Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A"

Transkript

1 Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota měřeí ezávsí jeom a přesost použtých přístrojů, ale také a zvoleé metodě měřeí a dále a áhodých vlvech, které emůžeme předem vyloučt. Podle způsobu vyhodoceí rozlšujeme ejstotu typ A a typ B. Jejch sloučeím vzká ejstota typu C (kombovaá). íce formací vz. []. Příklad Opakovaým měřeím apětí AA batere jsme získal hodoty v tabulce. Expermet probíhal za stejých podmíek a byl provádě aalogovým voltmetrem s rozlšeím 0,05. Budeme také uvažovat chybu způsobeou epřesým čteím ze stupce, edokoalým osvětleím a esprávým umístěím přístroje (vertkálí/horzotálí umístěí). elkost této chyby je odhaduta a 0,. Úkolem je určt ejstotu typu A, B (za předpokladu rovoměrého rozložeí pravděpodobost) a kombovaou ejstotu typu C s úroví spolehlvost 95 procet. Nejstota typu A Nejstota typu A je určováa statstckým metodam ze změřeých dat. Důležté je ezávslé opakováí expermetu za stejých podmíek. Tab. změřeé a vypočteé hodoty Σ (),49,53,49,50,49,56,55,50,49,58 5,8 0,78 0,4 0,78 0,3 0,78,76,0 0,3 0,78 3,84 0,56 ( x x) (m) Protože počet provedeých měřeí je = 0, můžeme to povařovat za dostatečý počet opakováí expermetu a vypočítat přímo ejstotu typu A jako směrodatou odchylku výběrového průměru. Pokud je počet měřeí meší, je uté terval rozšířt vyásobeím příslušým koefcetem. Artmetcký průměr x = x 5,8 0 = = =,58 () Odhad směrodaté odchylky výběrového průměru = ejstota typu A ( x x) sx = ua = s = = = 0, 0 x ( ) ()

2 Nejstota typ Př vyhodoceí ejstoty typ používáme estatstcké metody vyhodoceí. Způsobů určeí je více, zejméa: a) Odhad velkost ejstoty můžeme založt a racoálí úvaze vlastostí měřících přístrojů, zkušeost z předchozích expermetů, formací z kalbračích certfkátů, katalogových lstů, mauálů apod. tomto případě odhadujeme většou přímo velkost ejstoty typ jedotlvých částí měřícího řetězce a a základě zákoa o šířeí ejstot určujeme celkovou ejstotu typ. b) ěkterých případech lze ejstotu typ ajít přímo v formacích výrobce přístroje a v kalbračím certfkátu. Pak lze ejstotu typ vypočítat ze zámé rozšířeé ejstoty U a daého koefcetu k r. U u B = (3) k r c) ěkterých případech je zám terval, ve kterém se musí acházet skutečá hodota měřeé velčy téměř jstě. Pak je možé vypočítat ejstotu typ z velkost tohoto tervalu a z předpokládaého typu rozložeí pravděpodobost měřeé velčy (ormálí, rovoměré, trojúhelíkové atd.). Je to případ apř. měřcích přístrojů u kterých je zámo rozlšeí. = (4) k Kde k je koefcet pro předpokládaé rozděleí pravděpodobost měřeé velčy. ýběr koefcetů pro ěkterá rozděleí pravděpodobost je v Tab. 5. ašem případě je z formací výrobce zámo rozlšeí 0,05. Je téměř jsté, že skutečá hodota se achází v tomto tervalu ±. Za předpokladu rovoměrého rozložeí pravděpodobost určíme ejstotu typ jako resoluto 0,05 = = 0, 04 = (5) Pro ejstotu čteí z přístroje platí readg error 0, = = 0, 08 (6) Rovoměré rozložeí pravděpodobost pro obě velčy bylo zvoleo v tomto případě proto, že emáme další formace o vtřích jevech v přístroj, ezáme prcp měřeí, způsob zaokrouhleí apod. Rovoměré rozlšeí má v celé tervalu stejou pravděpodobost. Obecě vychází ejstota větší ež př uvažováí ormálího rozděleí, ale pravděpodobost určeí správého tervalu je větší.

3 Celková ejstota typ je ub = ub + ub = 0,04 + 0,08 = 0, 03 (7) Stadardí kombovaá ejstota typu C je uc = ua + ub = 0,0 + 0,03 = 0, 034 (8) S ohledem a tvar hustoty pravděpodobost pokrývá stadardí kombovaá ejstota typu C pouze přblžě 60 % všech možých výsledků. Abychom rozšířl terval a zadaou pravděpodobost 95 %, rozšíříme terval a určíme rozšířeou stadardí ejstotu typu C. U = k uc = 0,034 = 0, 068 (9) ýsledek zapíšeme ve tvaru: Artmetcký průměr ± rozšířeá stadardí ejstota (úroveň pravděpodobost) = =,58 ± 0,068 (P = 95 %) Aalogový měřcí přístroj: Příklad Aalogový měřcí přístroj s rozsahem 300 a třídou přesost T p = měří apětí 60. Jede dílek přístroje je,5. Jak velká je absolutí a relatví chyba měřeí a ejstota měřeí? Pro výpočet ejstoty (typ B) uvažujte ejstotu způsobeou vlastostm přístroje, zaedbejte ejstotu způsobeou čteím ze stupce. T p třída přesost maxmálí relatví chyba přístroje vztažeá a celý rozsah, Obvykle je: (0) 5;,5 (); ; 0,5; 0,; 0, (%) Absolutí chyba max = T p. rozsah = %. 300 = 0, = 3 (0) Relatví chyba absolutí chyba 3 δ = 00 [%] = 00 = 5 % () měěře hodota 60 Pozámka.: Relatví chyba 5% je podstatě větší, ež by odpovídalo pouhému jedoduchému posouzeí podle třídy přesost přístroje. Je to proto, že eměříme a maxmálí výchylku maxmálí rozsah) k ěmuž je třída přesost vztažea. Relatví chyba se sžuje se zvětšující se výchylkou. Proto s aalogovým přístrojem vždy měřte pokud je to možé a co ejvětší výchylku. Pak bude relatví chyba měřeí ejmeší. Zameá to vybrat vhodý přístroj pro měřeí s rozsahem přzpůsobeým měřeé velčě. Nejstota je kvattatví pops v jakém tervalu a s jakou staoveou úroví spolehlvost můžeme očekávat výsledek. Protože v tomto případě jsme expermet eopakoval a emůžeme tudíž provádět jeho statstcké vyhodoceí, budeme vyhodocovat ejstotu typ. Pokud budeme předpokládat, že pravděpodobost odchylky měřeé velčy od správé hodoty je v celém tervalu stejá, použjeme rovoměré rozděleí pravděpodobost. Rozlšovací schopost je dáa ejmeším dílkem stupce přístroje dílek stupce,5 = = = 0, 7 () tomto případě jsme zaedbal ejstotu způsobeou čteím ze stupce a výsledá ejstota je tedy přímo 0,7.

4 Pokud bychom prováděl podrobější vyhodoceí, mohl bychom tuto ejstotu také zahrout. Zkušeý operátor je schopý a aalogové přístroj odečítat s rozlšeím přblžě /3 dílku stupce, ezkušeý operátor přblžě ½ dílku stupce. Nejstota čteí je tedy pro zkušeého operátora je dílek stupce,5 u r = 3 = 3 = 0, 4 (3) Z výsledku je zřejmé, že ejstota způsobeá epřesým čteím je meší ež ejstota způsobeá vlastostm přístroje, ale pro přesá měřeí eí její velkost zaedbatelá. Dgtálí měřcí přístroj: Přesost dgtálího měřícího přístroje je dáa:. přesostí aalogově/dgtálího převodíku, apř. 0, % (dáo počtem btů převodíku). chybou způsobeou počtem ejméě výzamých míst tzv. dgtů (ejmeší rozlštelý dílek), apř. dgty šechy tyto parametry přístroje je třeba alézt v dokumetac. U ěkterých přístrojů lze alézt formac přímo o ejstotě měřeí (typ). Někteří výrobc udávají přesost jako ±( x % měřeé hodoty + dgtů) Jí jako ±( x % rozsahu + dgtů) Např. dgtálí multmetr Axo MET AX-8B udává v užvatelské příručce přesost měřeí stejosměrého apětí tabulkou Tab. Tab. údaj výrobce o přesost měřeí stejosměrého apětí multmetrem Axo MET AX-8B (přeložeo) Rozsah: Rozlšeí Přesost 600 m 0, m ±( 0,5 % měřeé hodoty + 8 dgtů) 6 m ±( 0,8 % měřeé hodoty + 5 dgtů) 60 0 m m 000 ±(,0 % of měřeé hodoty + 0 dgtů)

5 Příklad 3 Dgtálí voltmetr má a rozsahu 60 defovaé rozlšeí 0 m a přesost ±(0,8% měřeé hodoty + 5 dgtů). Měřeá hodota je 55,3. ypočtěte ejstotu měřeí typ. Přesost ±(0,8% měřeé hodoty + 5 dgtů) = ±(0, , ,0) = ±0,49 Přesost vyjadřuje terval ve kterém se s 00% achází měřeá velča. Protože předpokládáme přístroj dobře udržovaý a kalbrovaý, můžeme teto předpoklad pokládat za platý. Za předpokladu rovoměrého rozložeí pravděpodobost (stejá pravděpodobost v celém tervalu) určíme ejstotu jako presost 0,49 = = = 0, 4 (4) Lteratura [] Bell S.: A Beger's Gude to Ucertaty of Measuremet, ole (9..00) o

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č. Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

FLUORIMETRIE. Jan Fähnrich. Obecné základy

FLUORIMETRIE. Jan Fähnrich. Obecné základy FLUORIMETRIE Ja Fährch Obecé základ Fluormetre je aaltcká metoda vužívající schopost ěkterých látek vsílat (emtovat) po předchozím převedeí do vzbuzeého (exctovaého) stavu fluorescečí zářeí v ultrafalové

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 -

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 - Středí průmyslová škola, Uherské Hradště, Kollárova 67 MECHANIKA I M.H. 00 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST Studjí obor (kód a ázev): -4-M/00 Strojíreství - - Středí průmyslová škola, Uherské Hradště,

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB 6 VĚSTNÍK MZ ČR ČÁSTKA 4 METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB Miisterstvo zdravotictví vydává podle 80 odst., písm. a)

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

4. SCHÉMA ZAPOJENÍ U R

4. SCHÉMA ZAPOJENÍ U R EDL 3.EB 5 1/11 1. ZADÁÍ a) Změřte voltampérové charakteristiky dvou různých žárovek pomocí voltmetru a ampérmetru b) Sestrojte grafy =f() c) Vypočítejte statický odpor a graficko-početní metodou dynamický

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková Středí průmslová škola zeměměřická GEODETICKÉ VÝPOČTY. část Ig. Dauše Mlčková Úvod Tet avazuje a. část, je urče pro studet. až 4. ročíku středích průmslových škol se zaměřeí a geodézii. Jedá se o přepracovaou

Více

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M Multifukčíměřícípřístroje NA-45P / NA-45L VLL VLN A W var PF/cos THD Hz/ C k M Přístroje jsou určey pro měřeí a sledováí sdružeých a fázových apětí, proudů, čiých a jalových výkoů, účiíků, THD apětí a

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

Martin Sloup, A04372. Ohyb světla optickou mřížkou

Martin Sloup, A04372. Ohyb světla optickou mřížkou Mart Sloup, A0437 Ohyb světla optckou mřížkou Mart Sloup, A0437 Obecá část Optcká mřížka a průcho světla je skleěá estčka, a íž je vyryta řaa jemých, rovoběžých, stejě o sebe vzáleých vrypů. Vrypy tvoří

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Srovnání kapitálového požadavku na kreditní riziko dle NBCA s ekonomickým kapitálem dle CreditMetrics

Srovnání kapitálového požadavku na kreditní riziko dle NBCA s ekonomickým kapitálem dle CreditMetrics Srováí kaptálového požadavku a kredtí rzko dle NBCA s ekoomckým kaptálem dle CredtMetrcs Josef Novotý 1 Abstrakt Příspěvek je věová popsu a aplkac dvou základích metod, které určují kaptálový požadavek

Více

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Prezentace maturitního projektu na předmět informatika Software pro tvorbu papírových modelů

Prezentace maturitního projektu na předmět informatika Software pro tvorbu papírových modelů Prezetace maturitího projektu a předmět iformatika Software pro tvorbu papírových modelů Adam Domiec 22. květa 200 Abstrakt Teto dokumet je o počítačovém programu pro ávrh papírových modelů. Popisuje jej

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu.

Výsledky této ásti regresní analýzy jsou asto na výstupu z poítae prezentovány ve form tabulky analýzy rozptylu. Ig. Marta Ltschmaová Statstka I., cveí 4 JEDNODUCHÁ LINEÁRNÍ REGRESE asto chceme prozkoumat vztah mez dvma velam, kde jeda z ch, tzv. ezávsle promá x, má ovlvovat druhou, tzv. závsle promou Y. edpokládá

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

2. POPIS MĚŘENÉHO PŘEDMĚTU

2. POPIS MĚŘENÉHO PŘEDMĚTU IEDL 3.EB 4 1/5 1. ZADÁÍ a) Změřte odpor předložených rezistorů porovnávací metodou pomocí ručkového voltmetru a odporové sady b) Měření proveďte jednou za podmínky = a jednou za podmínky = 0,2. c) Předložené

Více

IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK

IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK IV. NEJISTOTY MENÍ A ZPRACOVÁNÍ VÝSLEDK Meí patí mez základí zpsoby získáváí kvattatvích formací o stav sledovaé vely. 4. Chyby meí Nedokoalost metod meí, ašch smysl, omezeá pesost mcích pístroj, promé

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Fraktálová komprese. Historie

Fraktálová komprese. Historie Fraktálová komprese Hstore Prví zmíky o tzv. fraktálové kompres jsem ašel kdys v bezvadé a dodes aktuálí kížce!! Grafcké formáty (Braslav Sobota, Já Mlá, akl. Kopp), kde však šlo spíše o adšeý úvod a pak

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

IG: Hlavní oblasti IG: stavebnictví - pozemní - doprava (dálnice, železnice, keré. strojírenstv

IG: Hlavní oblasti IG: stavebnictví - pozemní - doprava (dálnice, železnice, keré. strojírenstv Předět t Ižeýrsk eýrská geodéze Ižeýrská Geodéze vešker keré geodetcké práce souvsející s výstavbou a provoze žeýrských staveb a zaříze zeí Předět Ižeýrsk eýrská geodéze Hlaví oblast IG: stavebctví - pozeí

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké

Více