Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování

Rozměr: px
Začít zobrazení ze stránky:

Download "Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování"

Transkript

1 Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování

2 Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich distribuce rozsáhlé reálné sítě mají tu vlastnost, že mnoho uzlů má malý počet sousedů (malý stupeň), ale některé mají velmi vysoký počet sousedů (vysoký stupeň) distribuce stupňů odpovídá tzv. mocninnému rozdělení - power-law degree distribution. Existence shluků - je-li uzel a spojen s uzlem b, a je-li zároveň uzel b spojen s uzlem c, je pravděpodobné, že uzel c bude spojen také s uzlem a. Mnoho rozsáhlých reálných sítí má vysoký clustering coefficient (shlukovací koeficient). Vzdálenosti - průměr (diameter) - mnoho rozsáhlých reálných sítí má malý průměr - small-world phenomenon Souvislost sítě jsou zpravidla nesouvislé a v mnoha sítích existuje jedna velká komponenta (giant component) s řádově O(n) vrcholy.

3 Vzdálenost v grafu Např. pravidelná mřížka (v reálném prostoru) - vzdálenost daná metrikou Eukleidovská metrika Metrika Manhattan O sítích obecně ale zpravidla neuvažujeme v kontextu souřadnic reálného prostoru. Jak porovnat mřížku, náhodný graf a jiné typy grafů se stejným počtem vrcholů? Pomocí grafové vzdálenosti Velikost grafu (měřená vzdáleností, průměrem, ) roste: dim-rozměrná mřížka n 1/dim náhodný graf log(n)

4 Průměr, průměrná vzdálenost Nejkratší cesta (shortets path, geodesic path) Mezi všemi dvojicemi vrcholů Z výchozího Rozlišit ohodnocený, neohodnocený Diameter = průměr (nejdelší nejkratší cesta), D Mean shortest path - průměrná nejkratší cesta, L Orientovaný, ohodnocený Floydův, Dijkstrův, Bellman-Fordův Neorientovaný, neohodnocený BFS, DFS, ale rovněž Floydův, Dijkstrův, Bellman- Fordův

5 Souvislost Obr. A) n=6, m=6, L=1.87 (30 uspoř. dvojic vrcholů), D=3 Pravidelná mřížka je vždy souvislá, což neplatí např. pro náhodné grafy - u těch potřebujeme nejméně n-1 hran Erdős Rényi On Random Graphs I, 1959 ukázali, že náhodný graf je pravděpodobně souvislý má-li nejméně n*log(n)/2 hran pro velká n. Souvislost lze určit kterýmkoliv algoritmem na principu procházení grafem (Floyd,...)

6 Metody analýzy dat I (Data Analysis I) Modely

7 Literatura Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. [ ] _2016_L3.pdf

8 Modely Vzhledem k průměru D, průměrné nejkratší cestě L, shlukovacímu koeficientu C a distribuci stupňů rozlišujeme 4 základní modely: Pravidelný graf (mřížka) - lattice Náhodný graf Random graph Model malého světa Small-world graph Bezškálový graf (Barabási-Albertové model) Scalefree graph

9 Pravidelné grafy (mřížky) Pravidelný (regulární graf) všechny vrcholy stejného stupně (Eukleidovské) mřížky (lattices) př. pevné látky a jejich krystalová mřížka (vrcholy atomy, hrany nejdůležitější vazby) Vlastnosti pravidelných grafů Průměr D velký Shlukovací koeficient C vysoký (nebo 0 u čtvercové mřížky) distribuce stupňů konstantní

10 Pravidelné grafy Na všech obr. je pravidelný graf s n=20, m=40, m=2n (řídký graf) Obr. A) pravidelná mřížka ve 2D, Pro obr. C) L=2.32, průměr D=4, C=0

11 Náhodné grafy Od 1959 do 90. let 20. století sítě modelovány jako náhodné grafy (random graphs) Náhodný graf máme množinu n vrcholů, hrany mezi nimi přidáváme náhodně s pravděpodobností p Každá hrana je stejně pravděpodobná Rozdílné modely náhodných grafů mají různé rozdělení pravděpodobnosti (nějakého jevu) Zkoumané vlastnosti, např.: Vyberu-li zcela náhodně jeden uzel grafu, jaká je pravděpodobnost P(d), že bude mít stupeň právě d? Jaká je průměrná vzdálenost? Jaká je souvislost grafu?

12 Náhodné grafy n=20, m=40, náhodně spojíme dvojici vrcholů s p=2m/(n(n-1))= Relativní pozice vrcholů není důležitá (na rozdíl od např. krystalové mřížky) Obr. A) L=2.17, průměr D=5, C=0.134, náhodný graf Obr. B) L=2.22, D=4, C=0.15, pravidelný graf

13 Erdős Rényi model náhodného grafu Paul Erdös a Alfréd Rényi

14 Opak pravidelné mřížky Erdős Rényi model náhodného grafu Jejich model se označuje jako G n,p model, je určen n počet vrcholů 0 p 1 Pro každou dvojici vrcholů (i,j) se generuje hrana (i,j) nezávisle s pravděpodobností p, tj. každá hrana v grafu s n vrcholy existuje s pravděpodobností p a neexistuje s pravděpodobností 1-p.

15 p=0.01

16 Perkolace Vývoj grafu (graph evolution) - která vlastnost grafu je zachována roste-li p? Perkolace, fázový přechod, perkolační práh, treshold phenomenon: pro mnoho grafů ex. vlastnost současně - tedy existuje pravděpodobnost p c taková, že pro p<p c téměř všechny grafy vlastnost nemají a pro p>p c vlastnost mají téměř všechny grafy. Prahová hodnota p c pochází z tzv. teorie perkolace. Pro mřížky a náhodné grafy se p c analyzuje snadno

17 Perkolace v mřížce

18 Vlastnosti G n,p Vlastnosti G n,p : průměr D a průměrná vzdálenost L malé koeficient shlukování C nízký distribuce stupňů Poissonovo rozdělení Jak se na to přišlo? Experimentálně i analyticky.

19 Vlastnosti G n,p Vlastnosti G n,p se obvykle vyjadřují ve vztahu k hodnotě <d>, kde <d> je průměrný stupeň Průměrný počet hran v grafu G n,p je m=p*n*(n-1)/2, každá hrana je incidentní s dvěma vrcholy, proto průměrný stupeň vrcholu je < d >= n(n -1)p n = (n 1)p což je asi <d>=np pro velká n.

20 Distribuce stupňů v G n,p Pravděpodobnost p(d), že daný vrchol grafu o n vrcholech má stupeň d je dána binomickým rozdělením n -1 d n 1- d p(d) = B(n;d; p) = p ( 1 p) d Předpokládejme <d>=np = c, kde c je naše požadovaná hodnota průměrného stupně, n, B(n,d,p) pak lze aproximovat Poissonovým rozdělením d c c p(d) = P(d;c) = e d! Obě distribuce koncentrovány kolem prům. stupně <d>, konec klesá exponenciálně, jako 1/d!, pro d > <d>

21 Poissonovo rozdělení Binomické a Poissonovo rozdělení

22 Poissonovo rozdělení Jen málo vrcholů v náhodném grafu má velmi malý resp. velmi velký stupeň, většina vrcholů má průměrný stupeň Scale-free graf (A) a náhodný graf (B) mocninné (C) a Poissonovo rozdělení (D)

23 Distribuce stupňů v G n,p Pozn. Poissonovo rozdělení obecně lze pro všechny hodnoty x=0,1,2,... náhodné veličiny X vyjádřit pomocí parametru λ>0 jako Nejnižší resp. nejvyšší stupeň vrcholů náhodného grafu jsou určeny pro různá p Jestliže p n -1-1/d, pak téměř žádný náhodný graf nemá vrcholy se stupněm vyšším než d. Pro dostatečně velké p, tj. je-li pn/log(n) mají náhodné grafy nejvyšší stupeň řádově jako je stupeň průměrný, tedy mají poměrně homogenní stupně.

24 Vzdálenosti v G n,p Náhodné grafy mají tendenci mít malou průměrnou vzdálenost, zpravidla okolo (log n/log<d>). <d> <1 typický náhodný graf je složen z izolovaných stromů, průměrná vzdálenost pak odpovídá průměrné vzdálenosti stromu <d> >1 v grafu ex. obrovská komponenta. Je li <d> >3.5 je průměrná vzdálenost grafu rovna průměrné vzdálenosti této obrovské komponenty a je úměrná L=log n/log<d> <d> >log n, téměř každý náhodný graf je souvislý a průměrné vzdálenosti L těchto grafů nabývají několika hodnot okolo L=log n/log<d>

25 Souvislost a G n,p Pro p=0 máme diskrétní graf s n komponentami a velikost komponenty je řádově O(1/n). Pro p=1 máme úplný graf s 1 komponentou a největší komponenta (jediná) má n vrcholů. A mezi tím?

26 Souvislost a G n,p Jestliže je <d> <1 (počet hran m je malý), pak graf obsahuje mnoho malých komponent (souvislých), největší komponenta má počet vrcholů nejvýše O(log n). Téměř všechny komponenty jsou buď stromy nebo obsahují právě jeden cyklus. Je-li <d> >1, největší komponenta má velikost Θ(n) a druhá největší O(log n). Jestliže <d> >log n, graf je souvislý. Jestliže <d> =1, nastane změna, která vede ke vzniku obrovské komponenty O(n 2/3 ), ve které platí mocninný zákon.

27 Souvislost a G n,p S je velikost největší komponenty vyjádřená poměrem k celkové velikosti sítě

28 Shlukování v G n,p Mějme uzel, jeho sousedy, pak pravděpodobnost, že dva z těchto sousedů jsou spojeny hranou je rovna pravděpodobnosti, že dva náhodně vybrané vrcholy jsou spojeny hranou, tedy shlukovací koeficient C = p. Jinak: v náhodném grafu (na rozdíl od trojuh. mřížky) není důvod, aby soused souseda vrcholu i měl nějaký vztah k i. Náhodný graf s n vrcholy má pn(n-1)/2 možných hran, pokud máme M hran, C=2M/n(n-1)= =<d>/(n-1)=p, zde (<d>=c)

29 Shlukování v G n,p <d> <d>

30 G n,p p <d> n L D Počet vrcholů v největší komponent ě

31 G n,p efekt průměrného stupně <d> Pro <d>< 1: Malé, izolované shluky Malý průměr D Malá L pro <d> = 1: Objevuje se velká komponenta Průměr D dosahuje vrcholu L je velká pro <d> > 1: Téměř všechny vrcholy propojeny Průměr D se snižuje L klesá d

32 Příklad - Zachary's karate club

33 Závěr - G n,p Model náhodného grafu nevyhovuje reálným sítím zejména proto, že: Reálné grafy mají mocninné rozdělení distribuce stupňů (power-law), ne Poissonovo. Reálné sítě mají vysoký shlukovací koeficient, náhodné grafy mají obecně malý shlukovací koeficient, který se s rostoucím n blíží k 0 (při konstantní p). Reálné sítě mají komunitní strukturu (vysvětlíme později v MADII) Jiné modely sítí vyhovující reálným sítím lépe, začaly vznikat koncem 90. let m.s.

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.

Více

Metody analýzy dat I (Data Analysis I) Modely - pokračování

Metody analýzy dat I (Data Analysis I) Modely - pokračování Metody analýzy dat I (Data Analysis I) Modely - pokračování Literatura Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. [112-133]

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014 Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

MADI. Model bezškálového grafu (Scale-free graphs) - pokračování

MADI. Model bezškálového grafu (Scale-free graphs) - pokračování MADI Model bezškálového grafu (Scale-free graphs) - pokračování Předchozí modely Mřížka pravidelný stupeň, velký shlukovací koeficient C, velká průměrná vzdálenost L Náhodné grafy všechny hrany stejně

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Moderní aplikace statistické fyziky II - TMF050

Moderní aplikace statistické fyziky II - TMF050 Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D. 9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Shluková analýza Shluková analýza je souhrnným názvem pro celou řadu výpočetních algoritmů, jejichž cílem

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

TGH08 - Optimální kostry

TGH08 - Optimální kostry TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení

Více

TGH09 - Barvení grafů

TGH09 - Barvení grafů TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Redukce bezškálových grafů pomocí genetických algoritmů Scale-free Network Reduction by Genetic Algorithms

Redukce bezškálových grafů pomocí genetických algoritmů Scale-free Network Reduction by Genetic Algorithms VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Redukce bezškálových grafů pomocí genetických algoritmů Scale-free Network Reduction by Genetic Algorithms 2014

Více

Kartografické modelování. VIII Modelování vzdálenosti

Kartografické modelování. VIII Modelování vzdálenosti VIII Modelování vzdálenosti jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Vzdálenostní funkce

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUT OF INFORMATICS GRAFY A GRAFOVÉ ALGORITMY GRAPHS AND GRAPH

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1

P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1 Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 Vznik a historie projektového řízení Akad. rok 2015/2016, LS Projektové řízení a marketing

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS

SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS Jan Chocholáč, Martin Trpišovský, Petr Průša 1 ABSTRACT This article focuses on the elementary explanation of safety requirement in logistic transport

Více

Cvičná bakalářská zkouška, 1. varianta

Cvičná bakalářská zkouška, 1. varianta jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa

Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Informační systémy pro podporu rozhodování

Informační systémy pro podporu rozhodování Informační systémy pro rozhodování Informační systémy pro podporu rozhodování 5 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Asociační pravidla Asociační pravidla (sdružovací

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Projekt programu Inženýrská Informatika 2

Projekt programu Inženýrská Informatika 2 Projekt programu Inženýrská Informatika 2 Realizace grafu v jazyce Java Ústav počítačové a řídicí techniky, VŠCHT Praha Řešitel: Jan Hornof (ININ 258) Vedoucí: doc. Ing. Jaromír Kukal, Ph.D. 1. Obsah 1.

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Nástin formální stavby kvantové mechaniky

Nástin formální stavby kvantové mechaniky Nástin formální stavby kvantové mechaniky Karel Smolek Ústav technické a experimentální fyziky, ČVUT Komplexní čísla Pro každé reálné číslo platí, že jeho druhá mocnina je nezáporné číslo. Např. 3 2 =

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a)

Více

Efektivní hledání nejkratších cest v sítích hromadné přepravy osob

Efektivní hledání nejkratších cest v sítích hromadné přepravy osob DIPLOMOVÁ PRÁCE Efektivní hledání nejkratších cest v sítích hromadné přepravy osob Autor: Vladislav Martínek Vedoucí: RNDr. Michal Žemlička, Ph.D. Motivace Jak se co nejrychleji dostat z bodu A do bodu

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

4 Pojem grafu, ve zkratce

4 Pojem grafu, ve zkratce Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,

Více

OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE

OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE Jaroslav Matuška 1 Anotace: Příspěvek prezentuje možnosti užití metod operačního výzkumu (teorie grafů)

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

V ypoˇ cetn ı sloˇ zitost v teorii graf u Martin Doucha

V ypoˇ cetn ı sloˇ zitost v teorii graf u Martin Doucha Výpočetní složitost v teorii grafů Martin Doucha Parametrizovaná složitost Nástroj, jak zkrotit výpočetní složitost NP-těžkých problémů Klasický přístup: exponenciála v n Parametrizovaná složitost Nástroj,

Více

Dolování z textu. Martin Vítek

Dolování z textu. Martin Vítek Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li

Více

Matice sousednosti NG

Matice sousednosti NG Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V

Více

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní

Více

Pojistná matematika 2 KMA/POM2E

Pojistná matematika 2 KMA/POM2E Pojistná matematika 2 KMA/POM2E RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz web: http://aix-slx.upol.cz/~pavlacka (informace + podkladové materiály) Konzultační

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality. Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat

Více

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ

VÝSLEDKY VÝZKUMU. indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ VÝSLEDKY VÝZKUMU indikátor ECI/TIMUR A.1 SPOKOJENOST OBYVATEL S MÍSTNÍM SPOLEČENSTVÍM V PROSTĚJOVĚ Realizace průzkumu, zpracování dat a vyhodnocení: Střední odborná škola podnikání a obchodu, spol. s r.o.

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Technologie dopravy a logistika

Technologie dopravy a logistika Cvičení č. 2 Optimalizace linkového vedení Četnost obsluhy, takt Ing. Zdeněk Michl Ing. Michal Drábek, Ph.D. Ing. Jiří Pospíšil, Ph.D. ČVUT v Praze Fakulta dopravní Ústav logistiky a managementu dopravy

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY GRAFY, GRAFOVÉ ALGORITMY A JEJICH VYUŢITÍ PŘI HLEDÁNÍ NEJKRATŠÍ CESTY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY GRAFY, GRAFOVÉ ALGORITMY A JEJICH VYUŢITÍ PŘI HLEDÁNÍ NEJKRATŠÍ CESTY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS GRAFY, GRAFOVÉ ALGORITMY A JEJICH VYUŢITÍ

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní.

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní. Pohotovost a vliv jednotlivých složek na číselné hodnoty pohotovosti Systém se může nacházet v mnoha různých stavech. V praxi se nejčastěji vyskytují případy, kdy systém (nebo prvek) je charakterizován

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více