Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistické metody v marketingu. Ing. Michael Rost, Ph.D."

Transkript

1 Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích

2 Pojem závislosti Je nutné rozlišit mezi závislostí nepodstatnou a mezi příčinnou čili kauzální závislostí.ta je předmětem vědeckého bádání. V podstatě lze rozlišovat závislosti z několika pohledů: závislost pevnou a volnou, závislost jednostrannou a oboustrannou, jednodušší formy kauzální závislosti a složitější formy kauzální závislosti.

3 Statistická neboli volná závislost V případě složitějších forem závislosti si musíme uvědomit, že závislá veličina je ovlivňována větším počtem nezávislých veličin (příčin) jejichž chování nemůžeme plně postihnout. Na změnu závislé veličiny v důsledku změn nezávislých veličin lze v takovém případě usuzovat pouze v průměru!

4 Statistická a korelační závislost Sledujeme-li statistické znaky y, x 1, x 2,, x p a mění-li se určitým způsobem podmíněné rozdělení znaku y při změnách x 1, x 2,, x p, pak mluvíme o statistické závislosti znaku y na x 1, x 2,, x p. Speciálním typem této statistické závislosti je tzv. korelační závislost, při té se mění podmíněné střední hodnoty znaku y. Zkoumání korelační závislosti patří mezi nejčastěji používané způsoby hodnocení závislostí. Lze se však zajímat i o jiné druhy závislostí (např. asociační závislost nebo kontingenční závislost).

5 Geometrická interpretace: statistická vs. korelační závislost x y x y

6 Motivační příklad: V souboru Engel.xls máte k dispozici údaje o ročním disponibilním příjmu a ročních výdajích za jídlo, které byly zaznamenány u 235 rodin. Údaje jsou uvedeny v belgických francích. Vytvořte korelační pole. Prostřednictvím funkce ŷ = ˆβ 0 + ˆβ 1 x popište vztah mezi příjmem a výdaji na jídlo. Jak lze interpretovat odhadnutý regresní koeficient u vysvětlující proměnné? Jak jej nazývají ekonomové? Je to vhodný model? S

7 Příprava v R belgie<-read.table("p:/kurz/engel.csv",header=true,dec=",",sep=";") belgie[1:5,] prijem vydajezajidlo par(mfrow=c(1,2)) plot(prijem,vydajezajidlo,col="blue",pch=20,xlab="prijem", ylab="vydaje za jidlo") obal<-chull(prijem,vydajezajidlo) belgie1<-belgie[-obal,] plot(belgie1,col="blue",pch=20,xlab="prijem",ylab="vydaje za jidlo")

8 Vydaje za jidlo Vydaje za jidlo Prijem Prijem

9 Dva úkoly: V průběhu zkoumání korelační závislosti hledáme odpověd na dvě otázky: Jak nejlépe vystihnout průběh závislosti mezi sledovanými znaky prostřednictvím odpovídající matematické funkce? To řeší regresní analýza.

10 Dva úkoly: V průběhu zkoumání korelační závislosti hledáme odpověd na dvě otázky: Jak nejlépe vystihnout průběh závislosti mezi sledovanými znaky prostřednictvím odpovídající matematické funkce? To řeší regresní analýza. Jaký je stupeň (těsnosti, intenzity, síly) závislosti mezi sledovanými znaky? Odpověd dává korelační analýza.

11 Předpoklady regresního modelu Střední hodnota reziduí je nulová. Nebo-li E(ɛ i ) = 0 Rozptyl reziduí je konstantní pro všechny pozorování, tedy V ar(ɛ i ) = σ 2 Rezidua sledují normální rozdělení ɛ i N(0, σ 2 ) Jednotlivé pozorování závislé proměnné y i nezávislé. V důsledku toho pak i jednotlivé ɛ i jsou navzájem Jednotlivé úrovně - hodnoty regresorů jsou pevné, pokud jsou náhodné, pak jsou navzájem nezávislé.

12 Model V případě jednoduché lineární regrese vycházíme z předpokladu, že lze i-té pozorování, i = 1, 2,, n, n 3 závisle proměnné Y, vyjádřit prostřednictvím nezávisle proměnné X. Konkrétně jako: y i = β 0 + β 1 x i1 + ɛ i, a tedy n rovnic pro n pozorování:

13 Model V případě jednoduché lineární regrese vycházíme z předpokladu, že lze i-té pozorování, i = 1, 2,, n, n 3 závisle proměnné Y, vyjádřit prostřednictvím nezávisle proměnné X. Konkrétně jako: y i = β 0 + β 1 x i1 + ɛ i, a tedy n rovnic pro n pozorování: y 1 = β 0 + β 1 x 11 + ɛ 1, y 2 = β 0 + β 1 x 21 + ɛ 2,. y n = β 0 + β 1 x n1 + ɛ n,

14 Abychom nemuseli vypisovat všech n rovnic, využijme maticové symboliky: y = y 1 y 2. X = 1 x 11 1 x 21.. β = [ β0 β 1 ] ɛ = ɛ 1 ɛ 2. y n 1 x n1 ɛ n Situaci pak můžeme elegantně zachytit takto y = Xβ + ɛ. Otázkou je, jak zvolit hodnoty β, tak aby regresní funkce co nejlépe vystihovala analyzovaná data?

15 Metoda nejmenších čtverců Odhady regresních parametrů β provádíme pomocí metody nejmenších čtverců - MNČ. Její podstatou je minimalizace součtu čtverců reziduí.

16 Metoda nejmenších čtverců Odhady regresních parametrů β provádíme pomocí metody nejmenších čtverců - MNČ. Její podstatou je minimalizace součtu čtverců reziduí. Zřejmě lze rezidua definovat jako ɛ = y Xβ

17 Podstata metody Rezidua: (y i ŷ i ) i = 1, 2,..., n.

18 Podstata metody Rezidua: (y i ŷ i ) i = 1, 2,..., n. Čtverce reziduí: (y i ŷ i ) 2 i = 1, 2,..., n.

19 Podstata metody Rezidua: (y i ŷ i ) i = 1, 2,..., n. Čtverce reziduí: (y i ŷ i ) 2 i = 1, 2,..., n. Součet čtverců reziduí: n i=1 (y i ŷ i ) 2.

20 Podstata metody Rezidua: (y i ŷ i ) i = 1, 2,..., n. Čtverce reziduí: (y i ŷ i ) 2 i = 1, 2,..., n. Součet čtverců reziduí: n i=1 (y i ŷ i ) 2. Minimalizace součtu čtverců reziduí: n i=1 (y i ŷ i ) 2 min

21 Podstata metody Elegantně pomocí maticového zápisu S = n i=1 ɛ i ɛ i = ɛ t ɛ min Pokud hodláme minimalizovat funkci S, pak je nutno funkci derivovat a takto derivovanou funkci položit rovno nule.

22 Geometrická interpretace MNČ Geometricka interpretace metody nejmensich ctvercu y x

23 Tím je splněn nutný předpoklad. Odhad jednotlivých složek vektoru β tj. regresních koeficientů získáme takto: S = ɛ t ɛ = (y Xβ) t (y Xβ) = = y t y y t Xβ (Xβ) t y + (Xβ) t Xβ = = y t y 2(Xβ) t y + β t X t Xβ Derivaci funkce S položíme rovnou nule a vyřešíme (to je nutná podmínka): S β = 2Xt y + 2X t Xβ = 0

24 Odhad ˆβ Lze tedy psát 2X t Xβ = 2X t y (X t X) I Získáme tak odhad vektoru regresních koeficientů

25 Odhad ˆβ Lze tedy psát 2X t Xβ = 2X t y (X t X) I Získáme tak odhad vektoru regresních koeficientů ˆβ = (X t X) I X t y.

26 ... pokračování příkladu attach(belgie) model<-lm(vydajezajidlo~prijem,belgie) summary(model) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e-16 *** prijem <2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 233 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 1141 on 1 and 233 DF, p-value: < 2.2e-16 plot(prijem,vydajezajidlo,col="blue",pch=20,xlab="prijem", ylab="vydaje za jidlo") abline(model,lwd=2,col="red")

27 Prijem Vydaje za jidlo

28 Volba regresní funkce Při volbě regresní funkce je nutné znát její základní vlastnosti, tj. znát jednotlivé funkce, jejich analytické vyjádření, jejich průběh, definiční obor a obor hodnot. V prvé řadě má regresní model co nejlépe zobrazit reálné vztahy mezi jevy a odrážet je v jejich podstatných rysech. Z tohoto důvodu, je třeba vycházet z posouzení věcné podstaty zkoumaných jevů a jejich souvislostí. V mnoha případech však není možno volit regresní funkci apriorně. Pak voĺıme regresní funkci na základě posouzení závislosti v pozorovaných datech. Tento přístup však nemusí vést k nalezení regresní funkce (problém malého počtu pozorování), vhodné pro popis závislosti v základním souboru.

29 Volba regresní funkce Pro empirické posouzení závislosti je možno použít bodový diagram nebo čáru podmíněných průměrů. Obvykle se však postupuje takto: Vymezíme množinu regresních funkcí - pokud možno jednoduchých Určíme odhady jednotlivých regresních parametrů pro jednotlivé typy regresních funkcí Na základě různých kritéríı zkoumáme, která z regresních funkcí nejlépe vyhovuje empirickým datům.

30 Korelační koeficient Pro posuzování vhodnosti regresní funkce a těsnosti závislosti vysvětlované proměnné y na uvažovaných vysvětlujících proměnných se používá také druhá odmocnina indexu determinace. Ta se nazývá index korelace (koeficient korelace). V případě prosté lineární regrese jej lze definovat například takto: r yx = cov(x, y) σ x σ y Tato statistika vyjadřuje stupeň lineární statistické závislosti. Symbol cov(x, y) v čitateli představuje kovarianci proměnných x a y. Ve jmenovateli pak vystupuje součin směrodatných odchylek nezávisle a závisle proměnné.

31 Korelační pole x y x y x y x y e 04 x y x y c Rost 2006

32 Posouzení vhodnosti modelu Jedním ze základních kritéríı pro posouzení kvality regresní funkce je tzv. součet čtverců residuí, definovaný jako S = n i=1 ɛ i ɛ i = ɛ ɛ Na základě tohoto kritéria dáváme přednost tomu regresnímu modelu pro nějž nabývá tato statistika nižší hodnoty. V případě, že porovnáváme regresní modely s různým počtem regresních parametrů, musíme si uvědomit, že u regresní funkce s větším počtem parametrů bude residuální součet čtverců nižší než u regresní funkce s menším počtem regresních parametrů.

33 Otázka vhodnosti modelu Z tohoto důvodu využíváme pro srovnání tzv. residuální rozptyl definovaný jako s 2 e = S n p

34 Test všech prediktorů - vysvětlujících proměnných Jsou vysvětlující proměnné užitečné pro predikci závisle proměnné? Formálně testujeme hypotézu: Testovou statistikou je H 0 : β 1 = β 2 =... = β p 1 = 0 F = (T SS RSS)/(p 1) RSS/(n p) F F p 1,n p Kde RSS a T SS: RSS = (y Xˆβ) t (y Xˆβ) T SS = (y ȳ) t (y ȳ) Vysoké hodnoty F vedou k zamítnutí testované hypotézy.

35 ... pokračování příkladu summary(model) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) <2e-16 *** prijem <2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 233 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 1141 on 1 and 233 DF, p-value: < 2.2e-16

36 Waldův test pro vysvětlující proměnnou Lze jím odpovědět na otázku, zda je možné vyřadit příslušnou vysvětlující proměnou z regresního modelu. Formálně tedy umožňuje testovat hypotézu H 0 : β i = 0. t i = ˆβ i s.e.( ˆβ i ) t i t n p Malou modifikací Waldova testu můžeme otestovat hypotézu kterou lze vyjádřit jako H 0 : β i = konst. Testové kritérium má pak následující tvar: t i = ˆβ i konst. s.e.( ˆβ i ) t i t n p

37 Konfidenční intervaly pro β Je dobré si uvědomit, že CI (angl. confidence interval) umožňují alternativně vyjádřit nejistotu našich odhadů! Obecná forma konfidenčních intervalů pro odhady regresních koeficientů: Odhad ± kritická hodnota SE odhadu V případě klasického lineárního modelu získáme intervalový odhad pro regresní koeficient β i jako ˆβ i ± t 1 α/2,n pˆσ (X t X) I ii

38 Lze sestrojit i simultánní konfidenční oblast pro více regresních koefeicentů. Tento přístup, pokud je umožněn statistickým softwarem, je pochopitelně preferován. Viz grafické znázornění konfidenční elipsy. Oblast, resp. 100(1 α)% konfidenční region lze vyjádřit takto: (ˆβ β) t X t X(ˆβ β) pˆσ 2 F 1 α,p,n p

39 Konfidenční intervaly pro regresní koeficienty β i β β 0

40 ... pokračování práce v R confint(model) 2.5 % 97.5 % (Intercept) prijem

41 Konfidenční intervaly pro predikci V podstatě je nutné rozlišit dva významově odlišné případy: Odhad průměrné hodnoty Y, přesněji odhad podmíněné střední očekávané hodnoty veličiny Y vzhedem ke zvolené kombinaci hodnot vysvětlující (vysvětlujících) proměnné (proměnných): ŷ 0 ± t 1 α/2,n pˆσ x t 0 (Xt X) I x 0 Odhad konkrétní hodnoty Y při určité kombinaci vysvětlující proměnné, či určité kombinaci vysvětlujících proměnných: ŷ 0 ± t 1 α/2,n pˆσ 1 + x t 0 (Xt X) I x 0

42 Konfidenční intervaly pro predikci v R attach(belgie) range(prijem) x0<-seq(500,5200,10) prij<-data.frame(prijem=x0) pred.konfid<-predict(model,prij,se=t,interval="confidence") pred.pred<-predict(model,prij,se=t,interval="prediction") pred.konfid$fit[1:5,] fit lwr upr

43 Grafy predikčních intervalů Vydaje za jidlo Vydaje za jidlo Prijem Prijem

44 Regresní diagnostika Mezi základní diagnostické prostředky patří především analýza reziduálních hodnot prostřednictvím kvantilových grafů spolu s diagnostickými statistikami DF BET AS, DF F IT S, COV RAT IO, Cookovou vzdáleností a diagonálními prvky projekční matice H (angl. leverage), kde H = X(X t X)X t

45 Residuals vs Fitted Normal Q Q Residuals Standardized residuals Fitted values Theoretical Quantiles Standardized residuals Scale Location Standardized residuals Residuals vs Leverage Cook's distance Fitted values Leverage

46 Galileův pokus Galileo se zabýval studiem pohybu tělesa. K tomuto studiu si sestrojil jednoduché zařízení. Na stůl umístnil nakloněnou rovinu s drážkou. Pokus spočíval v opakovaném vypouštění bronzové koule v jisté výšce, označme tuto výšku jako x a měřil vzdálenost dopadu stříbrné koule od hrany stolu. Výška stolu Galileova stolu činila 500 punti. Galileo naměřil tato data [punti ]: x y [1,] [2,] [3,] [4,] [5,] [6,] [7,] Jedno punti je rovno 169/180 mm c Rost 2006

47 Proložení prostou lineární regresí y = (X X) I = X = [ X X = [ ] 0, , , , ˆβ = (X X) I X y = [ 269, , ] ] Regresní model lze tedy zapsat jako ŷ i = 269, , x i pro i = 1, 2,, n. c Rost 2006

48 Pomocí statistického software Výsledky regresní analýzy prostá lineární regrese: Call: lm(formula = y ~ x) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) *** x *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 5 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 1 and 5 DF, p-value: Pokusme se ještě lépe vystihnout data prostřednictvím dalších regresních modelů a zlepšit tak proložení dat modelem. c Rost 2006

49 Polynom 2 stupně... Vzhledem k hodnotám by mohl být adekvátním modelem kvadratický regresní model ŷ i = β 0 + β 1 x i + β 2 x 2 i + ε i Výsledky regresní analýzy pro kvadratický regresní model: Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 1.999e e *** x 7.083e e *** I(x^2) e e ** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 4 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 205 on 2 and 4 DF, p-value: 9.333e-05 c Rost 2006

50 Ještě stále nic??? Pokusíme se přidat ještě kubický člen. Bude popisovat odhadnutá regresní funkce data lépe? Model zapíšeme takto: y i = β 0 + β 1 x i + β 2 x 2 i + β 3x 3 i + ε i. Výsledky regresní analýzy pro případ polynomu třetího stupně jsou uvedeny níže. Všiměte si, že i kubický člen je statisticky významný: Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 1.558e e *** x 1.115e e *** I(x^2) e e ** I(x^3) 5.477e e ** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 3 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 1595 on 3 and 3 DF, p-value: 2.662e-05 c Rost 2006

51 Nepřipadá Vám to poněkud hloupé? Kde je tedy chyba? c Rost 2006

52 Regresní modely y y x x y y ? x x c Rost 2006

53 Správné řešení - respektujte skutečnou povahu závislostí Z fyzikálního hlediska by byla jediným správným modelem funkce popisující zákony pohybu po nakloněné rovině a šikmého vrhu mající tvar: y i = xi 2 sin2 α + 4d x i cos 2 α x i sin2α Symbol α představuje úhel nakloněné roviny po které byla vypouštěna koule, symbol d pak výšku stolu. Pokusme se tedy dospět k výsledku jinou cestou. Víme, že Galileův stůl měl výšku 500 punti, po dosazení se správná regresní rovnice zjednoduší: y i = x 2 i sin2 α x i cos 2 α x i sin2α. Pomocí Gauss-Newtonova algoritmu se pokusíme získat odhad neznámého parametru α. Ten představuje úhel, který svírala nakloněná rovina s deskou stolu. c Rost 2006

54 Správné řešení nls(y~sqrt(x^2*(sin(2*a))^2+4*500*x*(cos(a))^2)-x*sin(2*a), start=c(a=0.5203),trace=true) : : : : : Nonlinear regression model model: y ~ sqrt(x^2 * (sin(2 * a))^2 + 4 * 500 * x * (cos(a))^2) - x * sin(2 * a) data: parent.frame() a residual sum-of-squares: = 35, 3. Dále Řešením jsme získali odhad ˆα = 0, , tj. můžeme odečíst reziduální sumu čtverců, dosahuje hodnoty 2485,263. c Rost 2006

55 Respektujte povahu věcí... Spravný model y x c Rost 2006

56 Literatura Problematika je diskutována například v následují literatuře: Norman R. Draper, Harry Smith: Applied Regression Analysis,Wiley Series in Probability and Statistics, ISBN Julian J. Faraway: Linear Models with R, Chapman & Hall/CRC, Boca Raton, 2005, ISBN John Fox: An R and S-plus Companion to Applied Regression, Sage Publication, Thousand Oaks, 2002, ISBN

57 Děkuji za pozornost.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Vícenásobná regresní a korelační analýza 1 1 Tto materiál bl vtvořen za pomoci grantu FRVŠ číslo 1145/2004. O vícenásobné závislosti mluvíme tehd, jestliže je závisle proměnná závislá na více nezávislých

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Problém 1: Ceny nemovitostí Poznámkykřešení 1

Problém 1: Ceny nemovitostí Poznámkykřešení 1 Problém 1: Ceny nemovitostí Poznámkykřešení 1 Zadání 1.Majínemovitostiurčenékbydlenívyššícenutam,kdeječistšíovzduší?Pokudano,okolik? 2. Lze vztah mezi znečištěním a cenou, pokud existuje, vysvětlit tím,

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Kanonická korelační analýza

Kanonická korelační analýza Kanonická korelační analýza Kanonická korelační analýza je vícerozměrná metoda, která se používá ke zkoumání závislosti mezi dvěma skupinami proměnných. První ze skupin se považuje za soubor nezávisle

Více

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.

(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Interpolace, aproximace

Interpolace, aproximace 11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Úloha 1: Lineární kalibrace

Úloha 1: Lineární kalibrace Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé

Více

05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

05/29/08 cvic5.r. cv5.dat <- read.csv(cvic5.csv) Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA

Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Vliv odlehlých hodnot, korelační koeficient, mnohonásobná regrese

Vliv odlehlých hodnot, korelační koeficient, mnohonásobná regrese Vliv odlehlých hodnot, korelační koeficient, mnohonásobná regrese 1. Vliv odlehlých hodnot Na následujících dvou příkladech ukážeme jak odlehlé hodnoty (outliers) ovlivňují výsledek analýzy a jak je identifikovat.

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. vorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Vztah mezi počtem květů a celkovou biomasou rostliny

Vztah mezi počtem květů a celkovou biomasou rostliny Regrese a korelace Regrese versus korelace Regrese (regression)* popisuje vztah = závislost dvou a více kvantitativních (popř. ordinálních) proměnných formou funkční závislosti měří těsnost Korelace (correlation)

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

4. Zpracování číselných dat

4. Zpracování číselných dat 4. Zpracování číselných dat 4.1 Jednoduché hodnocení dat 4.2 Začlenění dat do písemné práce Zásady zpracování vědecké práce pro obory BOZO, PÚPN, LS 2011 4.1 Hodnocení číselných dat Popisná data: střední

Více

2.2 Kalibrace a limity její p esnosti

2.2 Kalibrace a limity její p esnosti UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Moderní regresní metody Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Obsah Úvod... 5 1 Klasický lineární model a analýza variance... 7 Motivační příklad... 7 Fitování klasického lineárního

Více