Cvičení z ekonometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Cvičení z ekonometrie"

Transkript

1 Cvičení z ekonometrie Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Katedra ekonomiky Ing. Lukáš Čechura, Ph.D. Dr. Ing. Pavlína Hálová Ing. Zdeňka Kroupová Ing. Michal Malý, Ph.D. Ing. Jarmila Peterová, CSc. Ing. Lenka Šobrová Určeno pro posluchače oborů PAE, PAA, INFO, SYI, Tato publikace neprošla redakční ani jazykovou úpravou.

2 Autoři jednotlivých kapitol: Ing. Lukáš Čechura, Ph.D. - cvičení č.,, 3, 4, 4 Dr. Ing. Pavlína Hálová - cvičení č. 9 Ing. Zdeňka Kroupová - cvičení č. 6, 7, 8 Ing. Michal Malý, Ph.D. - cvičení č. 0,,, 3 Ing. Jarmila Peterová, CSc. - cvičení č. 5 Ing. Lenka Šobrová - cvičení č., 3, 4 Pozn.: Teoretický úvod cvičení č., 5, 9, 0,,, 3, 4 vychází z Tvrdoň, et al. 00 Lektoroval: Ing. Michal Mejdrech, Ph.D. Praha, 008

3 Předmluva Skripta, která se Vám dostávají do ruky, jsou určena pro posluchače oboru PAE, PAA, INFO a SYI na provozně ekonomické fakultě ČZU v Praze. Cvičení z ekonometrie jsou zpracovány jako doplňkový učební text k přednáškám z předmětu Ekonometrie a Ekonometrické modelování. Učební text tedy není náhradou přednášek, ale slouží k praktickému procvičení probírané teorie. Jednotlivá cvičení jsou zpracována tak, aby tvořila relativně samostatný okruh problémů, které jsou osvojovány postupným řešením zadaných úkolů. Každé cvičení je složeno z úvodu do problematiky, praktických cvičení a úkolů k samostatnému procvičení. Úvod do problematiky obsahuje stručný přehled teorie, kterou by měl mít student před začátkem každého praktického cvičení ovládnutu do té míry, aby se při řešení zadaných úkolů neztrácel v neznámých pojmech. Praktická cvičení obsahují jednoduché úkoly, které však svým rozsahem a uspořádáním umožňují komplexní procvičení daného tématu. Řešení úkolů k samostatnému procvičení potom slouží k hlubšímu pochopení probírané látky a rovněž stimulují k zamyšlení nad analyzovanými problémy, a tím umocňují efekt kontaktní výuky. Za kolektiv autorů Vám přeji hodně zdaru a rovněž příjemných chvil při pronikání do krás předmětu Ekonometrie, resp. Ekonometrického modelování. Ing. Lukáš Čechura, Ph.D. garant předmětu

4 Obsah: Cvičení Opakování základních pojmů str. 5 Cvičení Konstrukce lineárního regresního modelu (LRM) str. Cvičení 3 Předpoklady a odhad LRM str. 0 Cvičení 4 Aplikace modelu, dynamizace modelu, dummy proměnné str. 8 Cvičení 5 Modely simultánních rovnic str. 33 Cvičení 6 Odhad modelu dvoustupňová metoda nejmenších čtverců str. 39 Cvičení 7 Odhad modelu metoda minimalizace poměru rozptylů str. 48 Cvičení 8 Verifikace ekonometrického modelu, interpretace a aplikace str. 57 Cvičení 9 Konstrukce nelineárních spotřebních funkcí str. 65 Cvičení 0 Konstrukce produkčních funkcí str. 73 Cvičení Konstrukce nákladových funkcí a odvození nabídkové funkce str. 77 Cvičení Konstrukce vícefaktorové produkční funkce str. 8 Cvičení 3 Vztahy mezi výrobními faktory a mezi produkty str. 87 Cvičení 4 Aplikace EKM v prognostické oblasti str. 93 Přílohy str. 99

5 . cvičení Opakování základních pojmů Opakování vybraných partií z: Matematiky (lineární algebra, matematická analýza) Statistiky (regresní analýza). Úvod do problematiky... Vektorový počet Vektor lze definovat jako m-tici reálných čísel. x = x.. x m Čísla x i (i =,...,m) jsou prvky (komponenty, složky nebo souřadnice) sloupcového vektoru. Obecně lze vektor chápat jako abstraktní prvek vektorového prostoru. Dva sloupcové vektory jsou si rovny, právě když jsou si rovny jejich odpovídající prvky, tj.: x = y tehdy a jen tehdy, když x i = y i (i =,...,m). Základní operace definované na sloupcových vektorech jsou sčítání a násobení skalárem. Sčítání: z = x + y tehdy a jen tehdy, když z i = x i + y i (i =,...,m). Součet dvou sloupcových vektorů je definován pouze pro případ, kdy oba vektory mají stejný počet prvků. Násobení skalárem: y = cx tehdy a jen tehdy, když y i = cx i (i =,..,m). Uvedené operace lze kombinovat a dostat lineární kombinaci množiny vektorů ve tvaru: y = c x () c n x (n) tehdy a jen tehdy, když y i = c x () (n) i c n x i (i =,...,m), kde x (j) i je i- tý prvek j-tého vektoru. O množině vektorů pravíme, že je lineárně závislá v případě, že existuje netriviální kombinace vektorů, která je rovna nulovému vektoru. Přesněji, množina n vektorů typu m x {x (),..., x (n) } je lineárně závislá tehdy a jen tehdy, existuje-li množina skalárů {c,...,c n } s alespoň jedním nenulovým prvkem taková, že c x () c n x (n) =

6 ... Maticový počet Matice typu [m x n] je uspořádání (m.n) čísel ve tvaru obdélníku majícího m řádků a n sloupců. A = a a a... m a a a... m a a a n n... mn Čísla a ij (i =,...,m; j =,...,n) nazýváme prvky (nebo též elementy) matice A. Matice (m.n) se nazývá matice typu m krát n. Dvě matice jsou si rovny, jsou-li si rovny jejich odpovídající prvky, tj.: A = B tehdy a jen tehdy, když a ij = b ij (i =..m, j =..n). Sečíst dvě matice znamená provést součet jejich odpovídajících prvků. Dostáváme C = A + B tehdy a jen tehdy, když c ij = a ij + b ij pro (i =,..m; j =,..n). Součet dvou matic je definován pouze pro případ, kdy obě matice mají stejný rozměr. Násobení matice skalárem znamená násobení každého jejího prvku tímto skalárem, tj.: B = ca tehdy a jen tehdy, když b ij = ca ij (i =,..m; j =,..n). Kombinací a rozšířením těchto operací dostáváme lineární kombinaci z množiny matic: B = c A () c p A (p) tehdy a jen tehdy, když b ij =c a ij () c p a ij (p) pro (i=,..m;j=,..n), kde a ij (p) je i,j prvek p-té matice A (p) typu [m x n]. Z uvedených definic a z vlastností reálných čísel plyne: A + B = B + A (A + B) + C = A + (B + C) = A + B +C c(a + B) = ca + cb (c + d) A = ca + da Srovnáme-li definované operace s maticemi s operacemi se sloupcovými vektory, zjistíme, že platí pro matice i vektory. Třetí základní operací s maticemi je násobení matic. Součin matice A typu m x n s maticí B typu n x p je matice C typu m x p, jejíž (i,j)-tý prvek je součtem n-tice součinů příslušných prvků i-tého řádku matice A a j-tého sloupce matice B, tj.: C = AB tehdy a jen tehdy, když c ij = n k = a ik b kj (i =,..m, j =,..n). Z postupu pro násobení matic je zřejmé, že prvek ležící na průsečíku i-tého řádku a j-tého sloupce matice C=AB dostaneme jako skalární součin i-tého řádku matice A a j-tého sloupce matice B. Pro součin C = AB musí mít matice B právě tolik řádků, kolik má matice A sloupců. Jedině za těchto podmínek lze definovat součin dvou matic

7 Z uvedených definic a z vlastností reálných čísel plyne: (AB)C = A(BC) = ABC A(B + C) = AB + AC AcB = cab Násobení matic však není obecně komutativní. Obecně neplatí rovnost BA = AB. Proto je důležité rozlišovat pořadí násobení matic, zda jde o násobení zleva či zprava a zachovávat pořadí i při dílčích součinech více než dvou matic. Matici transponovanou dostaneme vzájemnou výměnou řádků a sloupců dané matice. Označujeme ji čárkou nebo písmenem T nahoře. Platí, že A T T tehdy a jen tehdy, když a ij = a ji (i=,,m; j=,...,n). Matice transponovaná k transponované matici je rovna matici původní. Je zřejmé, že součet transponovaných matic je roven transponované matici ze součtu těchto matic. Transponovaná matice ze součinu matic je rovna součinu těchto transponovaných matic, ale v obráceném pořadí. Matice se nazývá čtvercová, když má stejný počet řádků a sloupců, tj. když m=n. Čtvercová matice se nazývá symetrickou, když je rovna matici k ní transponované, tj. platí-li a ij = a ji. Čtvercová matice, jejíž všechny prvky na diagonále jsou rovny jedničce a všechny prvky mimo ní pak nule, se nazývá jednotkovou maticí. Jednotková matice má stejnou funkci jako jednička v algebře. Hodnost matice A (též Rank) lze definovat jako maximální počet lineárně nezávislých řádků matice. Jelikož platí, že maximální počet lineárně nezávislých řádků matice je roven maximálnímu počtu lineárně nezávislých sloupců, lze definici hodnosti formulovat i jako maximální počet lineárně nezávislých sloupců. Hodnost matice A značíme h(a). Pro matici A typu m x n tedy platí h ( A) min{ m, n}. Hodnost matice lze určit např. pomocí Gaussovy eliminace. Inversní matice k matici A typu n x n je matice typu n x n, kterou když zprava či z leva vynásobíme maticí původní, dostaneme matici jednotkovou. Matici inversní k matici A značíme A -. Je-li matice A typu n x n, pak k ní existuje matice inversní tehdy a jen tehdy, když A = 0, nebo h(a) = n nebo matice A je regulární. Inversní matice k matici transponované je rovna transponované inversní matici. Je-li matice A symetrická a regulární, pak i A - je symetrická. Jednotková matice je zároveň k sobě inversní. A konečně inversní matice k součinu matic je rovna součinu inversních matic v opačném pořadí, tzn., že jsou-li matice A a B regulární, pak AB - = B - A

8 . Praktická cvičení. Napište libovolný sloupcový vektor.. Napište k němu vektor transponovaný. 3. Proveďte skalární součin zapsaných vektorů. 4. Proveďte následující operace s vektory. Předem určete, zda výsledek bude vektor nebo skalár. Zobecněte podmínky sčítání a násobení vektorů = 5 + = Napište libovolnou matici typu x 3. Napište k ní jinou matici stejného typu. Proveďte součet obou matic. 6. Lze-li, proveďte součet následujících matic: = 7. Určete, co vznikne vynásobením matic typu: 3x5 x 5x = x3 x x3 = x x x5 = 8. Uveďte velikost následujících matic a zjistěte, jaký rozměr bude mít matice C vzniklá jejich vzájemným vynásobením. Lze-li, vyčíslete ji. a) 3 0 A = x 3 5 B = C = b) 4 3 A = x 6 4 B = C = 4-8 -

9 - 9 - c) 4 3 = A x = B C = 9. Zjistěte, zda pro matice z příkladu číslo 8. platí, že A x B B x A. Z výsledků odvoďte obecné pravidlo pro násobení matic. 0. Proveďte součin matic A x B a B x A pro následující matice, zdůvodněte jejich výsledek a uveďte, čím se liší od bodu číslo = A x = B Ze získaných poznatků vyvoďte obecné pravidlo pro součin čtvercových matic.. K následujícím maticím utvořte matice inversní a přesvědčte se o jejich správném tvaru. a) matice původní matice inversní 3 3 = A = A Zkouška: 3 3 = A x = A = 0 0 b) = B B - = c) 4 3 = C 0, 0,4 0,3 0, = C

10 . Vypočítejte hodnost následujících matic a) b) Napište první derivaci následujících funkcí y = x 3 + 3x + 6 y = y = x + y = 3 x y = 4x ( + 5x ) y = 5 ( x + 3 ) 4 y = x y = 3 x + 3 y = 3x y = x y = x y = + y = e 5x y = y = xe 4 x y = y = ln x y = y = (ln x) y = y = ln( x + 3x + 4) y = - 0 -

11 Úkoly k samostatnému procvičení. Je dána množina bodů o následujících souřadnicích x a y x y Ø 3,5 4,66 a) Zakreslete body do grafu b) Vypočítejte rozptyl hodnot závisle proměnné y. c) Proložte množinou bodů přímky: y =,5 + x y = 3,6 + 0,4x d) Zakreslete uvedené přímky do grafu a určete, která z nich lépe popisuje vztah mezi skutečnými hodnotami bodů x a y. Přesvědčte se, zda mimo dvou výše uvedených přímek existuje některá jiná lineární funkce, která by pole bodů popsala přesněji. K výpočtu jejích parametrů použijte řešení normálních rovnic a běžnou metodu nejmenších čtverců. - -

12 . cvičení Konstrukce lineárního regresního modelu (LRM). Úvod do problematiky.. Fáze konstrukce ekonometrického modelu Konstrukci ekonometrického modelu lze rozdělit do následujících kroků (fází): (i) Ekonomická teorie studium dokumentů (ii) Tvorba ekonomického modelu (iii) Tvorba ekonometrického modelu (iv) Sběr, zpracování a analýza vstupních dat (v) Odhad parametrů ekonometrického modelu (vi) Ekonomické ověření modelu interpretovatelnost (vii) Statistické a ekonometrické ověření (viii) Aplikace ekonometrického modelu nebo jeho zamítnutí, které vrací postup k bodu (i).. Ekonomický vs. ekonometrický model Ekonomický model je odvozen z ekonomické teorie a je zjednodušenou abstrakcí reálného světa. Ekonomický model, tj. vztahy mezi ekonomickými proměnnými, mohou být zapsány třemi způsoby: a) slovně, b) graficky a c) algebraicky. Definovaný ekonomický model slouží ke konfrontaci ekonomické teorie s realitou, resp. se statistickými daty. Ekonomický model (ve formě algebraického zápisu) vyjadřuje přesný vztah, resp. deterministický vztah mezi vysvětlující proměnou a vysvětlovanou proměnnou. Při konfrontaci ekonomického modelu se statistickými (ekonomickými) daty je přesného (deterministického) vztahu zřídkakdy dosaženo. Hlavním důvodem je pravděpodobnostní povaha ekonomických dat. Ekonomický model proto musí být modifikován tak, aby odrážel vlastnosti ekonomických dat, tj. zohledňoval pravděpodobnostní povahu procesu generování ekonomických dat. Ekonomický model se stane ekonometrickým modelem určením funkční formy modelu a přidáním náhodné složky (proměnné). Přidáním náhodné složky je tak respektována stochastická povaha modelovaného vztahu...3 Značení proměnných V ekonometrických modelech jsou rozlišovány následující typy proměnných: (i) (ii) (iii) (iv) endogenní proměnné, exogenní proměnné, predeterminované proměnné, náhodné proměnné. - -

13 Endogenní proměnné jsou proměnné, které jsou modelem vysvětlovány. Podle toho se tyto proměnné rovněž nazývají vysvětlované proměnné. Jejich hodnoty jsou tedy generovány modelem. Endogenní proměnné jsou zpravidla označovány písmenem y s příslušnými indexy, které umožňují jednoznačnou identifikaci proměnné a její hodnoty v příslušném období. To znamená, že obecný zápis y it vyjadřuje, že se jedná o i-tou endogenní proměnnou v čase t. Exogenní proměnné jsou proměnné, které vysvětlují endogenní proměnné. Proto se též nazývají vysvětlující proměnné. Pro jejich označení je zpravidla používáno písmeno x. Obdobně jako u endogenních proměnných x jt značí j-tou exogenní proměnnou v čase t. Jelikož se vnější prostředí, které má být modelem popsáno, vyznačuje značnou dynamikou vztahů mezi proměnnými, statické modely nejsou obvykle při modelování dostačující. Jedním ze způsobů, jak lze model dynamizovat, je použití zpožděných proměnných (viz též..5), a to jak endogenních, tak exogenních. Například x i(t-) je zpožděná hodnota i-té exogenní proměnné o jedno období. Zahrnutím této proměnné do modelu vyjádříme, že vysvětlovaná proměnná je závislá na hodnotě i-té exogenní proměnné, která předchází období t. Soubor exogenních proměnných, zpožděných exogenních proměnných a rovněž zpožděných endogenních proměnných je nazýván jako predeterminované proměnné. Predeterminovanými proto, že jejich hodnoty jsou dány vnějším prostředí. Náhodná složka obsahuje vliv všech dalších proměnných na závisle proměnnou, které nejsou v modelu zahrnuty. Dále obsahuje chyby měření a zkreslení plynoucí z volby nevhodného typu funkce. Náhodná proměnná bude označována písmenem u, případně v (podrobněji viz modely simultánních rovnic)...4 Multikolinearita Multikolinearita vyjadřuje závislost mezi dvěma či více vysvětlujícími proměnnými v rovnici. Při výskytu vysoké multikolinearity není možné separovat vlivy jednotlivých vysvětlujících proměnných na vysvětlovanou proměnou, a proto je vysoká multikolinearita nežádoucí. Perfektní multikolinearita nastává v případech, kdy závislost mezi dvěma či více vysvětlujícími proměnnými je deterministická, tj. párový korelační koeficient nebo koeficient vícenásobné korelace je roven. V případě, že je v modelu přítomna perfektní multikolinearita, nelze takovýto model odhadnout. Vysoká multikolinearita se zpravidla vyskytuje tehdy, když hodnoty vysvětlujících proměnných mají nízkou variabilitu. Z toho plyne, že vyvarování se problému přítomnosti vysoké multikolinearity lze dosáhnout zajištěním dostatečné variability vysvětlujících proměnných. Avšak určitá výše multikolinearity je v modelu vždy přítomna. Přítomnost vysoké multikolinearity neumožňuje dosáhnout přesného odhadu parametrů vysvětlujících proměnných, které multikolinearitu způsobují. Tato skutečnost působí problémy při aplikaci modelu ve strukturální analýze, kde co nejlepší znalost velikosti parametrů je nezbytností. Přítomnost vysoké multikolinearity lze identifikovat vyčíslením korelační matice. Korelační matice obsahuje párové korelační koeficienty jednotlivých vysvětlujících proměnných a lze ji vyčíslit z následujícího vztahu: X T X, (.) kde X je matice normalizovaných vektorů, které lze získat podle (.). x i (... k) it x = i x it =, (.) n. σ t = (... n) kde x it je hodnota i-té vysvětlující proměnné v čase t, odchylka n je počet pozorování. x i x i je její průměr a σ x i směrodatná

14 Z konstrukce korelační matice je zřejmé, že tato matice je symetrická podle hlavní diagonály. Vysoká multikolinearita je přítomna tehdy, jestliže je některý z párových korelačních koeficientů vyšší než 0,8, resp. 0,9. Multikolinearita může být snížena použitím dummy proměnné(ých) nebo vhodnou transformací podkladových údajů (např. vyjádřením proměnné(ých) v postupných diferencích nebo relativně). V krajním případě lze vysokou multikolinearitu odstranit tím, že proměnnou způsobující vysokou multikolinearitu z modelu vypustíme...5 Dynamizace modelu Model lze dynamizovat následujícími způsoby: (i) zahrnutím zpožděné(ých) proměnné(ých), (ii) vyjádřením proměnných v postupných diferencích nebo relativně, (iii) zahrnutím časového vektoru, (iv) zahrnutím dummy proměnné(ých).. Praktická cvičení Zadání: Podkladová data Rok Sp VM (kg/os./rok) SpC VM (Kč/kg) SpC HM (Kč/kg) SpC DM (Kč/kg) Příjem (Kč) * Označení proměnné 995 8,04 84,0 94,8 5, , ,87 90,4 0, 6, , ,74 9, 04,8 70, , ,36 86,39 0,6 73, , ,78 80,47 07,80 56, , ,94 90,04,53 6, ,0 00 9,05 0,66,56 7, ,0 00 9,55 89,84,99 6, , ,4 8,74 08,0 60, , ,97 85,36,84 6,55 0 7,0 005,8 85,30 7,73 6, ,5 Průměr 9,5 88,05 08,67 63, ,9 * Čisté peněžní příjmy na domácnost Korelační matice Proměnná Sp VM SpC VM SpC HM SpC DM Př Sp VM SpC VM -0, SpC HM 0,7569 0,6566 SpC DM 0, ,6680 0,4667 Př 0,8499-0, ,899 0,

15 Ekonomický model Spotřeba vepřového masa je závislá na spotřebitelské ceně vepřového masa, spotřebitelské ceně hovězího masa, spotřebitelské ceně drůbežího masa a výši příjmu. Předpokládané vztahy (na základě poznatků z ekonomické teorie): vepřové a drůbeží maso jsou substituty; vepřové a hovězí maso jsou substituty; zvýšení úrovně příjmu vyvolá zvýšení spotřeby vepřového masa. Úkoly. Proveďte jednoznačné označení výše uvedených proměnných (tj. pomocí symbolů y a x s příslušnými indexy).. Vypište hodnoty pro následující proměnné: a. y,6 = b. x,0 = c. x 4, = 3. Přepište výše uvedenou slovní podobu modelu do podoby algebraické. Předpokládejte lineární vztah mezi endogenní proměnnou a exogenními proměnnými. 4. Zapište výše uvedený model v mocninném tvaru. 5. Upravte model (lineární verzi) tak, aby se stal modelem ekonometrickým. 6. Vysvětlete, co reprezentuje u t. 7. Matematicky zapište způsob výpočtu u,5. 8. V korelační matici identifikujte přítomnost vysoké multikolinearity a navrhněte způsob její eliminace

16 9. Příprava podkladových údajů: a. Upravte model tak, aby obsahoval konstantu. Jak se změní tabulka podkladových údajů? b. Jaký problém způsobují odlehlá pozorování (hodnoty)? Jak zjistíte přítomnost odlehlých pozorování v podkladových datech? Navrhněte způsob řešení problému přítomnosti odlehlých pozorování. c. Navrhněte způsob řešení problému chybějících pozorování. d. Upravte data tak, aby byla vhodná pro odhad parametrů modelu v prostředí Microsoft Excel. 0. Proveďte dynamizaci modelu (výsledky zapište do následující tabulky): a. Pomocí časového vektoru. b. Zavedením zpožděné hodnoty vysvětlující proměnné o jedno období. Jak se změní tabulka podkladových údajů? Uveďte vektor hodnot zpožděné proměnné y t, tzn. hodnoty vektoru y (t-). c. Vyjádřením proměnných v postupných diferencích. Uveďte, s jakými hodnotami budete pracovat u proměnných y t, x t a x t. Tabulka dalších proměnných Rok Označení proměnné Průměr JV (zavedení konstanty) Časový vektor y (t-) y t (postupné diference) x t (postupné diference) x t (postupné diference) - 6 -

17 Upravená podkladová data Rok Sp VM (kg/os./rok) SpC VM (Kč/kg) SpC HM (Kč/kg) SpC DM (Kč/kg) Příjem - postupné diference (tis. Kč) * Označení proměnné 996 8,87 90,4 0, 6,77 8, ,74 9, 04,8 70,64 6, ,36 86,39 0,6 73,3 6, ,78 80,47 07,80 56,5, ,94 90,04,53 6,83, ,05 0,66,56 7,8 6, ,55 89,84,99 6,40, ,4 8,74 08,0 60,67 4, ,97 85,36,84 6,55 4,5 005,8 85,30 7,73 6,73 4,357 Průměr 9,66 88,43 0,06 64,47 6,00 * Čisté peněžní příjmy na domácnost Upravená korelační matice Proměnná Sp VM SpC VM SpC HM SpC DM Př Sp VM SpC VM -0,6064 SpC HM 0,6454 0, SpC DM -0,6309 0,686-0,0746 Př 0, ,0975 0,078 0,79075 Úkoly k samostatnému procvičení. Na základě tabulky podkladových údajů uvedené v příloze č. sestavte jednorovnicový lineární model, který popisuje, že výdaje domácností na konečnou spotřebu jsou ovlivněny výdaji domácností na konečnou spotřebu v předchozím období, mírou inflace, úrokovou sazbou domácností a výší mzdy. Definujte předpokládané vztahy mezi proměnnými (na základě poznatků z ekonomické teorie).. Proveďte jednoznačné označení výše uvedených proměnných (tj. pomocí symbolů y a x s příslušnými indexy)

18 3. Vypište hodnoty pro následující proměnné: a. y,4 = b. x,8 = c. x 3, = 4. Přepište výše uvedenou slovní podobu modelu do podoby algebraické. Předpokládejte lineární vztah mezi endogenní proměnnou a exogenními proměnnými. 5. Zapište výše uvedený model v mocninném tvaru. 6. Upravte model (lineární verzi) tak, aby se stal modelem ekonometrickým. 7. Matematicky zapište způsob výpočtu u,3. 8. V korelační matici identifikujte přítomnost vysoké multikolinearity a navrhněte způsob její eliminace

19 9. Příprava podkladových údajů: a. Upravte model tak, aby obsahoval konstantu. b. Upravte data tak, aby byla vhodná pro odhad parametrů modelu v prostředí Microsoft Excel. 0. Uveďte, zda se jedná o model statický či dynamický. Pokud je model statický, navrhněte způsob jeho dynamizace

20 3. cvičení Předpoklady a odhad LRM 3. Úvod do problematiky 3.. Předpoklady LRM Odhadnuté parametry ekonometrického modelu mají požadované vlastnosti, tj. jsou nejlepší, nestranné a konzistentní, jestliže jsou splněny jisté předpoklady. Mezi podstatné předpoklady u lineárních regresních modelů patří: (i) Specifikační předpoklady a. Neopomenutí podstatné vysvětlující proměnné; b. Vypuštění irelevantních vysvětlujících proměnných; c. Volba správné funkční formy modelu; d. Stabilní odhadnuté parametry, časová invariantnost; e. Respektování simultánnosti vztahů mezi proměnnými; (ii) Nulový průměr náhodné složky u t (iii) Homoskedasticita [ Var ( u i X i ) = σ ] (iv) Nepřítomnost autokorelace reziduí (v) Nezávisle proměnné jsou nenáhodné a fixní v opakujících se souborech (vi) Neexistence perfektní multikolinearity (vii) Normální rozdělení náhodné složky 3.. Odhad LRM K odhadu parametrů lineárního regresního modelu se pro svou jednoduchost nejčastěji využívá běžná metoda nejmenších čtverců (BMNČ). Tato metoda poskytuje nejlepší, nestranné a konzistentní odhady parametrů modelu, právě když jsou splněny výše uvedené předpoklady. Podstatou BMNČ je nalezení parametrů, které minimalizují součet čtverců odchylek teoretických hodnot vysvětlované proměnné od jejích skutečných hodnot. Jinými slovy, odhadnuté parametry LRM jsou nejlepší, nestranné a konzistentní, jestliže jsou splněny výše uvedené předpoklady a kritérium (3.). min n ( y t yˆ t ) (3.) t= Vzorec pro odhad parametrů lze z kritéria (3.) získat jednoduchým způsobem s využitím matematické analýzy. Je-li úkolem nalézt parametry modelu, které minimalizují (3.), stačí provést parciální derivace vztahu (3.) podle odhadovaných parametrů a položit je rovny nule. Řešením získané soustavy rovnic lze obdržet hledané parametry

21 Pro praktické účely lze z obdržené soustavy rovnic zobecněním pro k vysvětlujících proměnných získat následující vztah (3.). T T γ = ( X X ) X y, (3.) kde γ... je vektor (k x ) odhadovaných parametrů, X...matice o rozměru n x k, která obsahuje napozorované hodnoty k vysvětlujících proměnných, y...je vektor (n x ) obsahující napozorované hodnoty vysvětlované proměnné. Vztah (3.) reprezentuje vzorec pro odhad parametrů modelu běžnou metodou nejmenších čtverců Verifikace ekonometrického modelu Odhadnutý ekonometrický model je nutné před jeho aplikací verifikovat, tzn. ověřit, zda jsou odhadnuté parametry v souladu s výchozími ekonomickými hypotézami a zda mají požadované statistické charakteristiky. Verifikaci modelu lze rozdělit do tří kroků, a to podle toho, co je ověřováno. (i) (ii) (iii) Ekonomická verifikace V rámci ekonomické verifikace se posuzuje zejména směr a intenzita působení vysvětlujících proměnných na proměnnou vysvětlovanou. Ověřuje se zde správnost znamének a velikost číselných hodnot odhadnutých parametrů. Pokud získané parametry nejsou v souladu s předpoklady, je zpravidla nutné ověřit správnost specifikace modelu. Statistická verifikace Statistická verifikace slouží k posouzení statistické významnosti odhadnutých parametrů, jednotlivých rovnic i celého modelu. V rámci statistické verifikace se hodnotí: a. shoda odhadnutého modelu s daty; b. statistická významnost odhadnutých parametrů. Ekonometrická verifikace V rámci ekonometrické verifikace se ověřují podmínky nutné pro aplikaci konkrétních ekonometrických metod, testů a technik, tj. předpoklady ekonometrického modelu. Zahrnuje např. test autokorelace náhodných složek či multikolinearity vysvětlujících proměnných. add (ii) a. Shoda odhadnutého modelu s daty Kvalita odhadnuté rovnice se v případě lineární funkce posuzuje pomocí koeficientu vícenásobné determinace R. Tento ukazatel je založen na rozkladu celkového rozptylu vysvětlované proměnné (SS yy ) na rozptyl teoretický (regresní, SS ŷ ) a reziduální (SS uu ): SS yy = SS ŷ + SS uu (3.3) - -

22 S y n t= = ( y y) t n, (3.4) kde y t...jsou skutečné hodnoty vysvětlované proměnné v jednotlivých letech pozorování, yy... je průměr skutečných hodnot vysvětlované proměnné, nn...je délka časové řady. S yˆ n t= = ( yˆ y) t n, (3.5) kde ŷ t... jsou teoretické hodnoty vysvětlované proměnné v jednotlivých letech pozorování. S u n t= = ( y yˆ ) t n t (3.6) Koeficient vícenásobné determinace je dán vztahem: RR = SS uu SS (3.7) yy Vyjadřuje se obvykle v % a udává, z kolika % jsou změny závisle proměnné vysvětleny změnami nezávisle proměnných. Hodnota R se pohybuje od 0 % do 00 %. Pokud R = 0 %, všechny odhadnuté koeficienty jsou nulové, celkový rozptyl je roven reziduálnímu a daná funkce nevysvětluje vůbec zkoumaný vztah. Naopak R = 00 % nastane, když všechna rezidua jsou nulová, tudíž také reziduální rozptyl je nulový a daná funkce plně vystihuje zkoumaný vztah. Protože hodnota R nikdy neklesne (zpravidla vždy vzroste) přidáním dalších vysvětlujících proměnných do modelu, je často používán korigovaný koeficient vícenásobné determinace: RR = ( RR ) nn nn pp (3.8) kde p... je počet odhadovaných parametrů v dané rovnici. Hodnota korigovaného koeficientu determinace je zpravidla nižší, než hodnota R. Odchylka těchto dvou koeficientů se snižuje s růstem počtu stupňů volnosti (n-p). Při velkém počtu stupňů volnosti se R a RR liší velice málo. Při malém počtu stupňů volnosti může nabývat RR i záporných hodnot. V takovém případě se hodnota korigovaného koeficientu vícenásobné determinace interpretuje jako nulová. - -

23 Statistickou významnost modelu jako celku lze testovat pomocí F-testu, v jehož rámci se porovnává F poměr s tabulkovou hodnotou F*. Je-li F poměr větší než tabulková hodnota na zvolené hladině významnosti a při daném počtu stupňů volnosti, zamítá se nulová hypotéza o statistické nevýznamnosti R, a tedy shoda odhadnutého modelu s daty je statisticky významná. U nelineární funkce je jako míra těsnosti závislosti používán index determinace I, jeho výpočet i interpretace se však shodují s R. add (ii) b. Testování statistické významnosti strukturálních parametrů Statistická významnost jednotlivých strukturálních parametrů se hodnotí t-testem. Při výpočtu testovacího kritéria, t-hodnoty, je používán korigovaný reziduální rozptyl. Korekce se provádí opět počtem stupňů volnosti v daném vztahu. Korigovaný reziduální rozptyl je tedy určen jako: S u = n t= ( y yˆ ) t n p t. (3.9) Ověření statistické významnosti strukturálních parametrů se liší v závislosti na použité metodě, kterou byly parametry odhadnuty Postup statistické verifikace strukturálních parametrů LRM odhadnutých BMNČ (i) Výpočet matice pro ověření statistické významnosti parametrů: ( ) X T X. (ii) Výpočet korigovaného reziduálního rozptylu: S u = n t= ( y yˆ ) t n p t. (iii) Výpočet rozptylu odhadnutých parametrů: S T Sii = Su ( X X ) =. Sii Prvky na hlavní diagonále matice vzniklé vynásobením korigovaného reziduálního rozptylu S ii. S a matice ( ) u X T X jsou rozptyly odhadnutých parametrů (iv) Výpočet standardní chyby odhadnutých parametrů: S bi = Sii. Vyčíslení standardních chyb jednotlivých parametrů jako odmocniny prvků z hlavní diagonály výše uvedené matice S ii

24 (v) Výpočet testovacího kriteria: t hodnota parametru chyba odhadu it = =. hodnota γ S bi (vi) Zjištění statistické významnosti odhadnutých parametrů: porovnání vypočtené t- hodnoty s tabulkovou hodnotou t-testu na zvolené hladině významnosti s přihlédnutím k příslušnému počtu stupňů volnosti t α. Je-li t > t α, zamítá se nulová hypotéza o statistické nevýznamnosti parametrů. Vysvětlující proměnná je z hlediska svého vlivu na vysvětlovanou proměnnou na hladině významnosti α a při n-p stupních volnosti významnou proměnnou. Je-li t < t α, s pravděpodobností 00(-α)% není parametr statisticky významný, tj. statisticky významně odlišný od nuly. Zamítnutí nulové hypotézy ještě neznamená, že bodové odhady parametrů jsou přesnými odhady jejich skutečných hodnot. Pro určení stupně shody skutečné hodnoty parametru s odhadem se stanovuje interval spolehlivosti, tzv. konfidenční interval. Neboli hledají se meze, v nichž se bude skutečná hodnota parametru při opakovaných výběrech nacházet s určitým stupněm spolehlivosti, tj. s určitou zvolenou pravděpodobností. Intervalový odhad parametrů se stanovuje pomocí vztahu: γ ± ii int erval = γ ii t α Sbi. Odhadnutý parametr se významně liší od nuly, pokud tento interval nulu neobsahuje. Obsahuje-li konfidenční interval nulu, je parametr statisticky nevýznamný. 3. Praktická cvičení Úkoly. Sestavte matici X a vektor y pro odhad parametrů modelu z úkolu 5 předchozího cvičení s využitím BMNČ, do modelu zahrňte konstantu a v tomto odhadu abstrahujte od přítomnosti multikolinearity. (Pozn. model zohledňující přítomnost vysoké multikolinearity mezi proměnnými SpC HM a Př bude odhadnut v následujícím cvičení)

25 . Proveďte odhad parametrů tohoto modelu na základě následující tabulky podkladových dat. Tabulka podkladových dat: Rok Sp VM (kg/os./rok) SpC VM (Kč/kg) SpC HM (Kč/kg) SpC DM (Kč/kg) Příjem (tis. Kč) Označení proměnné 995 8,04 84,0 94,8 5,3 55, ,87 90,4 0, 6,77 64, ,74 9, 04,8 70,64 70, ,36 86,39 0,6 73,3 77, ,78 80,47 07,80 56,5 80, ,94 90,04,53 6,83 83,4 00 9,05 0,66,56 7,8 90, ,55 89,84,99 6,40 93, ,4 8,74 08,0 60,67 98, ,97 85,36,84 6,55 0,7 005,8 85,30 7,73 6,73 6,574 Průměr 9,66 88,43 0,06 64,47 84,89 Možný postup (sled kroků) odhadu parametrů podle vztahu (3.):. krok: X T X. krok: ( X T X ) 3. krok: X T y T T 4. krok: ( X X ) X y 3. Proveďte ekonomickou verifikaci modelu

26 4. Otestujte statistickou významnost odhadnutých parametrů a vypočítejte koeficient determinace. Kritické hodnoty t-testu jsou uvedeny v příloze č.. Tabulka pro výpočet korigovaného reziduálního rozptylu a koeficientu determinace Sp VM y t y ( y t y) Rok skutečná 995 8, , , , , , , , , ,97 005,8 Sp VM teoretická u u Počet pozorování = Počet stupňů volnosti = Korigovaný reziduální rozptyl ( S ) = u Matice pro ověření statistické významnosti parametrů: ( ) JV SpC VM SpC HM SpC DM Př 06, , ,0988 0, ,0040 X T X Ověření statistické významnosti parametrů JV SpC VM SpC HM SpC DM Př S ii S bi t-hodnota t-tab. (α=0,) V / N * * V = parametr statisticky významný, N = parametr statisticky nevýznamný 5. Vypočítejte interval, ve kterém se budou odhadnuté parametry nacházet s pravděpodobností 95 %

27 6. Zjistěte, zdali je model prostý autokorelace reziduí. Test lze provést s využitím Durbin-Watsonova testu (DW), jehož vzorec je následující: DW n ( ut u( t ) ) t= = n t= u t. Úkoly k samostatnému procvičení. Sestavte matici X a vektor y pro odhad parametrů modelu z úkolu k samostatnému procvičení 6 předchozího cvičení s využitím BMNČ, do modelu zahrňte konstantu.. Proveďte odhad parametrů tohoto modelu. 3. Proveďte ekonomickou verifikaci modelu. 4. Otestujte statistickou významnost odhadnutých parametrů a vypočítejte 5. Zjistěte, zdali je model prostý autokorelace reziduí. R

28 4. cvičení Aplikace modelu, dynamizace modelu, dummy proměnné 4. Úvod do problematiky 4.. Aplikace modelu Výsledkem ekonomického a statistického, resp. ekonometrického ověření modelu je rozhodnutí o jeho praktickém využití nebo jeho zamítnutí. Zamítnutím modelu se vše vrací na začátek. Naopak kvalitní, resp. přijatelný ekonometrický model je využitelný v oblasti, pro kterou byl odvozen. Oblasti aplikace ekonometrického modelu lze rozdělit do tří skupin. První skupina představuje prognostické využití ekonometrického modelu, druhá skupina oblast strukturální analýzy a třetí oblast použití modelu je v simulaci efektů a výsledků různých scénářů. Při aplikaci modelu se často využívají pružnosti (elasticity). Zatímco odhadnutý parametr vyjadřuje, jak příslušná vysvětlující proměnná působí na vysvětlovanou proměnou v jednotkách, v jakých jsou obě proměnné sledovány, potom pružnost (elasticita) umožňuje vyjádřit toto působení v procentech. Jinými slovy odhadnutý parametr je absolutním vyjádřením vlivu vysvětlující proměnné na vysvětlovanou proměnnou a pružnost relativním. Relativní vyjádření potom umožňuje srovnat intenzitu působení jednotlivých vysvětlujících proměnných na proměnnou vysvětlovanou (vedle jiného), tj. porovnání při odlišných jednotkách. Obecný vzorec pro výpočet pružnosti (elasticity) je následující: y xi E = (4.) x yˆ Ze vzorce (4.) je patrné, že pružnost (elasticita) je podílem procentické změny vysvětlované proměnné ku procentické změně i-té vysvětlující proměnné. Proto samotná pružnost (elasticita) vychází v procentech a informuje o procentické změně vysvětlované proměnné při jednoprocentní změně příslušné i-té vysvětlující proměnné. V simulacích či při prognózování často nastává situace, kdy vysvětlující proměnná se mění o h %. V tomto případě při práci s nelineární funkcí dochází při použití pružnosti pro určení výsledné změny závisle proměnné ke zkreslení, které pramení ze skutečnosti, že nelineární průběh funkce je aproximován průběhem lineárním (tečnou) se sklonem rovným hodnotě derivace v daném bodě. Tuto nepřesnost lze odstranit použitím rozdílového koeficientu pružnosti. Rozdílový koeficient pružnosti respektuje zakřivení funkce (viz vyšší derivace) a lze ho vypočíst dle následujícího vztahu: E ( r) i () () h ( n) h = E( x ) + E( x ) E i i ( xi ), (4.)! n! - 8 -

29 kde E (r)... rozdílový koeficient pružnosti m E x i ) (... koeficient pružnosti m-tého řádu funkce y v bodě x i, tj. h... přírůstek (procentický) nezávisle proměnné x i. E m ( x i ) m y = m x i xi yˆ 4.. Dynamizace modelu Jak již bylo uvedeno ve. cvičení, model lze dynamizovat následujícími způsoby: (i) (ii) (iii) (iv) zahrnutím zpožděné(ých) proměnné(ých), vyjádřením proměnných v postupných diferencích nebo relativně, zahrnutím časového vektoru, zahrnutím dummy proměnné(ých) Dummy proměnné Dummy proměnné jsou v ekonometrických modelech využívány pro zachycení efektů, které mění, resp. posouvají hodnotu vysvětlované proměnné, pro označení podskupiny v rámci analyzovaného souboru, pro označení sledovaného jevu, pro zachycení sezónnosti, apod. Dummy proměnné nabývají 0, podoby. 0 reprezentuje situaci, kdy daný efekt, jev, apod. nenastává. Naopak informuje o přítomnosti daného efektu, jevu, apod. 4. Praktická cvičení Úkoly. Proveďte ekonomickou interpretaci modelu odhadnutého v předchozím cvičení, tj. modelu: y t = 8,994 0,0x t +0,78x 3t +0,065x 4t +0,07x 5t + u t, kde y t...spotřeba vepřového masa (kg/os./rok) x t...spotřebitelská cena vepřového masa (Kč/kg) x 3t...spotřebitelská cena hovězího masa (Kč/kg) x 4t...spotřebitelská cena drůbežího masa (Kč/kg) x 5t...příjem (tis. Kč) u t ~ nid(0, σ ) Uveďte, jak byste odhadnuté parametry využili ve strukturální analýze

30 . Vypočítejte přímou cenovou, křížovou a příjmovou pružnost pro poslední období a interpretujte je. Dále vypočítejte: a) úroveň spotřeby vepřového masa při poklesu ceny hovězího masa o 0 % oproti úrovni posledního období, ceteris paribus. b) úroveň spotřeby vepřového masa při růstu příjmu o 5 % oproti úrovni posledního období, ceteris paribus. 3. Simulujte následující scénáře: a) změnu ceny vepřového masa (stanovte ji), ceteris paribus, aby se v 0. roce spotřeba vepřového masa na obyvatele zvýšila na kg. b) změnu příjmu (uveďte jeho výši), ceteris paribus, aby se v 0. roce spotřeba vepřového masa na obyvatele zvýšila na kg. c) Jak by se pro udržení tržní rovnováhy musela změnit nabídka vepřového masa (při absenci zahraničního obchodu), jestliže by se za jinak stejných okolností příjem v 9. roce zvýšil o Kč?

31 d) Jak by se musela změnit cena hovězího masa, aby se spotřeba vepřového masa v 0. roce zvýšila ve srovnání s předcházejícím obdobím o 4 % při růstu cen vepřového masa o %? 4. Odhadněte dynamickou verzi modelu, ve které bude příjem vyjádřen v postupných diferencích. Model ověřte a následně interpretujte. Porovnejte výsledky modelu se statickou verzí. Dále vypočtěte koeficient pružnosti pro proměnnou příjem (vyjádřenou v postupných diferencích) v posledním období a interpretujte ji. 5. V následující tabulce jsou uvedena hypotetická data pro spotřebu vepřového masa, která byla v letech 000 a 00 ovlivněna významným šokem (např. v důsledku šíření vážných nemocí prasat), který zapříčinil propad ve spotřebě. S využitím dummy proměnné eliminujte tento šok. Specifikaci modelu s dummy proměnnou založte na dynamické verzi modelu v podobě použité v úkolu č. 4. Rok Sp VM (kg/os./rok) SpC VM (Kč/kg) SpC HM (Kč/kg) SpC DM (Kč/kg) Diference Příjem (Kč) Označení proměnné 996 8,87 90,4 0, 6, ,74 9, 04,8 70, ,36 86,39 0,6 73, ,78 80,47 07,8 56, ,94 90,04,53 6, ,05 0,66,56 7, ,55 89,84,99 6, ,4 8,74 08,0 60, ,97 85,36,84 6, ,8 85,3 7,73 6, ,5-3 -

32 Úkoly k samostatnému procvičení. Pro následující model vypočítejte rozdílový koeficient pružnosti 3. řádu při předpokládané změně příjmu o 5 % oproti úrovni posledního období. yˆ t = 37,5x 0,5 t x 0, 3t kde, ŷ t...spotřeba x t...cena x 3t...příjem Proměnné nabývají v posledním období následujících hodnot: y t = 4 x t = 5 x 3t = 0-3 -

33 5. cvičení Modely simultánních rovnic 5. Úvod do problematiky 5.. Zásady konstrukce simultánních modelů a práce s nimi Vztah mezi vysvětlující a vysvětlovanou proměnnou může být simultánního charakteru. Vzájemná determinace vysvětlující a vysvětlované proměnné plyne z povahy ekonomických jevů a procesů, které jsou modelem popisovány. Lze-li předpokládat simultánní vztah mezi proměnnými, měl by být při konstrukci modelu zohledněn. V opačném případě je v modelu přítomna specifikační chyba. Model obsahující vzájemné vazby mezi proměnnými (vysvětlovanými neboli endogenními) je potom nazýván modelem simultánním. Simultánní model může obsahovat vedle stochastických rovnic rovněž rovnici(e) identitní. Vztahy mezi proměnnými v modelu lze popsat s využitím matice Beta (В) a Gama (Γ). Je-li model simultánní, má matice B nenulové prvky (parametry endogenních proměnných modelu) nad i pod hlavní diagonálou. Sama je vždy čtvercová o rozměru [g x g]. Simultánní modely je nutné identifikovat - zajistit jejich řešitelnost, resp. jednoznačnost. Identifikace se provádí samostatně pro každou rovnici. Model je identifikovaný, jsou-li identifikované všechny jeho rovnice. Podmínka identifikace je: k ** g -, (5.) kde g je počet endogenních proměnných v modelu celkem, k je počet predeterminovaných proměnných v modelu celkem, symbol *,, nebo v znamenají, že proměnná je zahrnuta v identifikované rovnici, symbol **,, nebo n znamená, že proměnná v rovnici, pro niž se provádí identifikace, není obsažena, ale je obsažena v jiných rovnicích modelu. Výsledek: platí-li ostrá nerovnost - rovnice je identifikovaná (přeidentifikovaná); nastává-li rovnost - rovnice je přesně identifikovaná; neplatí-li nerovnost, pak je rovnice neidentifikovaná (podidentifikovaná). Model ve strukturální formě představuje závislost endogenních proměnných jak na predeterminovaných proměnných, tak na jiných vysvětlujících endogenních, s nimiž jsou v simultánním vztahu. Jeho maticová forma zápisu má podobu: B y t + Г x t = u t (5.) Model v redukované formě představuje závislost endogenních proměnných pouze na predeterminovaných proměnných. Jeho maticová forma zápisu je: Matici multiplikátorů lze kvantifikovat ze vztahu: y t = M x t + v t (5.3) M = - B - Г (5.4)

34 5. Praktická cvičení 5.. Konstrukce ekonometrického modelu Z tabulky podkladových údajů uvedených v příloze č. byl sestaven čtyřrovnicový simultánní model, který obsahuje následující ekonomické vazby: ) výdaje domácností na spotřebu jsou funkcí SAZO, míry inflace, úrokové sazby pro domácnosti, míry investic a míry nezaměstnanosti. ) tvorba fix. kapitálu je funkcí SAZO, úrokové sazby pro podniky, počtu zaměstnaných. 3) SAZO je funkcí výdajů domácností na spotřebu, kursu koruny a objemu fix. kapitálu. 4) HDP celkem je součet výdajů na spotřebu domácností, investic, SAZO a vládních výdajů Formální obecný zápis ekonomického modelu: Ekonometrický model má následující tvar: y = fce (y 3, x 3, x 4, x 0, x ) y = fce (y 3, x 5, x ) y 3 = fce (y, x 9, x 5 ) y 4 = y + y + y 3 + x 3 ββ yy tt = ββ 3 yy 3tt + γγ 3 xx 3tt + γγ 4 xx 4tt + γγ 0 xx 0tt + γγ xx tt + uu tt ββ yy tt = ββ 3 yy 3tt + γγ 5 xx 5tt + γγ xx tt + uu tt ββ 33 yy 3tt = ββ 3 yy tt + γγ 39 xx 9tt + γγ 35 xx 5tt + uu 3tt ββ 44 yy 4tt = ββ 4 yy tt + ββ 4 yy tt + ββ 43 yy 3tt + γγ 43 xx 3tt 5.. Maticový zápis modelu Vzhledem ke skutečnosti, že mnohdy se v praxi koncipují velmi rozsáhlé modely, a to jak z hlediska počtu zahrnutých proměnných, tak i počtu rovnic daného modelu, vzniká požadavek na jednoduchý zápis modelu, který by přitom věrně zachycoval veškeré vazby. Uvedený problém je řešen pomocí maticového zápisu modelu dle vztahu 5., přičemž obsah jednotlivých matic a vektorů je následující: matice В obsahuje parametry endogenních proměnných modelu, matice Г obsahuje parametry predeterminovaných proměnných modelu, vektor y t obsahuje endogenní proměnné modelu, vektor x t obsahuje predeterminované proměnné modelu, vektor u t obsahuje stochastické proměnné modelu

35 Pro výše uvedený model má matice B rozměr [4 x 4] a její zápis je následující: 0 ββ ββ 3 0 ββ ββ 4 ββ 4 ββ 43 Matice В zachycuje strukturu vztahů mezi endogenními proměnnými, tj. obsahuje strukturální parametry endogenních proměnných modelu. Z povahy věci je patrné, že matice В je vždy maticí čtvercovou o rozměru [g x g], tj. rozměr odpovídá počtu rovnic neboli počtu endogenních proměnných daného modelu. Na hlavní diagonále obsahuje jedničky, protože křížové prvky β až β 44 se vždy rovnají. Rovněž parametry identitní rovnice jsou předem známé, a proto je lze místo obecného záznamu v tomto případě zapsat ve formě -. Dalším důležitým poznatkem je skutečnost, že maticový zápis zachycuje model v podobě, kdy všechny endogenní a predeterminované proměnné jsou převedeny na levou stranu jednotlivých rovnic modelu (viz vztah č. 5.). Z tohoto důvodu mají parametry vysvětlujících endogenních proměnných zápornou hodnotu. Matice Г zachycuje strukturu vztahů mezi endogenními proměnnými a predeterminovanými proměnnými, jejich přímé vazby neboli obsahuje strukturální parametry predeterminovaných proměnných modelu. Matice Γ uvedeného modelu bude proto mít rozměr [4 x 9] (obecně [g x k], tj. počet endogenních proměnných x počet predeterminovaných proměnných), a má následující zápis: γγ 3 γγ γγ 0 γγ γγ γγ γγ γγ γγ 43 0 Matice Г je konstruována obdobným způsobem jako matice В. Proto i v matici Г mají parametry záporné znaménko Identifikace jednotlivých rovnic modelu Celkový počet endogenních proměnných modelu g = 4. Celkový počet predeterminovaných proměnných modelu k = 9. Identifikace. rovnice: k * = 4 k ** = 5 tj. 9-4 g = g - = rovnice je identifikovaná s výsledkem 5 > a je tedy přeidentifikovaná. Identifikace. rovnice: k * = k ** = 7 tj. 9- g = g - = rovnice je identifikovaná s výsledkem 7 > a je tedy přeidentifikovaná

36 Identifikace 3. rovnice: k * = k ** = 7 tj. 9- g = g - = rovnice je identifikovaná s výsledkem 7 > a je tedy přeidentifikovaná. Identifikace 4. rovnice: u identitní rovnice se identifikace neprovádí, je vždy považována za identifikovanou Konstrukce a obsah matice multiplikátorů M Matice multiplikátorů M obsahuje parametry ekonometrického modelu v redukovaném tvaru, tj. vyjadřuje komplexní přímé a zprostředkované vazby mezi endogenním a predeterminovanými proměnnými. Matici multiplikátorů lze kvantifikovat podle vztahu (5.4). Vyčíslením matice multiplikátorů je tedy získán redukovaný tvar ekonometrického modelu. U velmi jednoduchých modelů lze redukovaný tvar modelu odvodit prostou substitucí. Např. je-li kvantifikovaný model ve tvaru: y t = x t - x 3t y t = -y t - 3x t + x 3t, pak redukovaná forma tohoto rekursívního modelu má tvar: y t = x t - x 3t y t = - (x t - x 3t ) -3x t + x 3t = -4x t +x 3t -3x t +x 3t = -3x t - 4x t +4x 3t Parametr -3 ve druhé rovnici je vazbou přímou, neboť se ve srovnání se strukturálním tvarem nezměnil. Parametr -4 je vazbou zprostředkovanou, neboť proměnná x t se v původním strukturálním tvaru nevyskytuje. Parametr 4 vyjadřuje komplexní působení proměnné x 3t na endogenní proměnnou y t (jak přímé, tak zprostředkované přes endogenní proměnnou y t ). Matice M výše uvedeného modelu bude mít rozměr [4 x 9] a její parametry představují přímé a zprostředkované vazby predeterminovaných proměnných na příslušné endogenní proměnné. mm 3 mm 4 0 mm 9 mm 0 mm 0 0 mm 5 mm 3 mm 4 mm 5 mm 9 mm 0 mm mm 0 mm 5 mm 33 mm 34 0 mm 39 mm 30 mm mm 35 mm 43 mm 44 mm 45 mm 49 mm 40 mm 4 mm 4 mm 43 mm 45 Redukovaný tvar modelu tak v tomto případě umožňuje vyjádřit vliv všech proměnných na HDP, který by bylo obtížné stanovit přímým výpočtem, a to s ohledem na vysokou multikolinearitu

37 Úkoly. U následujících modelů určete jejich typ, proveďte identifikaci, sestavte matici B, Γ a naznačte obsah matice M. a) y t = γ 3 x 3t + γ 4 x 4t + u t b) y t = β y t + γ x t + γ 5 x 5t + u t c) y t = β y t + γ x t + u t y t = β y t + γ x t + u t d) y t = 5 + 3y t + 4x t + u t y t = 3 - y t + 0,5 x t + y t- +u t y 3t = y t - y t

38 . Sestavte obecný simultánní dvourovnicový model přesně identifikovaný 3. Sestavte obecný simultánní třírovnicový model tak, aby matice B byla symetrická a její prvky β 3 a β 3 byly jedinými prvky nad diagonálou rovny nule. Proveďte identifikaci modelu a udělejte z něho model přesně identifikovaný. 4. Proveďte redukci následujícího modelu a zapište jeho rovnice y t = 3y 3t - x 6t + u t y t = 4x t - 3x 3t + x 5t + u t y 3t = -y t + -3x 3t +u 3t Úkoly k samostatnému procvičení. Co řeší v modelu endogenní proměnná v pozici vysvětlující?. Za jakých podmínek se do modelu řadí identitní rovnice, co je podmínkou její konstrukce? 3. Co obsahují a jak se konstruují matice B, Γ, M a jak se kvantifikují vektory u t a v t

39 6. cvičení Odhad modelu - dvoustupňová metoda nejmenších čtverců 6. Úvod do problematiky 6.. Podstata dvoustupňové metody nejmenších čtverců Dvoustupňová metoda nejmenších čtverců (DMNČ) je jednou z nejrozšířenějších metod odhadu strukturálních parametrů simultánního modelu. Patří mezi metody s omezenou informací, tzn. odhad parametrů se provádí pro každou rovnici modelu zvlášť. Je využitelná pro všechny přesně identifikované a přeidentifikované rovnice simultánního modelu. Podstatou DMNČ je opakovaná aplikace běžné metody nejmenších čtverců, a to nejprve k odhadu teoretických hodnot vysvětlujících endogenních proměnných v dané rovnici a podruhé k vlastnímu odhadu strukturálních parametrů této rovnice. Základní myšlenkou je v. stupni DMNČ nahrazení matice napozorovaných hodnot Y (tj. matice skutečně napozorovaných hodnot vysvětlujících endogenních proměnných v rovnici, pro niž se odhad provádí) maticí Ŷ (tj. maticí teoretických hodnot vysvětlujících endogenních proměnných), v níž jsou hodnoty proměnných Ŷ odhadnuty na základě regrese na všech predeterminovaných proměnných v modelu. Dochází tak k nahrazení vysvětlujících proměnných zkorelovaných s náhodnými složkami nestochastickými hodnotami Ŷ, čímž je splněn předpoklad pro aplikaci běžné metody nejmenších čtverců pro vlastní odhad strukturálních parametrů (. stupeň). 6.. Postup výpočtu strukturálních parametrů pomocí DMNČ a) Sestavení vektorů a matic napozorovaných hodnot pro odhadovanou rovnici: y t = β y t +..+ β g y g t + γ x t +.+ γ k* x k*t +u t y...vektor skutečných hodnot vysvětlované endogenní proměnné; Y...matice napozorovaných hodnot vysvětlujících endogenních proměnných zahrnutých v odhadované rovnici; X *...matice hodnot predeterminovaných proměnných zahrnutých v odhadované rovnici; X **...matice hodnot predeterminovaných proměnných v odhadované rovnici nezahrnutých, ale obsažených v ostatních rovnicích modelu; X = [X *, X ** ]..matice hodnot všech predeterminovaných proměnných modelu. b). stupeň DMNČ - vyčíslení matice teoretických hodnot Ŷ ze vztahu: Ŷ = X(X T X) - X T Y (6.)

40 c). stupeň DMNČ vyčíslení vektoru strukturálních parametrů odhadované rovnice ze vztahu: ββ = Ŷ TT Ŷ γγ XX TT YY YY TT XX XX TT XX Ŷ TT XX TT yy (6..) Výraz: Ŷ TT Ŷ XX TT YY submaticemi. YY TT XX XX TT je tzv. matice K, což je komplexní matice, tvořená čtyřmi XX Vypočtené parametry jsou ve výsledném vektoru řazeny následujícím způsobem nejprve jsou uvedeny parametry endogenních proměnných v pořadí, v jakém vstupují hodnoty jednotlivých proměnných do matice Y. Následují parametry predeterminovaných proměnných v pořadí, v jakém byly jednotlivé predeterminované proměnné zařazeny do matice X *. d) Zápis vyčíslených parametrů do rovnice. Výpočet parametrů vychází z rovnice v klasickém tvaru: y t = β y t +..+ β g y g t + γ x t +.+ γ k* x k*t +u t. Při zápisu parametrů zůstávají znaménka nezměněna. 6. Praktická cvičení Úkoly. Proveďte odhad parametrů. rovnice následujícího ekonometrického modelu s použitím DMNČ. Odhadovaný model: yy tt = ββ 3 yy 3tt + γγ xx tt + γγ 3 xx 3tt + γγ 4 xx 4tt + γγ 0 xx 0tt + γγ xx tt + uu tt yy tt = ββ 3 yy 3tt + γγ xx tt + γγ 5 xx 5tt + γγ xx tt + uu tt yy 3tt = ββ 3 yy tt + γγ 3 xx tt + γγ 35 xx 5tt + uu 3tt yy 4tt = yy tt + yy tt + yy 3tt + xx 3tt Deklarace proměnných: y t výdaje domácností na konečnou spotřebu v mld. Kč y t tvorba hrubého fixního kapitálu v mld. Kč y 3t saldo zahraničního obchodu v mld. Kč y 4t hrubý domácí produkt v mld. Kč x t jednotkový vektor x 3t míra inflace v % x 4t úroková sazba domácností v % x 5t úroková sazba podniků v % x 0t míra investic v % x t obecná míra nezaměstnanosti v % x t zaměstnaní v mil. x 3t výdaje na konečnou spotřebu vlády v mld. Kč x 5t přímé zahraniční investice do ČR v mld. Kč

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS

POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS POPTÁVKA PO VEŘEJNÉ DOPRAVĚ V ZÁVISLOSTI NA ŠKOLSTVÍ V KRAJI TRANSPORT DEMAND DEPENDS ON EDUCATION ON REGIONS Kateřina Pojkarová Anotace:Dopravu vužívají lidé za různým účelem, mimo jiné i ke svým cestám

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

13 Specifika formování poptávky firem po práci a kapitálu

13 Specifika formování poptávky firem po práci a kapitálu 13 Specifika formování poptávky firem po práci a kapitálu Na rozdíl od trhu finálních statků, kde stranu poptávky tvořili jednotlivci (domácnosti) a stranu nabídky firmy, na trhu vstupů vytvářejí jednotlivci

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

DIPLOMOVÁ PRÁCE. Ekonometrické modely

DIPLOMOVÁ PRÁCE. Ekonometrické modely UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Ekonometrické modely Vedoucí diplomové práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Popis modelu pro odhady PH mléčné užitkovosti

Popis modelu pro odhady PH mléčné užitkovosti Popis modelu pro odhady PH mléčné užitkovosti Zvířata zařazená do hodnocení V modelu plemene H jsou hodnoceny krávy s podílem krve H nebo 75% a výše. V modelu plemene C jsou hodnoceny krávy s podílem krve

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)

Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál) Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Krátkodobá rovnováha na trhu peněz

Krátkodobá rovnováha na trhu peněz Makroekonomická analýza přednáška 9 1 Krátkodobá rovnováha na trhu peněz Funkce poptávky po penězích Poptávka po penězích je úměrná cenové hladině (poptávka po penězích je poptávka po reálných penězích).

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více