Stavební mechanika přednáška, 10. dubna 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Stavební mechanika přednáška, 10. dubna 2017"

Transkript

1 Stavební mechanika 3 7. přednáška, 10. dubna 2017

2 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola výsledků Zjednodušená deformační metoda (rámy s posuvnými patry nebo sloupy)

3 Využití symetrie symetrická konstrukce a zatížení symetrické řešení

4 Využití symetrie symetrická konstrukce a zatížení symetrické řešení nejběžnější typ symetrie souměrnost podle svislé osy

5 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení:

6 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: u, w,, u, w,, u, w, ODM při symetrickém zatížení:

7 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: u, w,, u, w,, u, w, ODM při symetrickém zatížení: u, w,, w

8 Využití symetrie ODM při obecném zatížení: ODM při symetrickém zatížení:

9 Využití symetrie ODM při obecném zatížení: 30 neznámých ODM při symetrickém zatížení:

10 Využití symetrie ODM při obecném zatížení: 30 neznámých ODM při symetrickém zatížení: 15 neznámých

11 Řešení prutových konstrukcí pomocí výpočetních programů Prakticky všechny výpočetní programy používané v praxi jsou založeny na obecné deformační metodě (ODM).

12 Řešení prutových konstrukcí pomocí výpočetních programů Prakticky všechny výpočetní programy používané v praxi jsou založeny na obecné deformační metodě (ODM). Typická struktura vstupních dat: styčníky poloha (popsána pomocí globálních souřadnic) podepření zatížení osamělé síly a momenty, předepsaná přemístění

13 Řešení prutových konstrukcí pomocí výpočetních programů Prakticky všechny výpočetní programy používané v praxi jsou založeny na obecné deformační metodě (ODM). Typická struktura vstupních dat: styčníky poloha (popsána pomocí globálních souřadnic) podepření zatížení osamělé síly a momenty, předepsaná přemístění pruty umístění na konstrukci (popsáno pomocí koncových styčníků) způsob připojení ke styčníkům (VV, VK, KV, KK) průřez tvar a rozměry materiál E,, T zatížení vlastní tíha, další síly a momenty, teplotní změny

14 Příklad řešení rámu pomocí výpočetního programu E 210GPa I 280 I 360

15 Příklad řešení rámu pomocí výpočetního programu 40kN/m 80kN/m 3m 80kN/m 3m 3m 4m 5m 4m

16 Ohybové momenty

17 Posouvající síly

18 Normálové síly

19 Kontrola: rovnováha styčníku 40kN/m 80kN/m 3m 80kN/m 3m 3m 4m 5m 4m

20 Kontrola: rovnováha styčníku jen schématický obrázek ve skutečnosti jsou všechny síly vztaženy ke stejnému bodu teoretickému středu styčníku, kde se protínají osy všech připojených prutů

21 Kontrola: rovnováha prutu musíme vzít v úvahu i vnější síly (modré)

22 Kontrola: rovnováha výseku konstrukce musíme vzít v úvahu i vnější síly

23 Kontrola: rovnováha celé konstrukce musíme vzít v úvahu vnější síly včetně reakcí

24 Zjednodušená deformační metoda Základní předpoklad ZDM: normálová tuhost je tak velká, že protažení (stlačení) prutů způsobené normálovými silami lze zanedbat

25 Zjednodušená deformační metoda Základní předpoklad ZDM: normálová tuhost je tak velká, že protažení (stlačení) prutů způsobené normálovými silami lze zanedbat N EA L L

26 Zjednodušená deformační metoda Základní předpoklad ZDM: normálová tuhost je tak velká, že protažení (stlačení) prutů způsobené normálovými silami lze zanedbat EA N L L 0

27 Zjednodušená deformační metoda Základní předpoklad ZDM: normálová tuhost je tak velká, že protažení (stlačení) prutů způsobené normálovými silami lze zanedbat Důsledek: EA N L L 0 posuny styčníků nejsou zcela nezávislé, ale jsou svázány podmínkami nestlačitelnosti prutů

28 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách):

29 Zjednodušená deformační metoda nestlačitelnost prutů: L u u L w w okrajové podmínky (v podporách):

30 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w u 1 w

31 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w u 1 w u 2 w 2 0 0

32 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w u 1 w u 2 w rám s neposuvnými styčníky (ve smyslu ZDM)

33 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách):

34 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w L w w 0 0

35 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w L w w w w

36 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w L w w w w u w w u 0 0

37 Zjednodušená deformační metoda nestlačitelnost prutů: okrajové podmínky (v podporách): L u u L w w L w w w w u w w u 0 0 rám s posuvným patrem (ve smyslu ZDM)

38 Zjednodušená deformační metoda rám s neposuvnými styčníky

39 Zjednodušená deformační metoda rám s neposuvnými styčníky ODM: 3 základní neznámé u, w, 2 2 2

40 Zjednodušená deformační metoda rám s neposuvnými styčníky ODM: 3 základní neznámé u, w, ZDM: 1 základní neznámá 2

41 Zjednodušená deformační metoda rám s neposuvnými styčníky rám s posuvným patrem ODM: 3 základní neznámé u, w, ZDM: 1 základní neznámá 2

42 Zjednodušená deformační metoda rám s neposuvnými styčníky rám s posuvným patrem ODM: 3 základní neznámé u, w, ODM: 6 základních neznámých u, w,, u, w, ZDM: 1 základní neznámá 2

43 Zjednodušená deformační metoda rám s neposuvnými styčníky rám s posuvným patrem ODM: 3 základní neznámé u, w, ZDM: 1 základní neznámá 2 ODM: 6 základních neznámých u, w,, u, w, ZDM: 3 základní neznámé,,u u

44 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku

45 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku

46 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku neznámému patrovému posunu odpovídá???

47 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku neznámému patrovému posunu odpovídá silová podmínka rovnováhy patra (tzv. patrová rovnice)

48 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku neznámému patrovému posunu odpovídá silová podmínka rovnováhy patra (tzv. patrová rovnice) F1x 1 2 F 2 x 3 4

49 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku neznámému patrovému posunu odpovídá silová podmínka rovnováhy patra (tzv. patrová rovnice) F1x 1 2 F 2 x 3 4

50 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku neznámému patrovému posunu odpovídá silová podmínka rovnováhy patra (tzv. patrová rovnice) F1x 1 2 F 2 x F1x F2 x 3 4 X13 X 24

51 Zjednodušená deformační metoda Základní rovnice: neznámému styčníkovému pootočení odpovídá momentová podmínka rovnováhy styčníku neznámému styčníkovému posunu odpovídá silová podmínka rovnováhy styčníku neznámému patrovému posunu odpovídá silová podmínka rovnováhy patra (tzv. patrová rovnice) F1x 1 2 F 2 x F1x F2 x 3 4 X13 X 24 X X F F x 2x

52 Zjednodušená deformační metoda Základní rovnice: neznámému sloupovému posunu odpovídá silová podmínka rovnováhy sloupu (tzv. sloupová rovnice)

53 Zjednodušená deformační metoda Základní rovnice: neznámému sloupovému posunu odpovídá silová podmínka rovnováhy sloupu (tzv. sloupová rovnice) F2z F3z F6z F7z

54 Zjednodušená deformační metoda Základní rovnice: neznámému sloupovému posunu odpovídá silová podmínka rovnováhy sloupu (tzv. sloupová rovnice) F2z F3z F 2z Z21 Z Z65 Z67 F6z F7z F 6z Z Z Z Z F F z 6z

55 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení:

56 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení: u, w,, u, w,, u, w,

57 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení: u1, w1, 1, u2, w2, 2, u3, w3, 3 u, w,, w

58 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení: u1, w1, 1, u2, w2, 2, u3, w3, 3 u, w,, w , 2, 3, u1 u2 u3

59 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení: u1, w1, 1, u2, w2, 2, u3, w3, 3 u, w,, w ,,, u u u

60 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení:

61 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: 12 neznámých ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení:

62 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: 12 neznámých u, w,, u, w, ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení:

63 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: 12 neznámých u, w,, u, w, ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení:,,,, w w, w w

64 Využití symetrie redukce počtu neznámých a rovnic ODM při obecném zatížení: 12 neznámých u, w,, u, w, ODM při symetrickém zatížení: ZDM při obecném zatížení: ZDM při symetrickém zatížení:,,,, w w, w w ,,w w

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Postup při výpočtu prutové konstrukce obecnou deformační metodou

Postup při výpočtu prutové konstrukce obecnou deformační metodou Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

STATIKA STAVEBNÍCH KONSTRUKCÍ I

STATIKA STAVEBNÍCH KONSTRUKCÍ I VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁU Navrhněte ohybovou výztuž do železobetonového nosníku uvedeného na obrázku. Kromě vlastní tíhy je nosník zatížen bodovou silou od obvodového pláště ostatním stálým rovnoměrným

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání... . Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

Geometricky nelineární analýza příhradových konstrukcí

Geometricky nelineární analýza příhradových konstrukcí Geometricky nelineární analýza příhradových konstrukcí Semestrální práce z předmětu SM3 2006/2007 Jan Stránský Příhradové konstrukce jsou prutové konstrukce sestávající z přímých prutů, navzájem spojených

Více

4.6.3 Příhradové konstrukce

4.6.3 Příhradové konstrukce 4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Petr Kabele

Petr Kabele 4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Pružnost a plasticita CD03

Pružnost a plasticita CD03 Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více

Požadavky pro písemné vypracování domácích cvičení

Požadavky pro písemné vypracování domácích cvičení Požadavky pro písemné vypracování domácích cvičení (cvičící: Vladimír Šána, B380) 1. Docházka na cvičení Docházka na cvičení je dobrovolná a nebude na ní brán zřetel při udělování zápočtů. Naopak budu

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: dřevěné konstrukce) KOUNITNÍ CENTRU ATKY TEREZY V PRAZE . Základní inormace.. ateriály.. Schéma konstrukce. Zatížení 4. Návrh prvků 5.. Střecha 5.. Skleněná asáda KOUNITNÍ

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: POZEMNÍ STAVBY (S) Sada č. 1/20.6.2012 Část A TEST 1. Má-li spojitá náhodná veličina X distribuční

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stavební mechanika 1 (K132SM01) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 Termín opravného/náhradního zápočtového testu: 17.12.2014, 16:00-18:00, místnost B286. Na opravný/náhradní test

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

Analýza stavebních konstrukcí

Analýza stavebních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková, Ph.D.

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce

5 Úvod do zatížení stavebních konstrukcí. terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5 Úvod do zatížení stavebních konstrukcí terminologie stavebních konstrukcí terminologie a typy zatížení výpočet zatížení od vlastní tíhy konstrukce 5.1 Terminologie stavebních konstrukcí nosné konstrukce

Více

Analýza stavebních konstrukcí

Analýza stavebních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing. Radoslav

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Betonové konstrukce (S)

Betonové konstrukce (S) Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: betonové konstrukce) KOMUNITNÍ CENTRUM MATKY TEREZY V PRAZE . Základní informace.. Materiály.. Schéma konstrukce. Zatížení.. Vodorovné konstrukc.. Svislé konstrukce 4.

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Technická zpráva a statický výpočet

Technická zpráva a statický výpočet Ing. Ferdian Jaromír, ferdi,výškovická 155, Ostrava-Výškovice, 700 30 Kancelář ul. Ruská 43, Ostrava-Vítkovice, 703 00, Tel. : 596693749, 603259826, Fax. :596693751 e-mail ferdian@mto-ok.cz, www.projektyostrava.cz,

Více

INTERAKCE VNITŘNÍCH SIL PŘI DIMENZOVÁNÍ DLE EC2

INTERAKCE VNITŘNÍCH SIL PŘI DIMENZOVÁNÍ DLE EC2 20. Betonářské dny (2013) Sborník Sekce ČT1B: Modelování a navrhování 2 ISBN 978-80-87158-34-0 / 978-80-87158-35-7 (CD) INTERAKCE VNITŘNÍCH SIL PŘI DIMENZOVÁNÍ DLE EC2 Libor Michalčík 1 Jaroslav Navrátil

Více

Sedmé cvičení bude vysvětlovat tuto problematiku:

Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky

Více

Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce

Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce 133 BK4K BETONOVÉ KONSTRUKCE 4K Betonové konstrukce BK4K Program výuky Přednáška Týden Datum Téma 1 40 4.10.2011 2 43 25.10.2011 3 44 12.12.2011 4 45 15.12.2011 Skořepinové konstrukce úvod Úvod do problematiky

Více

FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY

FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS MODELLING OF TRADITIONAL TIMBER ROOF TRUSSES BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE AUTHOR VEDOUCÍ PRÁCE

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Klasifikace rámů a složitějších patrových konstrukcí

Klasifikace rámů a složitějších patrových konstrukcí Klasifikace rámů a složitějších patrových konstrukcí Klasifikace závisí na geometrii i zatížení řešit pro každou kombinaci zatížení!! 1. Konstrukce řešené podle teorie 1. řádu (α > 10): F α 10 Pro dané

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF

Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF Ing. Ondřej Kika, Ph.D. Ing. Radim Matela Analýza zemětřesení metodou ELF Obsah Výpočet vlastních frekvencí Výpočet seizmických účinků na konstrukci Výpočet pomocí metody ekvivalentních příčných sil (ELF

Více

Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS

Zadejte ručně název první kapitoly. Manuál. Rozhraní pro program ETABS Zadejte ručně název první kapitoly Manuál Rozhraní pro program ETABS Všechny informace uvedené v tomto dokumentu mohou být změněny bez předchozího upozornění. Žádnou část tohoto dokumentu není dovoleno

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK Sada č. /10.7.01 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK 01 01 OBOR: POZEMNÍ STAVBY (S) Část A TEST 1. Má-li spojitá náhodná veličina X distribuční

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Schöck Isokorb typ KS

Schöck Isokorb typ KS Schöck Isokorb typ 20 Schöck Isokorb typ 1 Obsah Strana Varianty připojení 16-165 Rozměry 166-167 Dimenzační tabulky 168 Vysvětlení k dimenzačním tabulkám 169 Příklad dimenzování/upozornění 170 Údaje pro

Více

Předpjatý beton Přednáška 4

Předpjatý beton Přednáška 4 Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter RIBtec BEST výpočet a zadání zatížení sloupu korespondující s průběhem jeho vnitřních sil v globálním výpočetním modelu (FEM) nosné konstrukce Běžným pracovním postupem, zejména u prefabrikovaných betonových

Více

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška Těleso na podporách. Obsah přednášky : uvolňování jako jeden ze základních postupů mechaniky, statická určitost a neurčitost, vazby a jejich vlastnosti, řešení staticky neurčitých úloh Doba studia : asi

Více

s01. Základy statiky nutné pro PP

s01. Základy statiky nutné pro PP s01 1 s01. Základy statiky nutné pro PP Poznámka: Tato stať není přehledem statiky, ale pouze připomenutím některých základních poznatků, bez nichž se v PP nelze obejít. s01.1. Mechanický pohyb Pohyb chápeme

Více

Materiály ke 12. přednášce z předmětu KME/MECHB

Materiály ke 12. přednášce z předmětu KME/MECHB Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK AKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK 20 202 OBOR: POZEMNÍ STAVBY (S) Sada č. Část A TEST. Je-li distribuční funkce spojité náhodné veličiny X a a

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ŽELEZOBETONOVÁ KONSTRUKCE PARKOVACÍHO DOMU REINFORCED CONCRETE STRUCTURE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ŽELEZOBETONOVÁ KONSTRUKCE PARKOVACÍHO DOMU REINFORCED CONCRETE STRUCTURE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV BETONOVÝCH A ZDĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF CONCRETE AND MASONRY STRUCTURES ŽELEZOBETONOVÁ

Více

Statika tuhého tělesa Statika soustav těles

Statika tuhého tělesa Statika soustav těles Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

ČVUT v Praze Fakulta stavební. Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT. Jméno a příjmení studenta :

ČVUT v Praze Fakulta stavební. Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT. Jméno a příjmení studenta : ČVUT v Praze Fakulta stavební Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT Jméno a příjmení studenta : Ročník, obor : Vedoucí práce : Ústav : Jakub Lefner 5., KD Doc.

Více

Kancelář stavebního inženýrství s.r.o. Statický výpočet

Kancelář stavebního inženýrství s.r.o. Statický výpočet 47/2016 Strana: 1 Kancelář stavebního inženýrství s.r.o. Botanická 256, 362 63 Dalovice - Karlovy Vary IČO: 25 22 45 81, mobil: +420 602 455 293, +420 602 455 027, =================================================

Více

Schodiště. Schodiště termíny

Schodiště. Schodiště termíny 133 Schodiště podesta odpočívadlo hlavní podesta mezipodesta schodišťové rameno nástupní výstupní zrcadlo stupeň stupnice podstupnice jalový stupeň výška, šířka stupně Schodiště termíny K133, či jsou volně

Více

VÝPOČET VLASTNÍCH FREKVENCÍ RÁMU

VÝPOČET VLASTNÍCH FREKVENCÍ RÁMU VÝPOČET VLASTNÍCH FREKVENCÍ RÁMU MODELOVÁNÍ MECHANICKÝCH SOUSTAV Martin Bílek 0.3.05 Brdový list Náběh Horní činek Krajnice Nosný drát Nítěnka Dolní činek Závěs 5.5.05 Výpočet vlastních frekvencí pružně

Více

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA

VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Anežka Jurčíková, Martin Krejsa, Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA Vzdělávací pomůcka Ostrava

Více

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO4 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:

Více

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní

při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 04/2016 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

Pružnost a plasticita II DD6

Pružnost a plasticita II DD6 Pružnost a plasticita II DD6 Lud ě k Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm

Více

Konstrukce dřevěné haly rozvržení kce

Konstrukce dřevěné haly rozvržení kce Konstrukce dřevěné haly rozvržení kce Zadání Jednopodlažní jednolodní dřevěná hala: rozpětí = polovina rozpětí zadané ocelové haly vzdálenost sloupů = poloviční vzdálenost oproti zadané ocelové hale vzdálenost

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Katedra ocelových a dřevěných konstrukcí Obsah přednášek 2 Stabilita stěn, nosníky třídy 4. Tenkostěnné za studena tvarované profily. Spřažené ocelobetonové spojité

Více

11. Zásobníky, nádrže, potrubí Zatížení, konstrukce stěn a podpor. Návrh upravuje ČSN EN 1993-4 bunkry sila

11. Zásobníky, nádrže, potrubí Zatížení, konstrukce stěn a podpor. Návrh upravuje ČSN EN 1993-4 bunkry sila 11. Zásobníky, nádrže, potrubí Zatížení, konstrukce stěn a podpor. Návrh upravuje ČSN EN 1993-4 Zásobníky - na sypké materiály bunkry sila Nádrže Plynojemy - na tekuté materiály - na plyny nízkotlaké (

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více