ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ"

Transkript

1 VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava IBN Tento tudijní materiál vznikl za finanční podpory Evropkého ociálního fondu (EF) a rozpočtu Čeké republiky v rámci řešení projektu: CZ..07/..00/5.0463, MODENIZACE VÝKOVÝCH MATEIÁLŮ A DIDAKTICKÝCH METOD

2 OBAH ALEBA BLOKOVÝCH CHÉMAT Úvod ériové zapojení Paralelní zapojení Zpětnovazební zapojení (antiparalelní) Pravidla pro úpravu blokového chématu Příklad. Algebra blokových chémat Příklad. Algebra blokových chémat Základní přenoy O Příklad.3 Základní přenoy regulačního obvodu Příklad.4 Základní přenoy regulačního obvodu... POŽITÁ LITEATA... 3 CZ..07/..00/5.0463

3 3 ALEBA BLOKOVÝCH CHÉMAT OBAH KAPITOL: Blokové chéma Základní zapojení bloků Úprava blokových chémat Základní přenoy regulačního obvodu MOTIVACE: Výledný tvar matematického popiu dynamického chování ytémů lze odvodit zjednodušováním rovnic a eliminací proměnných, což je velmi náročné. Druhou možnotí, jak lze zíkat výledný tvar rovnice, je použití algebry blokových chémat a znaloti základních pravidel pro jejich zjednodušování. CÍL: Po protudování budete umět definovat výledné přenoy základních zapojení ytémů, regulační obvod a jeho základní prvky. vyřešit výledný přeno libovolně ložitého blokového chématu. vypočítat základní přenoy regulačního obvodu. CZ..07/..00/5.0463

4 4. ÚVOD Blokovým chématem lze popat vlatnoti ytémů, je to ekvivalentní zápi k rovnicím. Blokové chéma je tvořeno bloky (vlatnoti lze popat matematickými výrazy, nejčatěji obrazovými přenoy) a šipkami (veličiny). Algebra blokových chémat jou pravidla, podle nichž vytváříme matematický model ytému tvořeným z více bloků. Nejdříve je nutné v blokových chématech určit základní zapojení bloků. ozlišujeme tři základní zapojení bloků v blokových chématech a to: ériové, paralelní a zpětnovazební (antiparalelní) zapojení. Budeme předpokládat, že vlatnoti ytémů jou popány obrazovými přenoy... ériové zapojení () X() () () () Obrázek.75 - Blokové chéma ériového zapojení Pro jednotlivé členy platí vztahy: X ( ) ( ) ( ) ; ( ) ( ) X ( ). Vztah pro výtupní veličinu odvodíme eliminací proměnné X() ) ( ) X ( ) ( ) ( ) ( ). ( Je tedy možno ériově zapojené členy nahradit jedním členem přenoem ( ) ( ) ( ). ( ) (.) ( ) Při zapojení členů za ebou je výledný přeno dán oučinem přenoů jednotlivých členů... Paralelní zapojení u () () X () () () X () Obrázek.76 - Blokové chéma paralelního zapojení Pro jednotlivé členy a pro oučtový uzel platí vztahy: X ) ( ) ( ), X ) ( ) ( ),. ) X ( ) + X ( ) ( ( ( Eliminací X (), X () vypočítáme výtupní veličinu () CZ..07/..00/5.0463

5 5 [ ( ) ( ) ] ( ) ( ) ( ) ( ) + ( ) ( ) +. Při paralelním zapojení členů je možné je nahradit jedním členem přenoem ( ) ( ) ( ) + ( ). (.3) ( ) Při paralelním zapojení je výledný přeno dán oučtem (repektive rozdílem) přenoů jednotlivých členů...3 Zpětnovazební zapojení (antiparalelní) () X() () () ± () () Obrázek.77 - Blokové chéma zpětnovazebního zapojení Pro jednotlivé členy a rozdílový uzel platí náledující vztahy: ( ) ( ) X ( ), ) ( ) ( ), X ( ) ( ) ± ( ). ( Eliminací X() a () obdržíme vztah pro výtupní veličinu () [ ( ) ± ( ) ] ( ) [ ( ) ± ( ) ( ] ( ), ( ) ( ) X ( ) ) ) ( ) ( ) ( ) ( ) ( ). ( Při zpětnovazebním zapojení je možno takto zapojené členy nahradit jedním členem přenoem ( ) ( ) ( ). (.4) ( ) ( ) ( ) Při zpětnovazebním zapojení je výledný přeno dán zlomkem, kdy v čitateli je tzv. přeno přímé větve a ve jmenovateli oučin přenoů přímé větve a zpětné vazby: přeno přímé větve celkový přeno (přeno přímé větve).(přeno zpětné vazby) Znalot blokové algebry umožňuje zjednodušovat ložitá bloková chémata a tanovit výledný přeno zapojení. Zjednodušovat je nejlépe tak, že uvnitř blokového chématu hledáme některé z uvedených základních zapojení a potupně nahazujeme tato zapojení jediným členem.[švac 99]. PAVIDLA PO ÚPAV BLOKOVÉHO CHÉMAT Při zjednodušení blokového chématu e vychází z náhradních přenoů pro základní zapojení (ériové, paralelní, zpětnovazební). Avšak čato je nutno upravit blokové chéma, aby byla CZ..07/..00/5.0463

6 6 základní zapojení jednoznačně určena. Při úpravě blokových chémat e využívají dvě základní pravidla, a to:. Pravidlo pro přeun uzlu před blok za blok. Pravidlo pro přeun umačního členu: před blok za blok.. Příklad. Algebra blokových chémat rčete výledný přeno ytému, jehož blokové chéma je na obr..7. CZ..07/..00/5.0463

7 Obrázek.78 - Blokové chéma Řešení: Zadané blokové chéma je tvořeno paralelním (bloky 4, 5 ), ériovým a dvěmi zpětnovazebními zapojeními. Zpětné vazby e nám však kříží, proto budeme muet přeunout uzel () za 3 nebo uzel () před 3. Dotaneme upravené blokové chéma: Nyní lze vypočítat náhradní přeno vnitřního zpětnovazebního zapojení: ' Pak blokové chéma má tvar 3 Výledný přeno ytému je: + ' ' ( ) Příklad. Algebra blokových chémat rčete výledný přeno ytému, jehož blokové chéma je na obr..8. CZ..07/..00/5.0463

8 8 Řešení: Obrázek.79 - Blokové chéma Zadané blokové chéma je tvořeno ériovým a třemi zpětnovazebními zapojeními. Zpětné vazby e nám však kříží, proto budeme muet přeunout uzel () za 3 nebo uzel () před 3. Dotaneme upravené blokové chéma:přeuneme uzel od přenou 4. 6 / Vypočítáme přeno CZ..07/..00/5.0463

9 9 6 / Vypočítáme přeno Vypočítáme konečný přeno ZÁKLADNÍ PŘENO O. Předpokládejme, že vlatnoti jednotlivých členů O jou popány obrazovými přenoy, viz obrázek.7. CZ..07/..00/5.0463

10 0 E žádaná veličina, regulovaná veličina, řídicí veličina, E regulační odchylka, V poruchová veličina, přeno regulátoru, přeno regulované outavy, přeno měřicího členu Obrázek.80 - Blokové chéma regulačního obvodu važujme vtupní veličinu regulačního obvodu žádanou veličinu w a výtupní veličinu regulačního obvodu regulovanou veličinu y. Za předpokladu, že poruchová veličina bude rovna nule, tedy v 0, dotáváme přeno mezi řídící veličinou a regulovanou veličinou, nazývaný jako přeno řízení wy +. (.5) Jetliže uvažujeme jako vtupní veličinu regulačního obvodu poruchovou veličinu v a výtupní veličinu opět regulovanou veličinu y, za předpokladu, že žádaná veličina je rovna nule, tedy w 0, dotáváme přeno mezi poruchovou a regulovanou veličinou, nazývaný jako přeno poruchy. vy V +. (.6) Pro vyšetřování vlatnotí regulačních obvodů je nutná znalot obou přenoů, přenou řízení i poruchy. Druhou možnotí popiu vlatnotí regulačních obvodů je znalot odchylkových přenoů. važujme vtupní veličinu regulačního obvodu žádanou veličinu w a výtupní veličinu regulačního obvodu regulační odchylku e. Za předpokladu, že poruchová veličina bude rovna nule, tedy v 0, dotáváme přeno mezi řídící veličinou a regulační odchylkou, nazývaný jako odchylkový přeno řízení we E +. (.7) Jetliže uvažujeme jako vtupní veličinu regulačního obvodu poruchovou veličinu v a výtupní veličinu opět regulační odchylku e, za předpokladu, že žádaná veličina je rovna nule, tedy w 0, dotáváme přeno mezi poruchovou a regulační odchylkou, nazývaný jako odchylkový přeno poruchy. ve V +. (.8) egulátor půobí na regulovanou outavu tak, aby byl plněn cíl regulace, tj. y w, rep. e ( t ) 0. Při znaloti základních přenoů řízení lze vypočítat regulovanou veličinu a regulační odchylku podle vztahů V, E V. (.9) + V E + Aby byl plněn cíl regulace, muí pro základní přenoy platit: VE CZ..07/..00/5.0463

11 , 0, 0, 0. (.30) V E VE Ve všech základních přenoech regulačního obvodu e vykytuje oučin přenoů regulované outavy, regulátoru a měřicího členu, který je nazýván jako přeno otevřeného regulačního obvodu (OO) 0. (.3) Ve všech základních přenoech regulačního obvodu je tejný výraz ve jmenovateli, který rozhoduje o tabilitě a nazývá e charakteritický mnohočlen. Pokud jej položíme roven nule, dotaneme charakteritickou rovnici. [ŠVAC 99] (.3).3. Příklad.3 Základní přenoy regulačního obvodu Vypočítejte všechny základní přenoy regulačního obvodu dle chématu. V E 5 ( + 0,5) ( + 0,3) Řešení: Přeno řízení: (5 + ) ( + 0,3) (5 + ) 0(0, + ) wy + + (5 + ) ( + 0,3) + (5 + ) +,6 + 0,09 ( + 0,3) Přeno poruchy: ( + 0,3) ( + 0,3) vy + + (5 + ) ( + 0,3) +,6 + 0,09 ( + 0,3) Odchylkový přeno řízení: we vy Odchylkový přeno poruchy: ve vy.3. Příklad.4 Základní přenoy regulačního obvodu Vypočítejte všechny základní přenoy regulačního obvodu dle chématu. CZ..07/..00/5.0463

12 V E Řešení: Přeno regulované outavy: + Přeno řízení: wy + Přeno poruchy: vy + Odchylkový přeno řízení: we + Odchylkový přeno poruchy ve + CZ..07/..00/5.0463

13 Použitá literatura 3 POŽITÁ LITEATA [] BALÁTĚ, J ATOMATICKÉ ŘÍZENÍ. PAHA: NAKLADATELTVÍ BEN, 003, 654. IBN [] BOLTON,. 99. CONTOL ENINEEIN. NE OK: LONMAN CIENTIFIC & TECHNICAL, IBN [3] DOF,. C. & BIHOP,. H MODEN CONTOL TEM. ADDION-ELE : HALO ENLAND 998. INB [4] ŠVAC, I. 00. ATOMATIZACE/ATOMATICKÉ ŘÍZENÍ. BNO: NAKLADATELTVÍ CEM, 00, IBN [5] VÍTEČKOVÁ, M. & POLOKOVÁ, J. 989.Logaritmické kmitočtové charakteritiky. Otrava: VŠB-TO, Doplňkový učební text [6] VÍTEČKOVÁ, M. VÍTEČEK, A ZÁKLAD ATOMATICKÉ ELACE. OTAVA: VŠB-T OTAVA IBN CZ..07/..00/5.0463

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012) Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením

Více

Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík

Podpora výuky předmětu Teorie automatického řízení I Petr Žajdlík Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 Číslo úlohy: 9

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 Číslo úlohy: 9 STŘEDNÍ PŮMYSLOVÁ ŠKOL MOVSKÁ OSTV, KTOCHVÍLOV 7 Čílo úlohy: 9 Jméno a příjmení: ZPÁV O MĚŘENÍ Martin Dočkal Třída: EP3 Náev úlohy: egulační vlatnoti reotatu Skupina:. Schéma apojení: Měřeno dne: 4.2.2004

Více

1 Úvod do číslicové regulace

1 Úvod do číslicové regulace Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené

Více

Násobení. INP 2008 FIT VUT v Brně

Násobení. INP 2008 FIT VUT v Brně Náobení INP 2008 FIT VUT v Brně Náobení a náobičky Při náobení číel v dvojkové outavě můžeme náobit abolutní hodnoty číel a pak doplnit do výledku znaménko, anebo raději náobit přímo číla e znaménkem.

Více

Kirchhoffovy zákony. Kirchhoffovy zákony

Kirchhoffovy zákony. Kirchhoffovy zákony Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního

Více

VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení

VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení VŠB - echnická univerzita Otrava Fakulta trojní Katera automatizační techniky a řízení Ověření méně známé metoy eřizování regulátorů čílicovou imulací a na laboratorním moelu teplovzušného agregátu Vypracoval:

Více

Výpočet zobrazovacích soustav

Výpočet zobrazovacích soustav Výpočet zobrazovacích outav. Úvod Joef Kuběna, ÚFKL, Maarykova Univerita, Brno, (25) V tomto textu popíšeme potup, který zformuluje univerzální algoritmu pro výpočet parametrů libovolně ložitých zobrazovacích

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

1. Matematický model identifikované soustavy

1. Matematický model identifikované soustavy IDENTIFIKACE SOUSTAVY SEDAČKY SEDAČKA C.I.E.B TYPOVÉ ŘADY 5 A NÁVRH REGULAČNÍHO OBVODU GHARAZI SAYED MOHSEN Technická univerita v Liberci, fakulta trojní, katedra aplikované kybernetiky, Hálkova 6, 46

Více

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace EP-egulace EP EGULACE EL. POHONŮ Stabilita a tlumení Obr.. Schéma uzavřené regulační myčky Obr.. Ukazatele kvality regulace V regulačních pohonech pouzujeme kvalitu regulace nejčatěji dle přechodové charakteritiky,

Více

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU Ing. Aleš Hrdlička Katedra technické kybernetiky a vojenké robotiky Vojenká akademie v Brně E-mail: hrdlicka@c.vabo.cz Úvod Tento článek popiuje jednoduchou

Více

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony

12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Kirchhoffovy zákony Při řešení elektrických obvodů, tedy různě propojených sítí tvořených zdroji, odpory (kapacitami a indukčnostmi)

Více

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

Regulační obvody s nespojitými regulátory

Regulační obvody s nespojitými regulátory Regulační obvody s nespojitými regulátory Dvoupolohový regulátor ve spojení s regulovanou statickou a astatickou soustavou. Známe již funkci regulovaných soustav a nespojitých regulátorů a můžeme přejít

Více

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1.

( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1. eg. č. pojektu CZ..07/..0/0.0007 Eponenciální ovnice teoie - ovnice, ve kteých e neznámá vykytuje v eponentu Řešíme je v záviloti n typu ovnice několik zákldními metodmi. A. metod převedení n tejný zákld

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

2. ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ

2. ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ 2 ZÁKLADNÍ METODY ANALÝZY ELEKTRICKÝCH OBVODŮ 2 Úvod Analýzou elektrické soustavy rozumíme výpočet všech napětí a všech proudů v soustavě Při analýze se snažíme soustavu rozdělit na jednotlivé obvodové

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

s = Momentová charakteristika asynchronního motoru s kotvou nakrátko

s = Momentová charakteristika asynchronního motoru s kotvou nakrátko Aynchronní třífázové motory / Vznik točivého pole a základní vlatnoti motoru Aynchronní indukční motory jou nejjednoduššími a provozně nejpolehlivějšími motory. otor e kládá ze tatoru a rotoru. Stator

Více

ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ

ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ ČEZDitribuce, E.ON Ditribuce, E.ON CZ., ČEPS PREditribuce, ZSE Podniková norma energetiky pro rozvod elektrické energie ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST : PŘÍKLADY VÝPOČTŮ Znění pro tik PNE 041 druhé

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/4 6 00 rno http://www.utee.feec.vutbr.cz ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm *

3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm * Fyzika 1 2009 Otázky za 2 body 1. Mezi tavové veličiny patří a) teplo b) teplota * c) práce d) univerzální plynová kontanta 2. Krychle má hranu o délce 2 mm. Jaký je její objem v krychlových metrech? a)

Více

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0 Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme

Více

3 Chyby měření. 3.1 Hrubé chyby

3 Chyby měření. 3.1 Hrubé chyby 3 Chyby měření Za daných podmínek má každá fyzikální veličina určitou hodnotu, kterou ovšem z principiálních důvodů nemůžeme zjitit úplně přeně. Každé měření je totiž zatíženo chybami, které jou nejrůznějšího

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

4.1.5 Práce v elektrickém poli, napětí

4.1.5 Práce v elektrickém poli, napětí 4.1.5 Práce v elektrickém poli, napětí Předpoklady: 4102, 4104, mechanická práce Př. 1: Spočítej ílu, která půobí náboj o velikoti 2 10 5 C, který e nachází v elektrickém poli o intenzitě 2500 N C 1. Nejjednodušší

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Simulátor ochran a protihavarijních automatik (RTDS) - modely měřících a výkonových transformátorů

Simulátor ochran a protihavarijních automatik (RTDS) - modely měřících a výkonových transformátorů Simulátor ochran a protihavarijních automatik (RTDS) - modely měřících a výkonových tranformátorů Ing. Petr Neuman, CSc., ČEPS, a.., Praha, Čeká republika E-mail: neuman@cep.cz Anotace Autor přípěvku vytupuje

Více

Y Q charakteristice se pipojují kivky výkonu

Y Q charakteristice se pipojují kivky výkonu 4. Mení charakteritiky erpadla 4.1. Úod Charakteritika erpadla je záilot kutené mrné energie Y (rep. kutené dopraní ýšky H ) na prtoku Q. K této základní P h Q, úinnoti η Q a mrné energie pro potrubí Y

Více

V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:

V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Bakalářská matematika I

Bakalářská matematika I do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Asynchronní stroje. Úvod. Konstrukční uspořádání

Asynchronní stroje. Úvod. Konstrukční uspořádání Aynchronní troje Úvod Aynchronní troje jou nejjednodušší, nejlevnější a nejrozšířenější točivé elektrické troje. Používají e především jako motory od výkonů řádově deítek wattů do výkonů tovek kilowattů.

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady. Čílo ojektu CZ..07/..00/4.074 Název školy Movké gymnázium Bno..o. Auto Temtiká olt Mg. Mie Chdimová Mg. Vě Jeřáková Mtemtik 0 Rionální číl. Text říkldy. Ročník. Dtum tvoy.. 0 Anote ) o žáky jko text látky,

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Výpočet napětí malé elektrické sítě

Výpočet napětí malé elektrické sítě AB5EN - Výpočet úbytků napětí MUN a metodou postupného zjednodušování Výpočet napětí malé elektrické sítě Elektrická stejnosměrná soustava je zobrazená na obr.. Vypočítejte napětí v uzlech, a a uzlový

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Automatizační technika. Obsah

Automatizační technika. Obsah Akademický rok 2016/2017 Připravil: Radim Farana Automatizační technika Úvod do automatizace 2 Obsah Obsah předmětu Cíl předmětu Požadavk na absolvování Základní pojm z teorie sstémů Základní pojm z teorie

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

DC/DC konvertory ady CHS2

DC/DC konvertory ady CHS2 DC/DC konvertory ady CHS2 DC/DC konvertory ady CHS2 jou galvanicky odd lené dvouhladinové m ni e malého výkonu bez výtupní tabilizace. Konvertory této ady jou integrovány do platových pouzder SIL. Tyto

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Regitrační čílo projektu: Šablona: Název materiálu: Autor: CZ..07/..00/.56 III/ Inovace a zkvalitnění výuky protřednictvím ICT VY INOVACE_0/07_Úlohy

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Rovnice a nerovnice v podílovém tvaru

Rovnice a nerovnice v podílovém tvaru Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu

Více

Vyhodnocování impulsních m ěř m ení kvalita vysokonap ěťových měř m ení

Vyhodnocování impulsních m ěř m ení kvalita vysokonap ěťových měř m ení Vyhodnocování impulních měření a kvalita vyokonapěťových měření 1 Měření impulních napětí Metody pro tanovení 50 konvenční (po hladinách) 3 Pravděpodobnotní papír 4 Výpočet 50 a pomocí metody nejmenších

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb.

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. Doporučené aplikace tanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. 1 Metodické pokyny pro určení množtví elektřiny z vyokoúčinné

Více

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36

Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36 Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Zdroj napětí Fyzika I. p. 2/36 Zdroj proudu Fyzika I. p. 3/36 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace

Více

3.2. Elektrický proud v kovových vodičích

3.2. Elektrický proud v kovových vodičích 3.. Elektrický proud v kovových vodičích Kapitola 3.. byla bez výhrad věnována popisu elektrických nábojů v klidu, nyní se budeme zabývat pohybujícími se nabitými částicemi. 3... Základní pojmy Elektrický

Více

Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU

Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta elektrotechniky a informatiky Elektronické obvody pro optoelektroniku a telekomunikační techniku pro integrovanou výuku VUT a VŠB-TU Garant předmětu:

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

elektrické filtry Jiří Petržela základní pojmy

elektrické filtry Jiří Petržela základní pojmy Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé

Více

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí

Více

4. Lineární (ne)rovnice s racionalitou

4. Lineární (ne)rovnice s racionalitou @04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je

Více