 6, b ) = 3 5. β, ( β), S P S P K N 3 (u, u, u 3 ) W A = {x } W B = {x 3, x 4 } W C = {x }

13 0 A x x C S P P S (,, ) K x 3 N B K x 4 N (,, ) (0, 0, 0) (,, ) (0, 0, 0) (,, ) W B = S A = {S, P }, S B = {K, N}, S C = {P, S }. S A S B S C 3 K S P S (0, 0, 0) (,, ) 4 4 P (,, ) (0, 0, 0) 4 4 N S P S (0, 0, 0) (,, ) 4 4 P (,, ) (0, 0, 0) 4 4 (S, K, S ) (P, N, P ) Γ

14 x 0 A B x L R (6, 0) l r W l r (8, 0) (0, 8) (0, 8) (8, 0) Γ(x 0 ) = Γ Γ(x ) x Γ(x ) x. krok. Γ(x ) i b i β := b (l, W ) γ := b (L, x ) L R l (8, 0) (0, 8) r (0, 8) (8, 0) U (β, γ) = 6βγ 8β 8γ + 8 U (β, γ) = 6βγ + 8β + 8γ. BR BR 0 0 γ <, 0 β <, BR (γ) = [0, ] γ =, BR (β) = [0, ] β = < γ,, 0 < β. (β, γ ) [0, ] β BR (γ ) γ BR (β ).

15 (β, γ ) = (, ) Γ(x ) b (l, W ) =, b (L, x ) =. ( U (, ), U (, )) = (4, 4). krok A x 0 B (4, 4) (6, 0) B b (B, x 0 ) = Závěr: b b v N = {,, 3} { 0 A =, v(a) = A A. A B = A + B A B v v(a B)+v(A B) v(a)+v(b) C(v) x v,π π N π() = π() = 3 π(3) = x = v({}) v( ) = 0, x 3 = v({, 3}) v({}) =, x = v({,, 3}) v({, 3}) =. {(0,, ), (, 0, ), (,, 0)} x + x + x 3 =

16 v : N R N = {,, 3} 0 A =, A = {}, {}, v(a) = A = {3}, 4 A =, 5 A = N. v v v(a B) v(a)+v(b) A, B N A B = v(n) < v({, } + v({3}) v C(v) x C(v) x + x + x 3 = 5 x + x 4 x 3 5 = x + x + x 3 6 Jednoduchá hra v : N {0, } i N vetující v A N v(a\{i}) = 0 i v(n \ {i}) = 0 v W N C(v) = {x R n x(w ) =, x i 0 i W x j = 0 j N \ W }. v(n \ {i}) = 0 v(a \ {i}) = 0 A k N x R n { i = k, x i = 0 i k. v v(n) = = i N x i = x(n) A N k A x(a) = v(a) k / A x(a) = 0 = v(a) k x C(v) v v x C(v) x(n) = i N

17 x i > 0 x(n \ {i}) = x i < i v(n \ {i}) = > x(n \ {i}) x C(v) A N v(a) = A W x x(n) = x(w ) = A N v(a) = 0 x(a) 0 v(a) = A W x(a) x(w ) = = v(a), x C(v) x C(v) x i 0 i N x(n) = x i = 0 i N \ W i N \ W i x(n) = x(n \ {i}) x i = 0 = x(n) x(n \ {i}) v(n \ {i}) =, 3 50 % 5 % v N = {,, 3} { A = N, {, }, {, 3}, v(a) = A N. 0 i i φ S (v) = 3, φs (v) = φ S 3 (v) = 6. φ B (v) 3 3 φ B (v) = 3 5, φb (v) = φ B (v) = 5.

18 v N = {,..., n} C(v) = conv {x v,π π Π}, Π N φ S (v) φ S (v) = π Π c π x v,pi c π 0 π Π c π = i N φ S i (v) = π Π n! (v(aπ π (i) ) v(aπ π (i) )). x v,π x v,π i = v(a π π (i) ) v(aπ π (i) ), c π = n! π Π φs (v) C(v) C(v) ψ : Γ R n Γ ψ i (v) = v({,..., i}) v({,..., i }), i N. ψ i N ψ i (v) = i N v, w Γ (v({,..., i}) v({,..., i })) = v(n) v( ) = v(n). ψ i (v + w) = (v + w)({,..., i}) (v + w)({,..., i }) = (v({,..., i}) v({,..., i })) + (w({,..., i}) w({,..., i })) = ψ i (v) + ψ i (w). i N v(a {i}) = v(a) A N A = {,..., i } ψ i (v) = 0 ψ N = {,, 3} { A = {, 3}, N v(a) = A N. 0 ψ(v) = (0, 0, ) 3 v({, }) = v({, 3})

19 Reference An Introductory Course on Mathematical Game Theory Graduate Studies in Mathematics Game Theory Game theory

Úvod do teorie her. 6. Koaliční hry

Úvod do teorie her. 6. Koaliční hry Úvod do teorie her 6. Koaliční hry Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2018 ÚTIA AV ČR Různé formy her Známé formy her jsou: rozvinutá, strategická, koaliční. Pro danou množinu hráčů N = {1,...,

Více

k n ( k) n k F n N n C F n F n C F F q n N C F n k 0 C [n, k] [n, k] q C [n, k] k n C C (n k) n C u C u T = T. [n, k] C (n k) n T = k (n k). F n N u = (u 1,..., u n ) v = (v 1,..., v n ) F n d(u, v) u

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

24. Parciální diferenciální rovnice

24. Parciální diferenciální rovnice 24. Parciální diferenciální rovnice Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2011/12 24.1 Rovnice vedení tepla Definice (Rovnice vedení tepla) Parciální diferenciální rovnici c(x)ρ(x)

Více

γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k

Více

Mezi firmami v oligopolu dochází ke strategickým interakcím. Při zkoumání strategických interakcí používáme teorii her.

Mezi firmami v oligopolu dochází ke strategickým interakcím. Při zkoumání strategických interakcí používáme teorii her. Teorie her a oligopol Varian: Mikroekonomie: moderní přístup, oddíly 26.1-9, 27.1-3 a 27.7-8 Varian: Intermediate Microeconomics, Sections 27.1-9, 28.1-3, 28.7-8 () 1 / 36 Obsah přednášky V této přednášce

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

Frikce pracovního trhu

Frikce pracovního trhu 12. listopadu 2010 Literatura Mandelman, F. S. - Zanetti F.: Technical Handbook - No. 1.: Estimating general equilibrium models: an application with labour market frictions Centre for Central Banking Studies,

Více

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017 z AM-DI Petr Hasil, Ph.D. hasil@mendelu.cz Verze: 1. března 017 Poznámka. Příklady označené na cvičení dělat nebudeme, protože jsou moc dlouhé, popř. složité (jako takové, nebo pro psaní na tabuli). V

Více

nazvu obecnou PDR pro neznámou funkci

nazvu obecnou PDR pro neznámou funkci Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

Hypergrafové removal lemma a Szemérediho

Hypergrafové removal lemma a Szemérediho Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

Kapitola Výroky

Kapitola Výroky 1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Příklad Rozhodněte, zda následující posloupnosti symbolú jsou výrokové formule. Jde-li o formuli, pak sestrojte její strom, určete její hloubku a uved te všechny

Více

ROVINNÁ ÚLOHA. Všechny veličiny (geometrie, materiálové vlastnosti, zatížení) jsou nezávislé na jedné prostorové proměnné

ROVINNÁ ÚLOHA. Všechny veličiny (geometrie, materiálové vlastnosti, zatížení) jsou nezávislé na jedné prostorové proměnné ROVINNÁ ÚLOHA Rovinná úloha Všechny veličiny (geometrie, materiálové vlastnosti, zatížení) jsou nezávislé na jedné prostorové proměnné Rovinná napjatost Rovinná deformace Rotačně symetrická úloha Rovinná

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

Ztráta stability prost podep eného Timo²enkova prutu

Ztráta stability prost podep eného Timo²enkova prutu Ztráta stability prost podep eného Timo²enkova prutu ƒeské vysoké u ení technické v Praze 12. zá í 2016 Vedoucí seminární práce: prof. Ing. Milan Jirásek, DrSc. Osnova 1 2 3 4 Cíl práce Cíl práce Nalézt

Více

13) 1. Číselné obory 1. 1, 3

13) 1. Číselné obory 1. 1, 3 1. Číselné obory 1. 0 1 4 3 4 5 6 1 7 6 2. 1 3 0 1 2 3 4 3. 4; 4. C; 5. C; 6. E; 7. A) 104/25; B) 118/21; C) 18/5; 8. 200; 9. 1,056 10 11 ; 10. 2,3472 10 26 ; 11. A) {1; 2; 3; 4; 5; 6}; B) {-7; -6; -5;

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce 1. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Abelovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce spojitá na [a, b) a funkce g : [a, b) R je na [a, b) spojitá

Více

Cvičení ke kursu Logika II, část III

Cvičení ke kursu Logika II, část III Cvičení ke kursu Logika II, část III (30. listopadu 2008) Osnova přednášky přednáška je určena studentům, kteří absolvovali úvodní kursy logiky a teorie rekurzívních funkcí. Předpokládané znalosti: syntax

Více

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. 11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

Věta o sedlovém bodu a Fredholmova alternativa

Věta o sedlovém bodu a Fredholmova alternativa Věta o sedlovém bodu a Fredholmova alternativa Petr Tomiczek Fakulta Aplikovaných věd Západočeská univerzita Plzeň 2006 obsah 1 Rozklad Hilbertova prostoru Uzavřený lineární a samoadjungovaný operátor

Více

THE: Cournotův model oligopolu Existence Nashova ekvilibria

THE: Cournotův model oligopolu Existence Nashova ekvilibria THE: Cournotův model oligopolu Existence Nashova ekvilibria Brno University of Technology Brno Czech Republic October 23, 2018 Úvod Čerpáno z: Fudenberg, D., Tirole, J.: Game Theory, The MIT Press, 1991

Více

!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

2016 Česká republika ŽENY (aktuální k )

2016 Česká republika ŽENY (aktuální k ) 2016 Česká republika ŽENY (aktuální k 27. 11. 2017) věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002462 0.997538 100 000.00 246.23 99787 8205207 82.05 100 000.00 243.07 5 066 877.57 34 975.90 176 922

Více

Česká republika - ŽENY

Česká republika - ŽENY 2012 Česká republika - ŽENY věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002338 0.997662 100000 234 99804 8088058 80.88 100 000.00 229.43 4 164 194.04 22 355.11 130 483 842.84 1 731 180.86 1 0.000144

Více

s algebrou, ale nejsou součástí osnovy našeho úvodního předmětu.

s algebrou, ale nejsou součástí osnovy našeho úvodního předmětu. Vážení studenti tento dokument obsahuje řešení ke cvičením která najdete ve skriptu Úvod od algebry zejména lineární Zatím nejsou uvedena řešení všechna ovšem postupně během semestru budu přidávat další

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č 1 z předmětu 1RMF čtvrtek 16 ledna 214, 9: 11: ➊ 11 bodů) Ve třídě zobecněných funkcí vypočítejte itu x ) n n2 sin 2 P 1 n x) ➋ 6 bodů) Aplikací Laplaceovy transformace vypočtěte

Více

MODELOVÁNÍ CHVOSTŮ TEORIE EXTRÉMNÍCH ODHADY PARETOVA INDEXU. Jan Dienstbier HODNOT. contact:

MODELOVÁNÍ CHVOSTŮ TEORIE EXTRÉMNÍCH ODHADY PARETOVA INDEXU. Jan Dienstbier HODNOT. contact: MODELOVÁNÍ CHVOSTŮ TEORIE EXTRÉMNÍCH HODNOT ODHADY PARETOVA INDEXU Jan Dienstbier contact: dienstbi@karlin.mff.cuni.cz Univerzita Karlova MFF UK - KPMS Praha KPMS, 31.10. 2007 MODELOVÁNÍ CHVOSTŮ JAK TO

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Projektivní prostor a projektivní zobrazení

Projektivní prostor a projektivní zobrazení Kapitola 4 Projektivní prostor a projektivní zobrazení 4.1 Projektivní rozšíření eukleidovského prostoru Vlastnost býti incidentní v eukleidovském prostoru E 3 vykazuje nedostatek symetrie zatímco např.

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Odchylka ekliptiky od roviny Galaxie

Odchylka ekliptiky od roviny Galaxie Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy, Plasy 2 Gymnázium Botičská, Praha 3 Gymnázium Nad Štolou, Praha Týden Vědy, 2010 Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy,

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec

Home. Obsah. Strana 1 MATEMATIKA. Fullscreen PRO LETECKÉ. Tisk OBORY II. Konec Kurzy celoživotního vzdělávání Fakulta dopravní ČVUT MATEMATIKA Strana 1 PRO LETECKÉ OBORY II PŘEHLED LÁTKY 1 Metrické a normované prostory 2 Posloupnosti v metrických prostorech 3 Reálné funkce více reálných

Více

ÚlohykpřednášceNMAG101a120: Lineární algebra a geometrie 1,

ÚlohykpřednášceNMAG101a120: Lineární algebra a geometrie 1, ÚlohykpřednášceNMAGa: Lineární algebra a geometrie 5 Verzezedne9.prosince Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se budou

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kapitola Nekonečné číselné řady Definice. Nechť {a n } n= je posloupnost reálných čísel. Symbol a n nebo a + a 2 + a 3 +... n= nazýváme nekonečnou číselnou řadou. s n = n i= a i = a + a 2 +... + a n nazveme

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Zkou²ková písemná práce. 1 z p edm tu 01MAB4 25/05/2017, 9:00 11:00 ➊ (9 bod ) Nech je dvojrozm rná Lebesgueova míra generována vytvo ujícími funkcemi φ(x) = Θ(x)x 2 a ψ(y) = 7y. Vypo t te míru mnoºiny

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2017 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

I a II. Kvantová mechanika. JSF094 Akademický rok

I a II. Kvantová mechanika. JSF094 Akademický rok Kvantová mechanika JSF094 kademický rok 017-018 I a II Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: 934

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Bodová a stejnoměrná konvergence

Bodová a stejnoměrná konvergence Kapitola 1 Bodová a stejnoměrná konvergence Motivační otázky: 1 + x + x 2 +... = 1 1 x. Můžeme tuto rovnici derivovat? Tj. platí 1 + 2x + 3x 2 +... = Kdy lze zaměnit limitu a derivaci? Je limita spojitých

Více

5. Aplikace výsledků pro průřezy 4. třídy.

5. Aplikace výsledků pro průřezy 4. třídy. 5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Matematická analýza 4

Matematická analýza 4 Matematická analýza 4 LS 2015-16 Miroslav Zelený 18. Metrické prostory III 19. Křivkový a plošný integrál 20. Absolutně spoj. fce a fce s konečnou variací 21. Fourierovy řady 18. Metrické prostory III

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

MFT - Matamatika a fyzika pro techniky

MFT - Matamatika a fyzika pro techniky MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Variační počet 2. Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Zapsal Jan Šustek

Variační počet 2. Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Zapsal Jan Šustek Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Zapsal Jan Šustek Obsah Seznam použitých symbolů a konvencí.............................................. 2 0. Opakování.........................................................................

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující

Více

Variační počet 2. Prof. RNDr. Olga Krupková, DrSc. Obsahuje 1413 hypertextových odkazů. Autorizovaný zápis přednášek (letní semestr 2004/2005)

Variační počet 2. Prof. RNDr. Olga Krupková, DrSc. Obsahuje 1413 hypertextových odkazů. Autorizovaný zápis přednášek (letní semestr 2004/2005) Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Obsahuje 1413 hypertextových odkazů Zapsal Jan Šustek Aktualizováno 29. května 2005 Obsah Seznam použitých symbolů

Více

ÚVOD DO FUNKCIONÁLNÍ ANALÝZY. Jiří Bouchala

ÚVOD DO FUNKCIONÁLNÍ ANALÝZY. Jiří Bouchala ÚVOD DO FUNKCIONÁLNÍ ANALÝZY Jiří Bouchala Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.7/2.2./7.332), na kterém se společně podílela Vysoká škola báňská

Více

Globální extrémy (na kompaktní množině)

Globální extrémy (na kompaktní množině) Globální extrémy (na kompaktní množině) Budeme hledat globální extrémy funkce f na uzavřené a ohraničené (tedy kompaktní) množině M. Funkce f může svého globálního extrému na M nabývat bud v nějaké bodě

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her. Formy her a rovnovážné řešení Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 208 ÚTIA AV ČR Program. Definujeme 2 základní formy pro studium různých her: rozvinutou, strategickou. 2.

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVU v Praze Zkou²ková písemná práce. 1 z p edm tu 1MAB4 25/5/216, 9: 11: ➊ (11 bod ) Vypo ítejte abstraktní plo²nou míru mnoºiny M = (x, y) R 2

Více

Podobnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace

Podobnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace Podobnost pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:

Více