Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost"

Transkript

1 Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která mu zaručuje vítězství v 200 tazích(rozumí se, že Bílý táhne maximálně 200-krát), bychom uměli celkem přímočaře sestavit algoritmus; např. zavoláme MaBilyVS(VychoziPozice, Bílý, 200), kde MaBilyVS(Pozice, NaTahu, Limit): if((pozice, NaTahu) představuje mat Černému) return ANO; if((pozice, NaTahu) představuje pat nebo mat Bílému nebo Limit=0) return NE; if(natahu=bílý) {Postupně pro každý tah Bílého v Pozice zavolej MaBilyVS(Pozice, Černý, Limit), kde Pozice vznikne z Pozice provedením příslušného tahu; když je v nějakém případě vráceno ANO, tak return ANO, jinak return NE}; if(natahu=černý) {Postupně pro každý tah Černého zavolej MaBilyVS(Pozice, Bílý, Limit-1); když je ve všech případech vráceno ANO, tak return ANO, jinak return NE}. Snadno si ovšem spočteme, že odpovědi bychom se od tohoto algoritmu nedočkali, ale není to tím, že by přetekla paměť. Je snadno vidět, že pro přirozenou implementaci v zásadě stačípaměťvelikosti400pozic(400 šachovnic ).(Ano,jednáseojistýprůchodstromem hloubky 400; přitom není třeba konstruovat v paměti celý strom, ale stačí vždy udržovat aktuální větev.) Tím jsme si připomněli, že i v malém prostoru(malé paměti) se pochopitelně dají provádět časově náročné výpočty. Nadefinovali jsme třídy PSPACE, NPSPACE a připomněli jsme si Savitchovu větu z referátu na cvičení(a z učebního textu), která mj. implikuje PSPACE = NPSPACE. Znázornili jsme si obrázkem inkluze PTIME NPTIME PSPACE=NPSPACE. Máseobecnězato,žeoběinkluzejsouvlastní,byťnikdonevyvrátilmožnostPTIME= PSPACE. Připomněli jsme si, co jsou NP-úplné problémy a nadefinovali jsme PSPACE-úplné problémy. Jako příklady PSPACE-úplných problému jsme uvedli QBF(problém pravdivosti

2 Teoretická informatika průběh výuky v semestru 2 kvantifikovaných booleovských formulí), Eq-NFA(ekvivalence nedeterministických konečných automatů) a Eq-RegExp(ekvivalence regulárních výrazů).(žádnému posluchači samozřejmě nedělá nejmenší problém uvést přesné definice problémů a příklady pozitivních a negativních instancí, že ano.) Uvedli jsme také, že nejrůznější deskové a grafové hry se dají zformalizovat jako PSPACEtěžké(případně PSPACE-úplné) problémy. Např. u šachů by to ovšem chtělo definovat např. (n n)-šachy(provšechna n,nejen n=8).(připomeňme,žepodlenašichdefinicpatří každý problém s konečně mnoha instancemi do třídy T(1), tedy má konstantní složitost!) Všimli jsme si, že problém QBF lze definovat jako zjišťování existence vítězné strategie ve hředvouhráčů,kdeeva( existenčníhráč )nasazujeexistenčněvázanéproměnnéaadam ( univerzálníhráč )nasazujeuniverzálněvázanéproměnné. Aproximační algoritmy Přiblížili jsme si elementární základy zachycené v sekci Pravděpodobnostní algoritmy Přiblížili jsme si elementární základy zachycené v sekci Speciálně jsme se věnovali problému prvočíselnosti. Uvědomili jsme si, že algoritmus Máš-li testovat prvočíselnost zadaného(např. několikasetmístného) k, projdi všechna a,1 < a < kazjišťuj,zda Divides(a,k)(tedyzda(k mod a)=0)... je exponenciální(ve velikosti zápisu k).(a to i při přímočarých vylepšeních, při nichž zkoumámejenlichá a kapod.) Také jsme si všimli, že pravděpodobnostní algoritmus Vygenerujnáhodné a(řekněmeliché a,1 < a k);jestliže Divides(a,k), return NE, jinak return ANO. nám moc nepomůže. Vydá-li(nějaký) jeho běh NE, tak sice víme jistě, že k není prvočíslo, ale vydá-li ANO pro dané k třeba při miliónkrát opakovaném provedení, nemůžeme si vůbecbýtjisti,že kjeprvočíslem.(např.provelkéčíslo m=pq,kde p,qjsouprvočísla, je náhodná trefa jednoho z dělitelů p, q téměř nemožná.) Pak jsme naznačili, že(malá) Fermatova věta, je základem podstatně lepšího algoritmu(k čemuž se ještě vrátíme na cvičení). Sekce pro hlubší zájemce důkazy Diskutovali jsme jeden pozoruhodný důkaz z oblasti teorie složitosti, který se dá vyjádřit sloganem

3 Teoretická informatika průběh výuky v semestru 3 nedeterministický prostor je uzavřený na doplněk. Ukázali jsme ovšem jen následující speciální Tvrzení: Ke každému nedeterministickému Turingovu stroji M s prostorovou složitostí O(n), který rozhodujeproblém P,existuje(lzesestrojit)nedeterministickýTuringůvstroj M rovněžs prostorovou složitostí O(n), který rozhoduje problém P (tedy doplňkový problém problému P). Jestliže tedy M má pro slovo w alespoň jeden přijímající výpočet, tak všechny výpočty stroje M na wjsounepřijímající;jestliževšechnyvýpočtystroje Mna wjsounepřijímající, pakexistujealespoňjedenvýpočet M na w,kterýjepřijímající. Toto tvrzení mj. znamená, že třída tzv. kontextových jazyků je uzvařena na doplněk. To byl od 60. let 20. století známý otevřený problém a mezi zainteresovanými převládal názor, že tato třída na doplněk uzavřena není. Tvrzení dokázal jako první student informatiky namffukvbratislavěr.szelepcsenyinajaře1987.nežovšembylořešení(dopracováno, zobecněno a) oznámeno odborné veřejnosti, přišel nezávisle s řešením známý vědecn.immermanvusa.protosetomutotvrzení(vobecnějšípodobě)dnesříká The Immerman-SzelepcsenyiTheorem. Načrtli jsme si hlavní myšlenku: Má-li M uloženovčítači cčíslo c i udávajícípočetkonfiguracístroje M,dokterýchse tentostrojmůžedostatvikrocíchvýpočtuna w,pakdočítače c spočte c i+1 následovně: Generuje systematicky všechny možné konfigurace C 1,C 2,...,C m stroje M velikosti S M ( w )(kde S M jeprostorovásložitoststroje M);nazačátkutakévynuluječítač c. Prokaždouvygenerovanou C j zjišťuje,zda C j můžebýtdosaženavi+1krocíchtakto: Generuje(vjinémkouskupaměti)systematickyvšechnymožnékonfigurace D 1,D 2,...,D m stroje Mvelikosti S M ( w );nazačátkutakévynuluječítač d. Prokaždou D l nedeterministicky hádá,zda D l jedosažitelnávikrocích.pokudsitipne, žene,pokračujevygenerovaním D l+1...pokudsitipne,žeano,odsimulujenedeterministickyzvolených ikrokůstroje M na w:kdyžtaktodosaženákonfiguracenenítotožnás D l,stroj M neúspěšněskončí;kdyžtaktodosaženákonfiguracejetotožnásd l (M tedy ověřil,že D l jedosažitelnávikrocích), M zvýšíčítač do1aověří,zdazd l lzejedním krokemdosáhnout C j :pokudano,zvýšíčítač c azačnezkoumat C j+1,pokudne,pokračuje vygenerováním D l+1... Pokudtaktoprošelvšechny D 1,D 2,...,D m,anižzjistil,že C j jedosažitelnávi+1krocích, takověří,zdahodnotyvčítačích cadjsoustejné:kdyžnejsou, M neúspěšněkončí,když jsou(tedy M skutečněsprávněuhodlaověřilvšechnykonfigurace D l,kteréjsoudosažitelné v ikrocích,ataktoověřil,že C j skutečněnenídosažitelnávi+1krocích),pokračuje M zkoumáním C j+1 (anižzvýšil c )... Po(úspěšném)spočtení c i+1 (včítači c ),zkopíruje M hodnotu c dočítače c,vynuluje c apustísedovýpočtu c i+2...totoprovádíprovš. i m,kde mjepočetvšechmožných konfiguracístroje Mvelikosti S M ( w );kontrolujesitentohlavnícyklusspeciálnímčítačem, pronějžmuzajistéstačíprostor O(n).Pokudběhempráce M někdyzjistí,žejedosažitelná nějakápřijímajícíkonfigurace(stroje Mpřivýpočtuna w), M okamžitěskončíneúspěšně

4 Teoretická informatika průběh výuky v semestru 4 (tedynepřijme).pokudsetonestaloastroj M prošel(bezneúspěšnéhoukončenízdůvodů popsanýchvýše)výpočet c 1,c 2,...,c m,takpřijme. K ověření korektnosti dodejme: Když M má přijímající výpočet pro w, tak má také přijímající výpočet, v němž se neopakují dosažené konfigurace, a tedy má výpočet délky m. Poznámka. Detailnější popis důkazu(obecnějšího tvrzení) lze najít např. i v Internetových zdrojích.(google: Immerman-Szelepcsenyi Theorem.) Partie textu k prostudování Kapitola 9(speciálně Třída PSPACE). Sekce 10.3.(Aproximační algoritmy). Sekce (Pravděpodobnostní algoritmy). Cvičení Prezentace referátů Referát č. 26(Problém QBF; Quantified Boolean Formulas) Uvažujme problém Název: QBF(problém pravdivosti kvantifikovaných booleovských formulí) Vstup:formule( x 1 )( x 2 )( x 3 )( x 4 )...( x 2n 1 )( x 2n )F(x 1,x 2,...,x 2n ),kde F(x 1,x 2,...,x 2n )jebooleovskáformulevkonjunktivnínormálníformě. Otázka: je daná formule pravdivá? Navrhněte algoritmus, který řeší problém QBF a má prostorovou složitost omezenou polynomem.(tím ukážete, že QBF je v PSPACE.) Návod.Řekneme,žeformule F(x 1,x 2,...,x 2n )jeokproposloupnostbooleovskýchhodnot b 1,b 2,...,b i,kde0 i 2n,jestliže buď i=2naf(b 1,b 2,...,b 2n )=true, nebo i <2n, ijelichéafjeokjakpro b 1,b 2,...,b i,true,takpro b 1,b 2,...,b i,false, nebo i <2n, ijesudéafjeokproalespoňjednuzposloupností b 1,b 2,...,b i,true a b 1,b 2,...,b i,false. Ověřte nejprve, že formule ( x 1 )( x 2 )( x 3 )( x 4 )...( x 2n 1 )( x 2n )F(x 1,x 2,...,x 2n ) je pravdivá právě tehdy, když F je OK pro prázdnou posloupnost. Pak sestavte kýžený algoritmus(a prokažte, že jeho prostorová[tedy paměťová] složitost je polynomiální). Referát č. 27(Oblázková hra v PSPACE) Uvažujme problém, jehož instancí je orientovaný graf s vybraným vrcholem v a dále k oblázků. Můžeme v jakémkoli pořadí provádět následující elementární kroky:

5 Teoretická informatika průběh výuky v semestru 5 navrchol xmůžemepoložitoblázek,pokudvdanýokamžikležíoblázkynavšech vrcholech,znichžvedehranado x, oblázek položený na vrchol můžeme odebrat(a znovu použít později). Otázkou je, zda existuje posloupnost kroků, při níž položíme oblázek na zadaný vrchol v. Prokažte, že problém je v PSPACE. (Jednou z motivací problému je problém přidělování paměti při výpočtu; stačí daný počet registrů k provedení určeného výpočtu?) Příklady Příklad 14.1 Připomeňme si(pspace-úplný) problém Název: QBF(problém pravdivosti kvantifikovaných booleovských formulí) Vstup: formule ( x 1 )( x 2 )( x 3 )( x 4 )...( x 2n 1 )( x 2n )F(x 1,x 2,...,x 2n ), kde F(x 1,x 2,...,x 2n )jebooleovskáformulevkonjunktivnínormálníformě. Otázka: je daná formule pravdivá? Uveďte nějaké malé, ale netriviální, příklady pozitivních a negativních instancí problému. PakdefinujtepřesněpravidlahryprohráčeEva( existenčníhráč )aadam( univerzální hráč )načrtnuténapřednášce.jdeoto,definovathrutak,abyevamělavítěznoustrategii (mimochodem, co to je vítězná strategie?) právě tehdy, když je zadaná formule pravdivá (a Adam měl vítěznou strategii právě tehdy, když je zadaná formule nepravdivá). Zbude-li čas, nakonec ilustrujte na malém příkladu, jak lze obecnou plně kvantifikovanou booleovskouformuli φpřevést(vpolynomiálnímčase)naekvivalentní φ,kterájevetvaru požadovaném pro vstup problému QBF. Příklad 14.2 Následujícítvrzeníjeznámojako MaláFermatovavěta. Tvrzení.Jestliže pjeprvočíslo,takprokaždé a,0 < a < p,platí a p 1 1 (mod p). (Když p není prvočíslo, tak to neplatí, jak byste se měli být schopni sami snadno přesvědčit [např. zbude-li čas na cvičení]). Přesvěčdtese,žetvrzeníplatípro p=11.přitomsiuvědomte,jakjeužitečnétzv.opakované umocňování. Můžete postupovat vyplněním následující tabulky; přitom využijte, že x 10 = x 8 x 2,tedy x 10 mod11=(x 8 mod11) (x 2 mod11) mod11.

6 Teoretická informatika průběh výuky v semestru 6 x x 2 mod11 x 4 mod11 x 8 mod11 x 10 mod11 Pak vyplňte podobnou tabulku pro neprvočíslo 15. x x 2 mod15 x 4 mod15 x 8 mod15 x 14 mod15 Uvedená pozorování nabízejí zvážit jistý(polynomiální) pravděpodobnostní algoritmus k testování prvočíselnosti(velkých čísel). Jak vypadá tento algoritmus? (Poznámka.Tenalgoritmus téměř funguje, ošálí jejaletzv.carmichaelovačísla;naprosto korektní pravděpodobnostní algoritmus využívá o něco hlubší poznatky z teorie čísel.)

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

Teoretická informatika průběh výuky v semestru 1

Teoretická informatika průběh výuky v semestru 1 Teoretická informatika průběh výuky v semestru 1 Týden 10 Přednáška Složitost algoritmů Připomněli jsme si, že složitostí algoritmů většinou nemyslíme složitost jejich struktury či obtížnost jejich návrhu,

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

ZÁKLADY TEORETICKÉ INFORMATIKY

ZÁKLADY TEORETICKÉ INFORMATIKY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod.

14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod. Základy programování (IZAPR) Přednáška 7 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 229, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky 7 Parametry metod, předávání

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Vysvětlete funkci a popište parametry jednotlivých komponent počítače a periferních zařízení.

Vysvětlete funkci a popište parametry jednotlivých komponent počítače a periferních zařízení. 1 Struktura osobního počítače Zakreslete základní schéma počítače podle Johna von Neumanna. Popište základní strukturu osobního počítače. Vysvětlete funkci a popište parametry jednotlivých komponent počítače

Více

Problémy a algoritmy

Problémy a algoritmy Problémy a algoritmy Algoritmus. Vlastnosti algoritmů. Dělení algoritmů. Složitost algoritmů. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta

Více

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení. 7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Střední odborná škola a Střední odborné učiliště, Hořovice

Střední odborná škola a Střední odborné učiliště, Hořovice Kód DUM : VY_32_INOVACE_DYN.1.17 Název materiálu: Anotace Autor Jazyk Očekávaný výstup 17 PHP- komplexní úloha Výpočet obsahu trojúhelníku pomocí Heronova vzorce DUM prohloubí dovednosti žáků v postupu

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Využití OOP v praxi -- Knihovna PHP -- Interval.cz

Využití OOP v praxi -- Knihovna PHP -- Interval.cz Page 1 of 6 Knihovna PHP Využití OOP v praxi Po dlouhé teorii přichází na řadu praxe. V následujícím textu si vysvětlíme možnosti přístupu k databázi pomocí různých vzorů objektově orientovaného programování

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Ocenění Neziskovka roku Pokyny pro účastníky ocenění a systém hodnocení

Ocenění Neziskovka roku Pokyny pro účastníky ocenění a systém hodnocení Ocenění Neziskovka roku Pokyny pro účastníky ocenění a systém hodnocení Obsah 1 Úvod... 2 1.1 Cíle projektu... 2 1.2 Teoretická východiska... 2 1.3 Účastníci projektu a vstupní kritéria... 3 1.4 Kategorie

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Správnost počítačových programů - očekávání a realita.

Správnost počítačových programů - očekávání a realita. Správnost počítačových programů - očekávání a realita. Luboš Brim a Ivana Černá Fakulta informatiky, Masarykova univerzita, Brno Správnost a spolehlivost jsou fundamentální požadavky, které na moderní

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel. Michaela Ševečková

CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel. Michaela Ševečková CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel Michaela Ševečková Rozvoj technického myšlení nejmenších dětí práce s předměty charakteristika, diferenciace (hledání rozdílů),

Více

Ocenění Neziskovka roku Pokyny pro účastníky ocenění a systém hodnocení

Ocenění Neziskovka roku Pokyny pro účastníky ocenění a systém hodnocení Ocenění Neziskovka roku Pokyny pro účastníky ocenění a systém hodnocení Obsah 1 Úvod... 2 1.1 Cíle projektu... 2 1.2 Teoretická východiska... 2 1.3 Účastníci projektu a vstupní kritéria... 3 1.4 Kategorie

Více

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu:

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu: Základní pojmy výrokové logiky Výrok je každé sdělení, o němž má smysl říci, zda je pravdivé nebo nepravdivé. Přitom může nastat pouze jedna možnost. Výroky označujeme obvykle velkými písmeny A, B, C Pravdivému

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a

Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a Přirozená čísla: 1, 2, 3,... = {1, 2, 3,... } Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže p α 1 1 pα 2 2 pα r r = q β 1 1 qβ 2 2 qβ s s, kde p 1 < p 2 < < p r, q 1 < q 2 < < q

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

NÁVOD LOGIX mini Hra pro 2-4 hráče

NÁVOD LOGIX mini Hra pro 2-4 hráče NÁVOD LOGIX mini Hra pro 2-4 hráče Cíl hry: Každý hráč si na začátku vylosuje kartu s tajným kódem (vzorem rozložení kuliček). V průběhu partie hráči pokládají na desku nové kuličky nebo přemisťují stávající

Více

ISKŘ MS Project případová studie, řešení kritická cesta (CPM) PLUSKAL Dalibor

ISKŘ MS Project případová studie, řešení kritická cesta (CPM) PLUSKAL Dalibor 1 ISKŘ MS Project případová studie, řešení kritická cesta (CPM) PLUSKAL Dalibor Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

V zemi skřítků se hráči snaží navštívit co nejvíce měst. Musíte kombinovat jakou krajinou a jakým dopravním prostředkem budete cestovat.

V zemi skřítků se hráči snaží navštívit co nejvíce měst. Musíte kombinovat jakou krajinou a jakým dopravním prostředkem budete cestovat. Elfenland Počet hráčů: 2-6 Doporučený věk: nejméně 10 let Délka hry: 60 až 80 minut Vydavatel: Amigo Rok vydání: 1998 Autor: Alan R. Moon V zemi skřítků se hráči snaží navštívit co nejvíce měst. Musíte

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Chemické databáze. Bedřich Košata

Chemické databáze. Bedřich Košata Chemické databáze Bedřich Košata Porovnávání molekul Hledání stejných struktur Hledání struktur obsahující fragment Hledání podobných molekul Hledání stejných struktur Vyžaduje použití algoritmů pro isomorfii

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 13. Axiomatické systémy VL a pojem důkazu

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Diplomový seminář 1. Akademický rok 2008/2009. 17.9.2009 Ing. Václav Křivohlávek, CSc.

Diplomový seminář 1. Akademický rok 2008/2009. 17.9.2009 Ing. Václav Křivohlávek, CSc. Diplomový seminář 1 Akademický rok 2008/2009 Vybrané metodologické otázky 1. Hierarchie pojmů 2. Věcná a formální struktura práce 3. Základní metody zkoumání a výkladu 4. Etika Hierarchie pojmů Pojmy (resp.

Více

Známí matematici v hodinách matematiky

Známí matematici v hodinách matematiky Známí matematici v hodinách matematiky Obsah 1. Popis projektu... 2 2. Úkol... 3 3. Posup... 3 3.1 Témata... 3 3.2 Role v týmu... 3 4. Zdroje informací... 4 5. Hodnocení projektu... 4 6. Závěr... 5 7.

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více