Globální navigační satelitní systémy (GNSS)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Globální navigační satelitní systémy (GNSS)"

Transkript

1 Geodézie přednáška 6 Globální navigační satelitní systémy (GNSS) Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.:

2 OBSAH: Historie a vývoj družicových systémů Současné existující systémy Souřadnicové soustavy a princip činnosti Segmenty systému GPS Metody měření GPS Přesnost a vlivy ovlivňující přesnost GPS Využití GPS

3 Historie a vývoj družicových systémů období vlastních družicových systémů není dlouhé předcházela mu však dlouhá a bohatá historie určení co nejpřesnějších prostorových vztahů mezi body = touha lidstva po celá staletí tyto vztahy (navigace) zpočátku prováděny úhlově pomocí přírodních těles hvězdy, Slunce, Měsíc (astronomická navigace) Jakobova hůl později po vynalezení radiového vysílání byla prováděna navigace na základě znalostí fyzikálních zákonitostí šíření radiových vln radiomajáky vypuštění umělých družic = zkoumání možnosti jejich využití jako dříve přírodních těles postupný vývoj a zdokonalování družicových systémů

4 v letech vznikl první družicový navigační systém armády USA - TRANSIT (Navy Navigation Satellite System) je předchůdcem dnešního systému GPS tvořen šesti družicemi, obíhajícími na polárních kruhových oběžných drahách výška dráhy 1075 km oběžná doba přibližně 107 minut konstelace družic umožňovala pozorovat v daném místě zemského povrchu jednu družici každých 35 až 120 minut (zamezení vzniku interference- vzájemného ovlivňování signálu ze dvou družic) hlavním zdrojem nepřesnosti systému byla nepřesnost vysílaných efemerid - zavedení referenční stanice v roce 1967 byl systém uvolněn i pro civilní uživatele

5 počátkem 70. let byl zprovozněn další systém pod názvem TIMATION (vysílání přesného časového signálu) v bývalém Sovětském Svazu se stal protiváhou systém CYKLON a obdobné systémy PARUS a CIKADA, se stejnými nevýhodami (jen dvourozměrné souřadnice, nízká přesnost a špatný časový signál) po zkušenostech s těmito systémy začaly obě tyto supervelmoci počátkem 70. let budovat systémy nové generace jednalo se o družicové pasivní dálkoměrné systémy umožňující určování polohy v trojrozměrném prostoru s přesným časem tyto systémy zpřístupnily družicovou navigaci i letectvu

6 Současné systémy GLONASS (Globalnaja navigacionnaja sputnikovaja systema, Global Navigation Satellite System) ruský družicový navigační systém začátek jeho vývoje spadá přibližně do poloviny 70. let 20. století GLONASS je plně pod kontrolou a správou vojenských kosmických sil ruského ministerstva obrany byl navržen obdobně jako GPS, tzn. pro poskytování informací o čase a poloze na Zemi a v jejím blízkém okolí po celých 24 hodin systém GLONASS používá dva signály: přesnější je vyhrazen jenom pro ruské vojenské uživatele druhý, méně přesný je určen pro civilní uživatele

7 systém se skládá ze tří částí: sledovací - řídicí segment kosmický segment uživatelský segment řídící centrum je v Moskvě kosmický segment by měl v plném operačním stavu obsahovat 24 družic na třech drahách oběžné dráhy systému jsou ve výšce asi km sklon 65 v ůči rovníku dráha družice každých 8 dní (17 oběhů) je stejná družice mají nižší životnost (asi 3 roky) systém neumožňuje celosvětové pokrytí po celý den a není zcela spolehlivý

8 Družice systému GLONASS

9 GALILEO globální navigační satelitní systém vyvíjený na základě rozhodnutí Evropské komise (EC) Evropskou kosmickou agenturou (ESA) hlavním důvodem pro vznik Galilea byla snaha o získání kontinentálního systému nezávislého na GPS nebo GLONASS je rovněž složen ze tří segmentů: sledovací - řídicí segment kosmický segment uživatelský segment kosmický segment bude tvořen dvaceti sedmi aktivními a třemi záložními družicemi na každé ze tří oběžných drah bude pravidelně rozmístěno deset družic (9 aktivních a 1 záložní)

10 oběžné dráhy družic jsou definovány: sklonem 56 v ůči rovníku Země výškou km oběžná doba družice je stanovena na 14 hodin

11 měl by poskytovat vyšší přesnost a větší pokrytí signálem družic (Skandinávie) Galileo přinese tři druhy kvality služeb: Open Service (OS) bude pro každého zdarma, signály budou využívat 2 pásma: MHz a MHz. Přijímače budou mít horizontální přesnost lepší než 4 m a vertikální lepší než 8 m (nebo horizontálně pod 15 m a vertikálně pod 35 m při použití jednoho pásma) šifrovaný Commercial Service (CS) bude zpoplatněn a poskytne přesnost lepší než 1 m. V kombinaci s pozemními stanicemi může dosáhnout přesnosti až 10 cm. Bude využívat tři pásma - dvě použitá OS a navíc MHz.

12 šifrované Public Regulated Service (PRS) a Safety of Life Service (SoL) poskytnou přesnost podobnou CS. Budou však odolnější proti rušení a budou schopny detekovat problémy do 10 sekund. Využívat je budou ozbrojené složky a dopravci, u kterých by ztráta přesnosti mohla ohrozit lidské životy (řízení letového provozu, ). mimo uvedených navigačních služeb budou družice systému Galileo poskytovat i služby nouzové lokalizace v rámci celosvětové družicové záchranné služby Sarsat/Kospas - oproti ní družice oznámí trosečníkovi, že jeho signály byly zachyceny a lokalizovány

13 Další využití: výběr mýtného na komunikacích v rámci EU přímé zprostředkování telefonického volání o pomoc z mobilu navigace a kontrola silniční dopravy (info o zácpách), železniční a lodní dopravy vyhledání ukradených aut a jejich zastavení vysláním signálu do elektroniky navigační pomoc pro letadla ve vzduchu a při rolování kontrola přepravovaného zboží plného stavu družic ve vesmíru a tím i plného operačního stavu mělo být původně dosaženo v roce 2008 (dnes se předpokládá až rok 2013)

14 28. prosince 2005 byla do vesmíru vyslána první technologická navigační družice pro testování komponent tohoto systému (Giove-A) Družice systému Galileo Start rakety Sojuz

15 NAVSTAR - GPS (Navigation System using Time and Ranging - Global Positioning System) přímým nástupcem systému TRANSIT - (běžné označení GPS) pasivní družicový rádiový navigační systém pro určování polohy, rychlosti a času tyto údaje poskytuje v jakémkoliv čase, za každého počasí, kdekoliv na povrchu Země a v jeho blízkosti podmínkou je viditelnost vždy nejméně 4 družic v jakémkoliv okamžiku na kterémkoliv místě na Zemi systém byl vybudován armádou USA v 70 letech minulého století je spravován ministerstvem obrany USA - DoD (Department of Defence)

16 v současnosti se jedná o nejrozšířenějším globální poziční (navigační) systém na Zemi první signály GPS začala vysílat družice NTS-2 v roce 1977 později začala družice vyrábět firma Rockwell plného operačního stavu FOC (Full Operational Capability) bylo dosaženo v roce 1993 systém GPS je tvořen třemi segmenty: kosmickým pozemním kontrolním řídícím uživatelským

17 Polohové systémy a souřadnicové soustavy družicové navigační systémy pracují v geocentrických prostorových souřadnicích k lokalizaci objektů v mapách však používáme kartografické rovinné souřadnice nebo zeměpisné souřadnice chceme-li využívat metody těchto systémů, musíme realizovat obě tyto soustavy a zprostředkovat mezi nimi vzájemný vztah

18 Princip GPS družice o známé poloze vysílá v přesně definovaný čas signál (pípnutí) podle cesiových atomových hodin tento signál je přijat pozemní aparaturou s jistým časovým zpožděním z rychlosti šíření signálu (radiové vlny) a zpoždění se vypočte vzdálenost bodu (stanoviska) od viditelné družice nad obzorem prostorovým protínáním vzdáleností se určí poloha stanoviska v prostorových souřadnicích (X, Y, Z), jež se transformují do souřadnicového systému přijímače (nejčastěji zeměpisná šířka a délka) Poznámka: v současnosti je u nejlepších atomových hodin nejistota v určení času asi 0,1 ns na 24 hodin (10-10 s), tzn. že přibližně za 15 miliónů let by se takové hodiny rozcházely nejvýše o jednu sekundu

19 Malé atomové hodiny

20 Prostorové pravoúhlé souřadnice

21 Znázornění zeměpisných souřadnic

22 tímto způsobem určování by mohlo docházet k určitým komplikacím: signál (pípnutí) by musel být hodně silný pozemní anténa by musela být hodně velká řešením je vysílání pseudonáhodného kódu místo signálu (pípnutí) kód fázově modulovaná nosná vlna C/A kód přibližný (volný přístup) P(Y) kód přesný, chráněný (zabezpečený) tento kód se v pozemním přijímači koreluje s jiným stejně generovaným kódem a určí se zpoždění, z něhož se potom vypočte vzdálenost tento princip se používá především pro navigaci pro geodetické využití se používá měření fáze nosné vlny (fázová měření na principu fázového dálkoměru) tato fáze se ovšem rekonstruuje z přijatého kódu

23 Segmenty GPS Kosmický segment Kontrolní a řídící segment Uživatelský segment Hlavní řídící stanice Monitorovací stanice Vysílací antény

24 Kosmický segment od roku 1993 tvořen 24 družicemi (z nich 3 záložní) šest rovnoměrně rozložených oběžných drah družic je definováno: sklonem 55 v ůči rovníku Země výškou km dobou oběhu (12 hvězdných hodin = 11hod 58min) etapy vzniku a modernizace: Blok I (1978) zkušební (sklon drah družic 63 ) Blok II a IIa (1989) civilní signál L1C/A Blok II R (1995) přesnější hodiny (pozice mezi družicemi) Blok II R-M (2005) druhý civilní signál L2C Blok II F (2007) třetí civilní signál L5 Blok III (2012) zlepšení L1C

25 Síť družic GPS

26 Etapy modernizace

27 Družice blok I Družice blok IIA Družice blok IIR, IIR-M

28 Start rakety Delta na oběžnou dráhu

29 Pozemní segment Kontrolní segment označení OCS (Operational Control System) jedná se o zpracovatelská centra, která zpracovávají pozorování ze stanic se známými souřadnicemi tyto souřadnice určují polohu družic v tomto systému hlavní úkoly kontrolního segmentu: sledování družic a jejich palubních hodin časová synchronizace družic nahrávání palubních efemerid v systému WGS-84 do počítačů družic (přesnost 3m) efemerida - vypočtená poloha kosmického tělesa pro určité datum ukládání přesných efemerid (s jistým zpožděním) na server s internetovým přístupem (přesnost v cm)

30 Řídicí segment řídí správnou funkčnost celého systému může aktivovat a deaktivovat opatření k zabránění plného využití systému GPS neautorizovanými uživateli součástmi tohoto segmentu jsou: Hlavní řídící stanice (MCS Master Control Station) na letecké základně Falcon ve Skalistých horách v Colorado Springs (AFB) sbírá data z monitorovacích stanic vypočítává efemeridy, parametry drah družic a chodu palubních hodin jednotlivých družic tyto parametry předává pozemním anténám, které je vyšlou družicím pro navigaci v reálném čase

31 Princip činnosti kontrolního a řídícího segmentu Nepřetržité měření pseudovzdáleností Vysílání vypočtených parametrů družicím Výpočet efemerid, parametrů drah a hodin Monitorovací stanice Hlavní řídící stanice Vysílací antény

32 Monitorovací stanice původně 5 stanic umístěných v blízkosti rovníku nepřetržitě měří pseudovzdálenosti k viditelným družicím a data posílají do hlavní řídící stanice stanice Kwajalein, Diego Garcia a Ascension Island jsou používány i pro vysílání korekčních dat družicím během srpna a září 2005 přidány další stanice NGA (National Geospatial-Intelligence Agency) každý satelit je vidět z nejméně dvou stanic v současnosti existuje 18 monitorovacích stanic každý satelit je viditelný nejméně ze tří stanic zlepšila se tím provázanost monitoringu a následně také přesnost a spolehlivost celého systému

33 Původní monitorovací stanice Colorado Springs Hawaii Ascension Islands Diego Garcia Kwajalein Hlavní kontrolní stanice Monitorovací stanice Ground Antenna

34 Monitorovací stanice 2005

35 Monitorovací stanice Hawaii

36 Uživatelský segment Přístroje GPS a jejich dělení podle frekvencí (nosných) jednofrekvenční (vlna L1) dvoufrekvenční (vlna L1+L2) podle počtu kanálů jednokanálové vícekanálové podle způsobu příjmu signálu kódové přijímače s C/A kódem (Coarse Acquisition Code) přijímače s C/A i P (Y) kódem (Precision Code) fázové

37 podle konstrukce kompaktní aparatury - jeden kompaktní celek (např. Trimble GeoExplorer GeoXH) víceprvkové aparatury - skládají se z více prvků - anténa, přijímač (receiver), PDA, případně kabely (např. Leica GPS1200, Trimble SSI, Trimble Pathfinder ProXH) podle způsobu využití turistické navigační pro sledování zásilek GIS aparatury geodetické

38 Metody měření GPS a jejich dělení podle zpracovávaných veličin kódové - využívají kódová měření fázové - využívají fázová měření kombinované - využívají fázové i kódové měření podle doby získání výsledné polohy metody v reálném čase (real-time processing) metody s následným zpracováním (postprocessing) podle pohybu přijímače statické (static) kinematické (kinematic) podle počtu použitých přijímačů autonomní (absolutní) metoda diferenční a relativní metody

39 Kódové měření tato metoda stanoví vzdálenost jako součin doby a rychlosti šíření signálu mezi družicí a anténou rychlost šíření signálu je rovna rychlosti světla doba šíření signálu je odvozena z porovnání fáze kódu vysílaného družicí s fází kódu generovaného v přijímači fázový posun mezi přijatým a vyslaným kódem je přímo úměrný době šíření signálu signál se nešíří ve vakuu a hodiny přijímače nejsou přesně synchronizovány s hodinami družice měření fáze obsahuje systematickou synchronizační chybu proto je výsledná vzdálenost mezi družicí a přijímačem označována jako pseudovzdálenost kódové měření se používá pro navigaci

40

41 Fázové měření fázové měření je přesnější než kódové využitelné pro tvorbu geodetického bodového pole vhodné také pro podrobné mapování všech měřítek vzdálenosti mezi družicí a GPS aparaturou jsou určovány z měření nosné vlny GPS signálu při fázovém měření nesmí dojít k přerušení signálu (fázový skok cycle slip) jakékoliv přerušení signálu => nesprávné určení celočíselného násobku vlnové délky (ambiguity) při přerušení nutnost opakování celého cyklu měření

42

43

44 Autonomní (absolutní) metoda v případě jedné aparatury její prostorová poloha se určí na základě pseudovzdáleností mezi přijímačem a minimálně čtyřmi družicemi přístroj může být v klidu nebo v pohybu k určení polohy je zapotřebí znát i souřadnice družic využívá určení polohy přístroje vůči družicím, jejichž poloha je známá v systému WGS-84 metoda je vhodná pro navigaci vozidel, cyklistů, turistů apod. přesnost se pohybuje v případě využití kódového měření v průměru okolo 7 metrů

45 Relativní metody patří mezi nejpřesnější způsoby určení polohy bodu k měření je zapotřebí minimálně dvou GPS aparatur jedna z aparatur (referenční stanice) se umisťuje na bod o známých geodetických souřadnicích její údaje jsou registrovány po dobu celého měření během observace musí být na obou stanoviskách aparatur dostupné alespoň čtyři stejné družice na základě znalosti souřadnic referenční stanice jsou stanoveny opravy (korekce) pseudovzdáleností oprava eliminuje chybu vzniklou při průchodu signálu atmosférou a chybu z nepřesnosti určení efemerid družic relativní metody využívají fázová měření

46 podle času zavádění korekcí rozlišujeme: metody v reálném čase (RTK, kinematická, stop and go) postprocesní metody (statická, rychlá statická)

47 Statická a rychlá statická metoda často označovány Static, FastStatic nebo RapidStatic obě patří do relativních postprocesních metod v případě metody Static se jedná o dlouhodobé měření na bodě doba observace (seance) na jednom stanovisku je řádově v hodinách (6 a více) přesnost 3-5 mm (po zpracování)

48 pro metodu Fast Static je zapotřebí časově mnohem kratší seanci minimální doba měření na jednom bodě je při viditelnosti šesti a více družic několik minut doba observace je nastavována na nejmenší možný časový úsek, během něhož je možné bezpečně vyřešit ambiguity (nejednoznačnost) dobu seance výrazně ovlivňuje zda máme jednofrekvenční nebo dvoufrekvenční přístroj statická a rychlá statická metoda se používá pro tvorbu, zhuštění a ověření bodových polí

49 Kinematická metoda v reálném čase označení RTK (Real Time Kinematic) k výpočtu korekcí dochází v reálném čase vypočtené korekce jsou - rovněž v reálném čase - vysílány z referenční stanice na pohyblivý přijímač pomocí modemu uplatnění metody je potom závislé na dosahu radiomodemu a terénních podmínkách na větší vzdálenosti je také možné data přenášet mobilními telefony (GSM/GPRS) výhodou je získání souřadnic v reálném čase jejich znalost v okamžiku měření umožňuje obsluze GPS kvalifikovaně volit další body pro tvorbu mapy podle konfigurace terénu

50 v současnosti je komerčně nabízena možnost přijímat korekce z tzv. permanentních referenčních stanic CZEPOS (ZÚ), TopNet (Geodis, s.r.o.) a Trimble VRS Now (Trimble) odpadá nutnost použití vlastní referenční stanice tímto vzrůstá dosah až na 50 km pro zajištění centimetrové přesnosti by neměla být vzdálenost mezi referenčním a pohyblivým přijímačem větší než 10 km využití i metody tzv. pseudoreferenční stanice (PRS) na základě polohy přijímače jsou posílány korekce z virtuální stanice (do 5 km) tyto korekce jsou vygenerovány na základě síťového řešení ze všech stanic CZEPOS,příp. Trimble VRS Now lze využít i pro měření bodů pro účely katastrálního úřadu

51

52

53 Síť permanentních stanic CZEPOS

54 Diferenční metody zkrácené označování DGPS metody DGPS používají kódové měření potřeba minimálně dvou GPS přijímačů jeden z nich je nazýván referenční stanicí a je umístěn na bodě o známých souřadnicích stejně jako v případě relativních metod je pak možné na určovaných bodech zavádět potřebné korekce pro získání diferenčních korekcí můžeme také využít tři rozšiřující systémy podpory GPS: EGNOS (European Geostationary Navigation Overlay System) území Evropy WAAS (Wide Area Augmentation System) území USA a Kanady MSAS nad územím Japonska

55 signál systému EGNOS je v současné době vysílán bezúplatně v případě přijímání signálu EGNOS/WAAS není potřeba dvou přijímačů

56 Přesnost systému systém poskytuje dvě různé služby: pro autorizované uživatele pro neautorizované uživatele SPS (Standard Positioning Service) služba určování polohy se standardní přesností pro neautorizované uživatele GPS přesnost této služby byla do úmyslně znehodnocována proměnliovou systémovou chybou - SA (Selective Availability) - desítky až stovky metrů SPS dosahuje nyní přesnosti asi 10x lepší (v horizontální rovině 3-10 m) PPS (Precision Positioning Service) služba přesného určování polohy pro autorizované uživatele (armáda USA, některé armády členských států NATO a někteří další, vládou USA vybraní uživatelé) přesnost služby PPS je v současné době přibližně 1 až 3 m v horizontální rovině

57 Vlivy působící na přesnost měření GPS měření GPS je ovlivňováno systematickými a náhodnými chybami Systematické vznikají při šíření signálu atmosférou v této vrstvě není vakuum a tak zde dochází ke zpoždění signálu dochází ke korekcím (velikost až v desítkách metrů) troposférická korekce (vliv počasí) počítá se z modelu nebo se určuje výpočtem, velikost asi 1 m ionosférická korekce (způsobuje zakřivení dráhy signálu) - počítá se z modelu, případně se eliminuje měřením na dvou frekvencích, velikost až 10 m k těmto chybám dochází při kódovém měření

58 Nahodilé vícenásobné šíření signálu GPS (multipath) způsobené odrazem o zemský povrch, střechy budov nebo jiné předměty (signál nejde přímo na anténu) chyba až 1,2 m u fázového měření není znám počet celých vlnových délek (ambiquit) měří se pouze doměrek (určují se výpočtem při zpracování) oprava staničních i družicových hodin určuje se výpočtem nebo se odstraní diferencováním (až 3 m) šum přijímače i vysílače (družice), velikost 2 resp. 1 m dráhy satelitů do 1 m lidský faktor (přepočet souřadnic, špatný elipsoid) přesnost určení polohy ovlivňuje i elevační úhel, pod kterým se nachází družice (10 až 15 ) relativní a diferenční metody => na přesnost působí také délka základny

59 Hodnocení výsledků přesnosti přesnost určení polohy ovlivňuje geometrická konfigurace družic během seance vliv je popsán tzv. DOP (Dilution Of Precision) parametry zředění (zhoršení) přesnosti GDOP (Geometric DOP) - charakterizuje vliv na všechny určované veličiny PDOP (Position DOP) - ovlivňuje prostorové určení polohy HDOP (Horizontal DOP) - působí na horizontální složku polohy VDOP (Vertical DOP) - působí na vertikální složku polohy TDOP (Time DOP) - určuje vliv na určení korekce hodin přijímače čím lepší konfigurace, tím menší číselné hodnoty DOP a větší přesnost

60 Ideální rozmístění družic N W E S

61 Vliv konfigurace družic na GDOP Pro PPBP je nutné mít DOP menší nebo rovno 4 a pro podrobné body je nutné mít DOP menší nebo rovno 7.

62

63

64 Využití GPS GPS se v dnešní době využívá v řadě lidských činností (vojenský i civilní sektor) mezi hlavní aplikace patří navigace: letadel, automobilů, lodí, zemědělských a stavebních strojů turistika a rekreace sledování zásilek zboží neméně důležitým využitím je: určování rozměru, tvaru a povrchu Země mapování a práce s tím spojené vědecké aplikace časové služby krizové situace

65 Turistické GPS k navigaci turistů a cykloturistů přijímače jsou vyráběny v několika provedeních nemapové aparatury (nelze nahrát digitální mapu) - Garmin Geko 301 aparatury umožňující nahrání podkladových digitálních map - Magellan SportTrack, Garmin GPSmap 60CS některé z aparatur je možné propojovat s PDA (Personal Digital Assistent - počítač do dlaně) u nemapových aparatur je tak zpravidla umožněna možnost použití mapového podkladu v PDA v poslední době se již ale objevují přímo PDA, které obsahují integrované GPS - Garmin ique 3600 přesnost těchto aparatur je od několika metrů po několik desítek metrů

66

67

68 Navigační systémy využívají podkladovou digitální mapu používány zejména v automobilech nejmodernější systémy umožňují aktivní plánování optimální trasy k zadanému cíli - Blaupunkt TravelPilot DX-V (přesnost je obdobná jako u turistických GPS)

69 speciální aplikace navigačních systémů GPS řízení pohybu zemědělských a stavebních strojů (mnohem vyšší přesnost než běžné navigační systémy)

70 Využití GPS pro sledování zásilek zboží a sledování pohybu přepravních zařízeních velmi častá aplikace využití GPS sleduje dodržování harmonogramu přepravy: na pozemních komunikacích (automobily, vlaky) na vodních komunikacích (lodě) sledování probíhá v čase a prostoru systém se skládá ze tří segmentů: zařízení pro zjišťování aktuální polohy objektu (GPS aparatura) přenosové cesty informací o poloze (síť mobilních telefonů GSM) vyhodnocovací a zobrazovací zařízení (monitorovací centrum nebo dispečink - zobrazuje se aktuální poloha objektu)

71 GIS - aparatury umožňují rychlé a přitom dostatečně přesné pozemní měření vyhovují požadavkům pro tvorbu geografických informačních systémů (GIS) rychlé doplnění údajů, které nelze získat pomocí dálkového průzkumu Země (DPZ) nebo pomocí fotogrammetrického mapování aparatury určené pro tvorbu GIS využívají kódové nebo fázové měření přesnost aparatur je od několika desítek centimetrů do několika metrů do této kategorie patří např.: Trimble GeoExplorer GeoXH Trimble Pathfinder ProXH Trimble Recon GPS XC

72

73 Geodetické aparatury v dnešní době se používají pro: tvorbu bodových polí vytyčovací práce velkoměřítková mapování (např. pro katastr nemovitostí) sledování přetvoření (deformací) stavebních objektů proběhla první ověření nasazení pro rektifikaci polohy kolejí vysokorychlostních železnic tyto aparatury používají fázová měření přesnost dosahuje několika milimetrů až centimetrů Topcon HiPER Pro, Ashtech Locus, Ashtech Z-Max, Trimble R8 GNSS, Leica

74

75

Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II

Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví Ing. Hana Staňková, Ph.D. Ing. Filip Závada GEODÉZIE II 8. Technologie GNSS Navigační systémy

Více

Globální polohové a navigační systémy

Globální polohové a navigační systémy Globální polohové a navigační systémy KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci I NVESTICE DO ROZVOJE V ZDĚLÁVÁNÍ Environmentální vzdělávání

Více

Global Positioning System

Global Positioning System Písemná příprava na zaměstnání Navigace Global Positioning System Popis systému Charakteristika systému GPS GPS (Global Positioning System) je PNT (Positioning Navigation and Timing) systém vyvinutý primárně

Více

Geoinformační technologie

Geoinformační technologie Geoinformační technologie Globáln lní navigační a polohové družicov icové systémy Výukový materiál pro gymnázia a ostatní střední školy Gymnázium, Praha 6, Nad Alejí 1952 Vytvořeno v rámci projektu SIPVZ

Více

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy Ing. Jiří Fejfar, Ph.D. GNSS Globální navigační satelitní systémy Kapitola 1: Globální navigační systémy (Geostacionární) satelity strana 2 Kapitola 1: Globální navigační systémy Složky GNSS Kosmická složka

Více

Principy GPS mapování

Principy GPS mapování Principy GPS mapování Irena Smolová GPS GPS = globální družicový navigační systém určení polohy kdekoliv na zemském povrchu, bez ohledu na počasí a na dobu, kdy se provádí měření Vývoj systému GPS původně

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Galileo evropský navigační družicový systém

Galileo evropský navigační družicový systém Galileo evropský navigační družicový systém Internet ve státní správě a samosprávě Hradec Králové, 12. 13. duben 2010 1 Navigační systém Galileo je plánovaný autonomní evropský Globální družicový polohový

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Moderní přístrojová technika. Vybrané kapitoly: GNSS

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Moderní přístrojová technika. Vybrané kapitoly: GNSS Moderní přístrojová technika Vybrané kapitoly: GNSS Praha 2014 Ing. Jan Říha 1. Globální navigační satelitní systémy (GNSS)... 3 GPS... 4 GLONASS... 4 GALILEO... 4 Data GNSS... 5 Principy určování polohy...

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

GNSS se stává běžnou součástí infrastruktury,

GNSS se stává běžnou součástí infrastruktury, GNSS se stává běžnou součástí infrastruktury, říká Daniel Lopour, který se v agentuře GSA (Evropská agentura pro globální navigační družicové systémy) stará o rozvoj využívání systému Galileo v dopravě

Více

Navigace využívající družicové systémy

Navigace využívající družicové systémy Navigace využívající družicové systémy NAVSTAR GPS USA (Navigation Satellite Timing and Ranging Global Positioning System) GALILEO - EU GLONASS - Rusko Trocha historie Vznik satelitních navigačních systémů

Více

TECHNICKÁ ZPRÁVA. Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632 ř. km.

TECHNICKÁ ZPRÁVA. Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632 ř. km. TECHNICKÁ ZPRÁVA Číslo zakázky: Název zakázky: Název akce: Obec: Katastrální území: Objednatel: Měření zadal: Geodetické zaměření Neštěmického potoka Geodetické zaměření Neštěmického potoka v úseku 0-3,632

Více

Systém GPS. Ing. Jan Koukl duben 2002 (doplněno listopad 2004) info@beruna.cz, www.beruna.cz

Systém GPS. Ing. Jan Koukl duben 2002 (doplněno listopad 2004) info@beruna.cz, www.beruna.cz Systém GPS Ing. Jan Koukl duben 2002 (doplněno listopad 2004) info@beruna.cz, www.beruna.cz Obsah 0 Pár slov úvodem... 4 1 Historie a vznik systému... 4 1.1 Fáze první (1973-79)... 5 1.2 Fáze druhá (1979-85)...

Více

Soukromá vyšší odborná škola a Obchodní akademie s.r.o. České Budějovice Pražská 3. Absolventská práce. 2007 Slavíček Jiří 1/56

Soukromá vyšší odborná škola a Obchodní akademie s.r.o. České Budějovice Pražská 3. Absolventská práce. 2007 Slavíček Jiří 1/56 Soukromá vyšší odborná škola a Obchodní akademie s.r.o. České Budějovice Pražská 3. Absolventská práce 2007 Slavíček Jiří 1/56 Soukromá vyšší odborná škola a Obchodní akademie s.r.o. České Budějovice Pražská

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.

Více

Geografie, geografové na internetu.

Geografie, geografové na internetu. Geografie, geografové na internetu. Chceš vědět nejnovější poznatky o oteplování planety nebo kácení amazonských pralesů, popř. o satelitním snímkování. Zajímá tě kolik se vyrobí cyklistických kol, během

Více

Určování polohy s využitím GPS a GSM sítí

Určování polohy s využitím GPS a GSM sítí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická PROJEKT Č. 4 Určování polohy s využitím GPS a GSM sítí Vypracovali: Spolupracovali: Předmět: Jaroslav Jureček, Petr Putík Jan Hlídek, Tomáš

Více

TESTOVÁNÍ SÍTĚ CZEPOS

TESTOVÁNÍ SÍTĚ CZEPOS ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obor Geodézie a kartografie TESTOVÁNÍ SÍTĚ CZEPOS Diplomová práce autor: Miluše Vilímková vedoucí práce: prof. Ing. J. Kostelecký, Dr.Sc. konzultant:

Více

V Ý Z K U M N É P R O J E K T Y GRANTOVÉ SLUŽBY LČR

V Ý Z K U M N É P R O J E K T Y GRANTOVÉ SLUŽBY LČR Lesy České republiky, s. p., Hradec Králové V Ý Z K U M N É P R O J E K T Y GRANTOVÉ SLUŽBY LČR Projekt Využití geografických dat LHP u LČR při plánování, řízení a evidenci výroby dříví těžebně dopravními

Více

Galileo PRS - Služba systému Galileo pro státem pověřené uživatele

Galileo PRS - Služba systému Galileo pro státem pověřené uživatele Galileo PRS - Služba systému Galileo pro státem pověřené uživatele Vladislav Sláma 18.9.2012, Prague Fire and Security Days Profil a specifika služby PRS Přehled služeb GNSS Galileo Open Service (OS) Základní

Více

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června 2005. Revize 01

Vypracoval: Ing. Antonín POPELKA. Datum: 30. června 2005. Revize 01 Popis systému Revize 01 Založeno 1990 Vypracoval: Ing. Antonín POPELKA Datum: 30. června 2005 SYSTÉM FÁZOROVÝCH MĚŘENÍ FOTEL Systém FOTEL byl vyvinut pro zjišťování fázových poměrů mezi libovolnými body

Více

Permanentní GNSS stanice Kunžak rozšíření o sledování systému Galileo. Dokumentace funkčního vzorku

Permanentní GNSS stanice Kunžak rozšíření o sledování systému Galileo. Dokumentace funkčního vzorku Výzkumný ústav geodetický, topografický a kartografický, v.v.i. Geodetická observatoř Pecný Permanentní GNSS stanice Kunžak rozšíření o sledování systému Galileo Dokumentace funkčního vzorku Jakub Kostelecký

Více

Permanentní GNSS stanice pro sledování systému QZSS pro projekt JAXA MGM. Dokumentace funkčního vzorku

Permanentní GNSS stanice pro sledování systému QZSS pro projekt JAXA MGM. Dokumentace funkčního vzorku Výzkumný ústav geodetický, topografický a kartografický, v.v.i. Geodetická observatoř Pecný Permanentní GNSS stanice pro sledování systému QZSS pro projekt JAXA MGM Dokumentace funkčního vzorku Jakub Kostelecký

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Terestrické 3D skenování

Terestrické 3D skenování Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního

Více

GEPRO řešení pro GNSS Leica

GEPRO řešení pro GNSS Leica GEPRO řešení pro GNSS Leica GEPRO spol. s r. o. Ing. Jan Procházka GEPRO řešení pro GNSS Leica GNSS rover» odolný PC tablet s Win 7» GNSS anténa přes bluetooth» až 1 cm přesnost» KOKEŠ, MISYS, PROLAND

Více

GPS Manuál. Tato příručka je vánoční dárkem Orlíků pro oddíl.

GPS Manuál. Tato příručka je vánoční dárkem Orlíků pro oddíl. GPS Manuál Tato příručka je vánoční dárkem Orlíků pro oddíl. Obsah Co je to GPS... 3 Jak to funguje GPS... 4 HOLUX FunTrek 132... 6 Základní ovládání... 6 Jak vyhledat GPS bod... 7 Hledání uložené kešky...

Více

Digitální modely terénu (2)

Digitální modely terénu (2) Digitální modely terénu (2) Ing. Martin KLIMÁNEK, Ph.D. 411 Ústav geoinformačních technologií Lesnická a dřevařská fakulta, Mendelova zemědělská a lesnická univerzita v Brně 1 Digitální modely terénu :

Více

GEOTECHNICKÝ MONITORING

GEOTECHNICKÝ MONITORING Inovace studijního oboru Geotechnika reg. č. CZ.1.07/2.2.00/28.0009 GEOTECHNICKÝ MONITORING podklady do cvičení SEIZMICKÁ MĚŘENÍ Ing. Martin Stolárik, Ph.D. Místnost: C 315 Telefon: 597 321 928 E-mail:

Více

Historie sledování EOP (rotace)

Historie sledování EOP (rotace) Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921

Více

5. Glob{lní navigační satelitní systémy (GNSS), jejich popis, princip, využití v geodézii.

5. Glob{lní navigační satelitní systémy (GNSS), jejich popis, princip, využití v geodézii. 5. Glb{lní navigační satelitní systémy (GNSS), jejich ppis, princip, využití v gedézii. Zpracval: Tmáš Kbližek, 2014 Obecný princip Glbální navigační družicvé systémy (GNSS) umžňují určení prstrvé plhy

Více

OBSAH Kapitola 1. Od kamenů k satelitům... Kapitola 2. Navigační satelity... 10 Kapitola 3. Zdroje nepřesnosti: problémy... 15

OBSAH Kapitola 1. Od kamenů k satelitům... Kapitola 2. Navigační satelity... 10 Kapitola 3. Zdroje nepřesnosti: problémy... 15 OBSAH Kapitola 1. Od kamenů k satelitům... 2 Doba kamenná... 2 Doba hvězd... 3 Doba rádiová... 5 Doba LORAN... 7 Doba satelitů... 8 Kapitola 2. Navigační satelity... 10 Měření vzdáleností k satelitům...

Více

Měření satelitů. Satelitní přenos je téměř nejpoužívanější provozování televize v Norsku. Protože Norsko má malou hustotu osídlení a členitý terén.

Měření satelitů. Satelitní přenos je téměř nejpoužívanější provozování televize v Norsku. Protože Norsko má malou hustotu osídlení a členitý terén. Měření satelitů Úvod Satelitní přenos je téměř nejpoužívanější provozování televize v Norsku. Protože Norsko má malou hustotu osídlení a členitý terén. Naším úkolem bylo popsat používání frekvenčního spektra

Více

Clino Guard Bezpečnost bez omezení

Clino Guard Bezpečnost bez omezení Clino Guard Bezpečnost bez omezení Systémy péče o osoby se ztrátou orientace 02 03 Ochrana osob se ztrátou orientace Systém péče o osoby se ztrátou orientace Clino Guard od firmy Ackermann podstatně usnadňuje

Více

Správa rádiových kmitočtů v pásmech 800 MHz, 1800 MHz a 2600 MHz po výběrovém řízení

Správa rádiových kmitočtů v pásmech 800 MHz, 1800 MHz a 2600 MHz po výběrovém řízení Správa rádiových kmitočtů v pásmech 800 MHz, 1800 MHz a 2600 MHz po výběrovém řízení Martin Hanuš Český telekomunikační úřad Odbor správy kmitočtového spektra Obsah 2 Průběh a výsledky výběrového řízení

Více

PŘESNOST SATELITNÍHO NAVIGAČNÍHO SYSTÉMU GPS A JEHO DOSTUPNOST V KRITICKÝCH PODMÍNKÁCH

PŘESNOST SATELITNÍHO NAVIGAČNÍHO SYSTÉMU GPS A JEHO DOSTUPNOST V KRITICKÝCH PODMÍNKÁCH PŘESNOST SATELITNÍHO NAVIGAČNÍHO SYSTÉMU GPS A JEHO DOSTUPNOST V KRITICKÝCH PODMÍNKÁCH PRECISENESS OF SATELLITE NAVIGATION SYSTEM GPS AND ITS AVAILABILITY UNDER CRITICAL CONDITIONS Josef Marek, Ladislav

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

Geolokalizace. François Peyret, ředitel výzkumu, šéf sekce robotiky a lokalizace LCPC předseda komise pro lokalizaci statickou i dynamickou CNIG

Geolokalizace. François Peyret, ředitel výzkumu, šéf sekce robotiky a lokalizace LCPC předseda komise pro lokalizaci statickou i dynamickou CNIG Geolokalizace François Peyret, ředitel výzkumu, šéf sekce robotiky a lokalizace LCPC předseda komise pro lokalizaci statickou i dynamickou CNIG Místo úvodu začíná autor tím, že vyvrací některé názory,

Více

GALILEO - SYSTÉM DRUŽICOVÉ NAVIGACE

GALILEO - SYSTÉM DRUŽICOVÉ NAVIGACE GALILEO - SYSTÉM DRUŽICOVÉ NAVIGACE František Vejražka, Petr Kačmařík Fakulta elektrotechnická ČVUT, katedra radioelektroniky, Technická 2, 166 27 Praha 6 vejrazka@fel.cvut.cz Abstrakt: V příspěvku se

Více

þÿ S a t e l i t n í n a v i g a c e G P S a j e j í v vyhledávání vozidel

þÿ S a t e l i t n í n a v i g a c e G P S a j e j í v vyhledávání vozidel Digitální knihovna Univerzity Pardubice DSpace Repository Univerzita Pardubice http://dspace.org þÿ B a k a l áy s k é p r á c e / B a c h e l o r ' s w o r k s K D P D F J P 2010 þÿ S a t e l i t n í

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

České vysoké učení technické v Praze Katedra speciální geodézie DIPLOMOVÁ PRÁCE Společné zpracování měření totální stanicí a GPS 1999 KOUKL Jan

České vysoké učení technické v Praze Katedra speciální geodézie DIPLOMOVÁ PRÁCE Společné zpracování měření totální stanicí a GPS 1999 KOUKL Jan České vysoké učení technické v Praze Katedra speciální geodézie DIPLOMOVÁ PRÁCE Společné zpracování měření totální stanicí a GPS 1999 KOUKL Jan Čestné prohlášení ČESTNÉ PROHLÁŠENÍ "Místopřísežně prohlašuji,

Více

Laserové skenování (1)

Laserové skenování (1) (1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem

Více

Akce na GNSS rovery a SmartStation, novinky

Akce na GNSS rovery a SmartStation, novinky Akce na GNSS rovery a SmartStation, novinky Vážení přátelé, S blížícím se koncem roku bychom Vás rádi potěšili výraznými cenovými akcemi na značkové Leica GNSS rovery a kombinaci GNSS s totální stanicí

Více

Představíme základy bezdrátových sítí. Popíšeme jednotlivé typy sítí a zabezpečení.

Představíme základy bezdrátových sítí. Popíšeme jednotlivé typy sítí a zabezpečení. 10. Bezdrátové sítě Studijní cíl Představíme základy bezdrátových sítí. Popíšeme jednotlivé typy sítí a zabezpečení. Doba nutná k nastudování 1,5 hodiny Bezdrátové komunikační technologie Uvedená kapitola

Více

3D laserové skenování Silniční stavitelství. Aplikace

3D laserové skenování Silniční stavitelství. Aplikace 3D laserové skenování Silniční stavitelství Aplikace Využití technologie 3D laserového skenování v silničním stavitelství Je tomu již více než deset let, kdy se v USA začala využívat technologie laserového

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Role a potřeby Správy železniční dopravní cesty

Role a potřeby Správy železniční dopravní cesty Role a potřeby Správy železniční dopravní cesty Ing. Petr Kolář 25. 6. 2014 GNSS Centre of Excellence Obsah Úvod Železniční doprava o Mimořádné události o Přejezdy Technické předpoklady pro rozvoj železničních

Více

ZÁKLADNÍ PRINCIPY PRAŽSKÉ INTEGROVANÉ DOPRAVY

ZÁKLADNÍ PRINCIPY PRAŽSKÉ INTEGROVANÉ DOPRAVY APEX ZÁKLADNÍ PRINCIPY PRAŽSKÉ INTEGROVANÉ DOPRAVY Jednotný regionální dopravní systém, založený na preferenci páteřní kolejové dopravy (železnice, metro, tramvaje), autobusová doprava je organizována

Více

Moderní multimediální elektronika (U3V)

Moderní multimediální elektronika (U3V) Moderní multimediální elektronika (U3V) Prezentace č. 6 Instalace satelitní antény a přijímače DVB-S/S2 Prof. Ing. Václav Říčný, CSc. Ústav radioelektroniky, FEKT VUT v Brně Instalace antény ny a přijp

Více

První piloti, navigátoři a letečtí fotografové. Obsah přednášky: Moderní technologie v geodézii a jejich využití v KN

První piloti, navigátoři a letečtí fotografové. Obsah přednášky: Moderní technologie v geodézii a jejich využití v KN Moderní technologie v geodézii a jejich využití v KN (1) Moderní technologie v geodézii a jejich využití v KN DPLS a integrace nových měřických postupů Ing. Václav Šafář, VÚGTK, v.v.i., v vaclav.safar@vugtk.cz

Více

Žádost - VZOR o udělení individuálního oprávnění k využívání rádiových kmitočtů

Žádost - VZOR o udělení individuálního oprávnění k využívání rádiových kmitočtů ČESKÝ TELEKOMUNIKAČNÍ ÚŘAD se sídlem Sokolovská 219, Praha 9 poštovní přihrádka 02, 225 02 Praha 025 Žádost - VZOR o udělení individuálního oprávnění k využívání rádiových kmitočtů Č.j. žadatele Žádost

Více

16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz

16.3.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Přednáška byla zpracována s využitím dat a informací uveřejněných na http://geoportal.cuzk.cz/ k 16.3. 2015. Státní mapová díla jsou stanovena nařízením vlády

Více

KOMATSU-TOPCON OVLÁDACÍ SYSTÉMY STROJE OVLÁDÁNÍ STROJE

KOMATSU-TOPCON OVLÁDACÍ SYSTÉMY STROJE OVLÁDÁNÍ STROJE KOMATSU-TOPCON OVLÁDACÍ SYSTÉMY STROJE OVLÁDÁNÍ STROJE O VLÁDACÍ SYSTÉMY STROJE ŘEŠENÍ KOMATSU - TOPCON Ovládání stroje: chybějící článek automatizace Všechny dozery a rýpadla Komatsu nabízí možnost využití

Více

Příloha pro metrologii času

Příloha pro metrologii času Příloha pro metrologii času Čas z filozofického hlediska Staří Řekové rozlišovali dva druhy času Chronos a Kairos. Chronos odpovídal asi našemu času, který běží lineárně konstantní rychlostí - nekonečně.

Více

Využití moderních technologií v oblasti Bezpečnosti majetku a osob

Využití moderních technologií v oblasti Bezpečnosti majetku a osob Využití moderních technologií v oblasti Bezpečnosti majetku a osob Přehled systémů Typické systémy fyzické ochrany CCTV Sensory Systém kontroly a zpracování dat Lidský monitoring a hodnocení AACS Přehled

Více

Geografické informační systémy

Geografické informační systémy Geografické informační systémy GIS Tomáš Vaníček Stavební fakulta ČVUT Thákurova 7, Praha Dejvice vanicek@fsv.cvut.cz http://kix.fsv.cvut.cz/~vanicek Digitální mapy Rastrové obrázky (například www.mapy.cz)

Více

GIS v Dopravě. Marek Wija, WIJ003 1.4.2010

GIS v Dopravě. Marek Wija, WIJ003 1.4.2010 GIS v Dopravě Marek Wija, WIJ003 1.4.2010 Obsah Příklady využití GIS v dopravě Mapování silničních a uličních sítí Jednotný systém dopravních informací v ČR Sledování vozidel pomocí GPS Příklady využití

Více

GNSS Centre of Excellence

GNSS Centre of Excellence GNSS Centre of Excellence Česká republika Praha, 25.6.2014 GNSS Centre of Excellence, Navigační 787, 252 61 Jeneč, Česká republika; IČO: 01269313 kontakt: info@gnss-centre.cz; www.gnss-centre.cz I. Cíle

Více

154GEY2 Geodézie 2 6. Státní mapová díla ČR a účelové mapy pro výstavbu.

154GEY2 Geodézie 2 6. Státní mapová díla ČR a účelové mapy pro výstavbu. 154GEY2 Geodézie 2 6. Státní mapová díla ČR a účelové mapy pro výstavbu. 6.1 Mapa, plán. 6.2 Rozdělení map. 6.3 Metody kartografického vyjadřování na mapách. 6.3.1 Polohopis. 6.3.2 Výškopis. 6.3.3 Popis.

Více

FAKULTA ELEKTROTECHNICKÁ Spojujeme elektrotechniku a informatiku PRACUJ V OBORU. S OBRATEM VÍCE NEŽ MILIARD Kč

FAKULTA ELEKTROTECHNICKÁ Spojujeme elektrotechniku a informatiku PRACUJ V OBORU. S OBRATEM VÍCE NEŽ MILIARD Kč FAKULTA ELEKTROTECHNICKÁ Spojujeme elektrotechniku a informatiku PRACUJ V OBORU S OBRATEM VÍCE NEŽ MILIARD Kč (celosvětový roční výnos mobilních operátorů zdroj Strategy Analytics 2013) Studuj obory KOMUNIKAČNÍ

Více

Novinky v letecké navigaci a komunikaci, přechod na novou kanálovou rozteč

Novinky v letecké navigaci a komunikaci, přechod na novou kanálovou rozteč Novinky v letecké navigaci a komunikaci, přechod na novou kanálovou rozteč Ing. Jiří Valenta Ministerstvo dopravy Odbor civilního letectví RADIOKOMUNIKACE 2014 1 Letecké radiokomunikační služby Letecká

Více

GPS pro sběr GIS dat Leica GS20 PDM

GPS pro sběr GIS dat Leica GS20 PDM GPS pro sběr GIS dat Leica GS20 PDM Mapovací nástroj budoucnosti je zde již dnes. Ucítíte sílu GS20 Professional Data Mapper (PDM) je nejpokročilejší ruční GPS pro sběr GIS dat a mapování. Výkon Nyní je

Více

GEOINFORMATIKA. -základní pojmy a principy -ukázky aplikací GIS v praxi. Lukáš MAREK a Vít PÁSZTO

GEOINFORMATIKA. -základní pojmy a principy -ukázky aplikací GIS v praxi. Lukáš MAREK a Vít PÁSZTO GEOINFORMATIKA -základní pojmy a principy -ukázky aplikací GIS v praxi Lukáš MAREK a Vít PÁSZTO GEOINFORMATIKA JE spojením informatiky a geografie uplatnění geografie v počítačovém prostředí je obor, který

Více

Česká republika. Praha, 2014

Česká republika. Praha, 2014 GNSS Centre of Excellence Česká republika Praha, 2014 GNSS Centre of Excellence, Navigační 787, 252 61 Jeneč, Česká republika; IČO: 01269313 kontakt: info@gnss-centre.cz; www.gnss-centre.cz Obsah I. Představení

Více

Téma: Geografické a kartografické základy map

Téma: Geografické a kartografické základy map Topografická příprava Téma: Geografické a kartografické základy map Osnova : 1. Topografické mapy, měřítko mapy 2. Mapové značky 3. Souřadnicové systémy 2 3 1. Topografické mapy, měřítko mapy Topografická

Více

DODATEK D PŘEDPIS L 10/I

DODATEK D PŘEDPIS L 10/I DODATEK D PŘEDPIS L 10/I DODATEK D INFORMACE A VÝKLADOVÉ MATERIÁLY PRO APLIKACI STANDARDŮ A DOPORUČENÝCH POSTUPŮ GNSS 1. Definice Duo-binarita (Bi-binary) Duo-binarita je známa jako kódování typu Manchester.

Více

Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra

Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra Geografická data nekomerční nebo volně dostupná komerční státní správa privátní sféra všeobecná specializovaná pokrývají celé území

Více

Geodetické základy Bodová pole a sítě Stabilizace a signalizace

Geodetické základy Bodová pole a sítě Stabilizace a signalizace Geodézie přednáška 3 Geodetické základy Bodová pole a sítě Stabilizace a signalizace Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické základy každé

Více

DATA A SLUŽBY ZEMĚMĚŘICKÉHO ÚŘADU

DATA A SLUŽBY ZEMĚMĚŘICKÉHO ÚŘADU Zeměměřický úřad DATA A SLUŽBY ZEMĚMĚŘICKÉHO ÚŘADU Ing. Bohumil Vlček Zeměměřický úřad Odbor správy a užití geoinformací 8. 11. 2013 Geografické informace poskytované ZÚ Geografické podklady, produkty

Více

Měřičské a kontrolní JEDNODUCHÉ NA POUŽITÍ SPOLEHLIVÉ PŘESNÉ

Měřičské a kontrolní JEDNODUCHÉ NA POUŽITÍ SPOLEHLIVÉ PŘESNÉ Měřičské a kontrolní systémy Trimble PŘESNÉ SPOLEHLIVÉ JEDNODUCHÉ NA POUŽITÍ víc nástrojů pro víc druhů práce Rozpočtáři Přípraváři Geodeti Datoví manažeři Stavební inženýři Stavbyvedoucí / stavební dozor

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 FKULT STVENÍ VUT V RNĚ PŘIJÍMÍ ŘÍZENÍ O MNSP STVENÍ INŽENÝRSTVÍ PRO KEMIKÝ ROK 2012 2013 OOR: GEOÉZIE KRTOGRFIE TEST Část 1 Která z uvedených hodnot přísluší úhlu s nejmenší velikostí: 9 cc 0,0001 0,8

Více

Geografické Informační Systémy

Geografické Informační Systémy Geografické Informační Systémy GIS v dopravě Bednář David 2009-04-09 Vysoká škola Báňská, Technická univerzita Ostrava Agenda: - Použití GIS v dopravě (obecněji) - Zajímavé oblasti využití - plánování

Více

CCS Monitor je vynikající řídící a kontrolní prostředek pro veškerá služební vozidla jak ve státní správě tak i v soukromém sektoru

CCS Monitor je vynikající řídící a kontrolní prostředek pro veškerá služební vozidla jak ve státní správě tak i v soukromém sektoru Obecný popis produktu CCS Monitor CCS Monitor je vynikající řídící a kontrolní prostředek pro veškerá služební vozidla jak ve státní správě tak i v soukromém sektoru systém je založen na využívání celosvětové

Více

Příklady využití GIS pro práci odboru dopravy Libereckého kraje. I. Analýza nehodových úseků z roku 2005 dílčí výstupy

Příklady využití GIS pro práci odboru dopravy Libereckého kraje. I. Analýza nehodových úseků z roku 2005 dílčí výstupy Příklady využití GIS pro práci odboru dopravy Libereckého kraje I. Analýza nehodových úseků z roku 2005 dílčí výstupy Úvodní informace k nehodovosti LK ročně registruje přes 9 000 nehod Úlohy kraje - monitorovat

Více

Družicová navigace a kosmické technologie jako předpoklad moderní dopravní telematiky. Karel Dobeš Vládní zmocněnec pro spolupráci s GSA

Družicová navigace a kosmické technologie jako předpoklad moderní dopravní telematiky. Karel Dobeš Vládní zmocněnec pro spolupráci s GSA Družicová navigace a kosmické technologie jako předpoklad moderní dopravní telematiky Karel Dobeš Vládní zmocněnec pro spolupráci s GSA Inteligentní dopravní systémy (ITS) Zdroj: MD 17. května 2012 Trendy

Více

SÍTĚ NOVÉ GENERACE. - podpora NGA sítí - rozvoj mobilních sítí LTE

SÍTĚ NOVÉ GENERACE. - podpora NGA sítí - rozvoj mobilních sítí LTE SÍTĚ NOVÉ GENERACE - podpora NGA sítí - rozvoj mobilních sítí LTE Marek Ebert Český telekomunikační úřad ISSS 2014 Hradec Králové, 7. a 8. dubna 2014 Agenda 1) Podpora budování přístupových sítí NGA pro

Více

Vzájemná spolupráce systémů a harmonizované poskytování služeb ITS

Vzájemná spolupráce systémů a harmonizované poskytování služeb ITS ISSS 2012 Blok Ministerstva dopravy Inteligentní dopravní systémy Vzájemná spolupráce systémů a harmonizované poskytování služeb ITS Martin Pichl Odbor kosmických technologií a družicových systémů Hradec

Více

Data a služby programu Copernicus

Data a služby programu Copernicus Data a služby programu Copernicus Lenka Hladíková CENIA Oddělení mapových služeb Lenka Hladíková CENIA, česká informační agentura životního prostředí Videokonference se zástupci krajských úřadů Praha,

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

Srovnání možností zaměření a vyhodnocení historické fasády

Srovnání možností zaměření a vyhodnocení historické fasády Srovnání možností zaměření a vyhodnocení historické fasády Ing. Bronislav Koska, Ing. Tomáš Křemen, Doc. Ing. Jiří Pospíšil, CSc. Katedra speciální geodézie Fakulta stavební České vysoké učení technické

Více

SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP

SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP SEZNÁMENÍ S PROJEKTEM AMA AUTONOMOUS MAPPING AIRSHIP Bronislav Koska*, Tomáš Křemen*, Vladimír Jirka** *Katedra speciální geodézie, Fakulta stavební ČVUT v Praze **ENKI, o.p.s. Obsah Porovnání metod sběru

Více

Satelitní vyhledávání a monitorování vozidel

Satelitní vyhledávání a monitorování vozidel Satelitní vyhledávání a monitorování vozidel www.carloc.cz Měnící se potřeby a přání klientů spolu s rozvojem techniky, inovací produktů a vývojem legislativy vytvářejí základ pro strategii naší společnosti.

Více

6.16. Geodetické výpočty - GEV

6.16. Geodetické výpočty - GEV 6.16. Geodetické výpočty - GEV Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího

Více

Mapy - rozdělení podle obsahu, měřítka a způsobu vyhotovení Plán Účelové mapy

Mapy - rozdělení podle obsahu, měřítka a způsobu vyhotovení Plán Účelové mapy Mapy - rozdělení podle obsahu, měřítka a způsobu vyhotovení Plán Účelové mapy Kartografie přednáška 2 Mapy a jejich měřítka, plán výsledkem většiny mapovacích prací je mapa nebo plán Mapa zmenšený generalizovaný

Více

DOHODA MEZI EVROPSKÝM SPOLEČENSTVÍM A JEHO ČLENSKÝMI STÁTY A UKRAJINOU O SPOLUPRÁCI NA CIVILNÍM GLOBÁLNÍM DRUŽICOVÉM NAVIGAČNÍM SYSTÉMU (GNSS)

DOHODA MEZI EVROPSKÝM SPOLEČENSTVÍM A JEHO ČLENSKÝMI STÁTY A UKRAJINOU O SPOLUPRÁCI NA CIVILNÍM GLOBÁLNÍM DRUŽICOVÉM NAVIGAČNÍM SYSTÉMU (GNSS) 85 der Beilagen XXIII. GP - Staatsvertrag - 20 Vertragstext tschechisch - CS (Normativer Teil) 1 von 21 DOHODA MEZI EVROPSKÝM SPOLEČENSTVÍM A JEHO ČLENSKÝMI STÁTY A UKRAJINOU O SPOLUPRÁCI NA CIVILNÍM GLOBÁLNÍM

Více

Význam sídla GSA v Praze pro ČR a český průmysl. Karel Dobeš Vládní zmocněnec pro spolupráci s GSA

Význam sídla GSA v Praze pro ČR a český průmysl. Karel Dobeš Vládní zmocněnec pro spolupráci s GSA Význam sídla GSA v Praze pro ČR a český průmysl Karel Dobeš Vládní zmocněnec pro spolupráci s GSA Evropský projekt Galileo EGNOS (v provozu a certifikován pro leteckou dopravu) Systémová část projektu

Více

Portál veřejné správy ČR - CENIA

Portál veřejné správy ČR - CENIA Dostupné zdroje geodat v ČR - nekomerční, státní správa, privátní sféra Geografická data nekomerční nebo volně dostupná komerční státní správa privátní sféra všeobecná specializovaná pokrývají celé území

Více

Ministerstvo dopravy Bratislava, 14. září 2006

Ministerstvo dopravy Bratislava, 14. září 2006 Ministerstvo dopravy Bratislava, 14. září 2006 Evropská unie ve svých strategických materiálech doporučuje zavádění systémů zpoplatnění užívání dopravní infrastruktury na principu uživatel platí. Znamená

Více

Z E M Ě M Ě Ř I C K Ý Ú Ř A D NOVÉ ZDROJE GEOPROSTOROVÝCH DAT POKRÝVAJÍCÍCH ÚZEMÍ STÁTU

Z E M Ě M Ě Ř I C K Ý Ú Ř A D NOVÉ ZDROJE GEOPROSTOROVÝCH DAT POKRÝVAJÍCÍCH ÚZEMÍ STÁTU Z E M Ě M Ě Ř I C K Ý Ú Ř A D NOVÉ ZDROJE GEOPROSTOROVÝCH DAT POKRÝVAJÍCÍCH ÚZEMÍ STÁTU Ing. Karel Brázdil, CSc. karel.brazdil@cuzk.cz 1 O B S A H P R E Z E N T A C E 1. Projekt nového mapování výškopisu

Více

POSKYTOVÁNÍ A UŽITÍ DAT Z LETECKÉHO LASEROVÉHO SKENOVÁNÍ (LLS)

POSKYTOVÁNÍ A UŽITÍ DAT Z LETECKÉHO LASEROVÉHO SKENOVÁNÍ (LLS) POSKYTOVÁNÍ A UŽITÍ DAT Z LETECKÉHO LASEROVÉHO SKENOVÁNÍ (LLS) Petr Dvořáček Zeměměřický úřad ecognition Day 2013 26. 9. 2013, Praha Poskytované produkty z LLS Digitální model reliéfu České republiky 4.

Více

Wi-Fi aplikace v důlním prostředí. Robert Sztabla

Wi-Fi aplikace v důlním prostředí. Robert Sztabla Robert Sztabla Robert Sztabla Program Páteřní síť Lokalizace objektů Hlasové přenosy Datové přenosy v reálném čase Bezpečnost Shrnutí Páteřní síť Wi-Fi aplikace v důlním prostředí Spolehlivé zasíťování

Více

Specifikace. Trimble SPS855 GNSS Referenční stanice

Specifikace. Trimble SPS855 GNSS Referenční stanice Název přijímače Klíčové vlastnosti Možnost výměny mezi režimy Base a Rover Obnovovací frekvence pozice roveru Maximální dosah radiového signálu z referenční stanice Možnost práce roveru v síti referenčních

Více

2/9. státu a zásady jejich používání.

2/9. státu a zásady jejich používání. 10. kategorie použití vysílacích rádiových zařízení dle mezinárodní dohody 1 ), 11. obsazení kmitočtu vysíláním nosné (nepřetržité/občasné), 12. informace o zpracovateli technických údajů sítě, 13. účel

Více

ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168

ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 HLAVA 5 ÚSEK KONEČNÉHO PŘIBLÍŽENÍ 5.1 VŠEOBECNĚ 5.1.1 Účel Toto je úsek, kde se provádí vyrovnání do směru a klesání na přistání. Konečné přiblížení může být provedeno

Více

Frekvenční rozsah wifi s ideálním rozdělením sítí na kanálu 1, 6 a 11

Frekvenční rozsah wifi s ideálním rozdělením sítí na kanálu 1, 6 a 11 OBSAH: WIFI KANÁLY TEORETICKY WIFI KANÁLY V PRAXI ANTÉNY Z HLEDISKA ZISKU ANTÉNY Z HLEDISKA POČTU ŠÍŘENÍ SIGNÁLU ZLEPŠENÍ POKRYTÍ POUŽITÍ VÍCE VYSÍLAČŮ WIFI KANÁLY TEORETICKY Wifi router vysílá na určité

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Zajištění bezpečnosti leteckého provozu na letištích a v místech okolo letiště, kde letadla vzlétají nebo přistávají.

Zajištění bezpečnosti leteckého provozu na letištích a v místech okolo letiště, kde letadla vzlétají nebo přistávají. Ústav územního rozvoje, Jakubské nám. 3, 658 34 Brno Tel.: +420542423111, www.uur.cz, e-mail: sekretariat@uur.cz LIMITY VYUŽITÍ ÚZEMÍ Dostupnost: http://www.uur.cz/default.asp?id=2591 2.7.101 OCHRANNÁ

Více