Teoretický souhrn k 2. až 4. cvičení

Rozměr: px
Začít zobrazení ze stránky:

Download "Teoretický souhrn k 2. až 4. cvičení"

Transkript

1 SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200

2 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko celek ve své vývo kvntfkovtelné vlstnost chování. o účel o struktur: prvky, hrnce, okolí, vntřní vněší vzy. o kvntfkovtelné chování: y = T() Systé výrz odvozený z řečtny o Syn dohrody o Hste sestvovt Zákldní té systéových věd. Zkouání vzthů, nkolv oektů, prvků sotných Systé zvádíe n oekt: o stnovení hrnc oektu (odlšení vněších vntřních vze); o stnovení ěřítk nšeho zkouání..2. Model e ožné oecně rozlšt n Ikoncké odely (terálové) Syolcké odely o Slovní (npř. pohádky, le, ) o Grfcké (npř. oleol, stvení plánky, py, ) o Mtetcké (npř. úlohy lneárního progrování, ) Dlší ožné rozdělení: Nortvní odely (npř. zákoník práce, ) vs. Deskrptvní odely (npř. tls hu, ) Koncepční odely (npř. návrh dtového odelu IS, )

3 2. Systéový troúhelník OBJEKT SYSTÉM Reálný svět Věd - etody OR/MS MODEL

4 3. Anlytcký postup př tvorě odelů 3.. Oecný tvr zákldních typů oezuících podínek Spotřeou e zde yšlen terálový vstup do výroní trnsforce. Výroou e zde yšlen produktový výstup z výroní trnsforce. kpctní: spotře K Vydřuí kpctní (vstupní) oezení ve výroě; terálové toky vstupuící do výroní trnsforce sou ltovány výroní technologí neo skldovcí prostory. Hodnot K zde zstupue konstntní oezení vstupu. poždvkové: výro P Vydřuí poždvkové (výstupní) oezení ve výroě; vyráěné produkty sou poždovány v určté nožství, npř. z důvodů rketngu. Hodnot P zde zstupue konstntní oezení výstupu. lnční: výro spotře Vydřuí vntřní uspořádání výroního systéu; vydřuí výroní trnsforc ve forě vzthů terálových toků, ezproduktů produktů Anlytcký postup př odvozování odelu z tetu. Určení proěnných ech poenování stnoveních ech ednotek. Proěnné e ožné odvodt vyezení zkouného proléu cíle, kterého chcee dosáhnout. Proěnné se ohou ukrývt z podsttný ény, který nzýváe předět dosženého cíle neo klíčový předět proléové olst. Proěnný ohou ýt terálové toky, ezprodukty produkty. Tzn.: Otázkou, co e cíle dné úlohy, se lížíe ke stnovení výstupů, dných produktů. Otázkou, co e prolée v dné úloze, se lížíe ke stnovení vstupů, resp. vyezení proléu zprcování terálových toků. 2. Rozdělení proěnných n vstupní výstupní proěnné. Proěnné e nutné pro dlší postup rozlšt do dvou ktegorí: n proěnné terálového neo ezproduktového vstupu (spotřey); n proěnné ezproduktového neo produktového výstupu (výroy).

5 3. Stnovení poždvků kpct úlohy. Vyenování poenování konkrétních poždvků kpct určíe udoucí kpctní poždvkové oezuící podínky. Číselnou hodnotu kpcty č poždvku poenuee vyádříe v ednotkách, dále k ní určíe proěnnou neo proěnné, kterých se to týká. 4. Doszení proěnných do oecného tvru oezuících podínek. Do oecného tvru oezuících podínek z klíčová slov spotře výro doszuee proěnné vstupu výstupu. Nedříve stnovíe oezuící podínky kpct poždvků, neoť ty sou dány ž předcházeící kroke. Blnční podínky stnovuee nposled n zákldě vzthů výroní trnsforce (npř. dle dgrů systéu). 5. Kontrol správnost lnčních podínek (závslost proěnných). Je ožné se setkt s následuící stuce: Pokud n vznk produktu neo ezproduktu sou zpotřeí všechny terálové vstupy (toky), ude tolk oezuících lnčních podínek ko e těchto terálových vstupů. Tzn. výsledný produkt vznká pouze z přítonost všech vstupů. Estue tedy závslost ez vstupy. Pokud všk př vznku produktu se rozhodue, který terálový tok ho ude tvořt, vznká edn oezuící lnční podínk. N vznku produktu se ohou, le neusí, podílet všechny vstupy. Vstupní prvky sou ez seou nezávslé. Jestlže vznká zároveň více produktů z ednoho terálového vstupu, ude vytvořeno tolk oezuících lnčních podínek kolk e vznkících produktů. Vznkící produkty sou ez seou závslé. Pokud vznkne eden, vznkí osttní. Jestlže ůže, le neusí, vznknout více produktů z ednoho terálového vstupu, ude vytvořen právě pouze edn oezuící lnční podínk. Je rozhodováno, který produkt díky terálovéu vstupu vznkne. Výstupy sou ez seou nezávslé. 6. Kontrol koefcentů u proěnných (sysluplnost výrzu). Množstevní č lnční koefcenty k proěnný e ožné dát dle prvotní úvhy s tí, že následně ude proveden ech kontrol. Kontrolu e ožné provést doszení fktvního nožství k lovolně zvolený proěnný. Tzn. npříkld z proěnné ez koefcentů sou doszeny konkrétní reálné číselné hodnoty z pooc výpočtu sou vyádřeny zývící proěnné, které y ěl svý hodnot ýt v určté trnsforční poěru, tzn. výsledné hodnoty y ěl ýt sysluplné k zdný fktvní hodnotá. Pokud kontrol poukázl n nesprávnost, e ožné správný tvr lnční podínky získt převrácení hodnoty koefcentů.

6 4. Dgry systéu 4.. Vyezení grfckých útvrů Defnovné grfcké útvry pro relzc dgru systéu: Prvek systéu vydřovný čtverce neo odélníke; váže se k něu vždy edn strukturní proěnná s cenový koefcente. Vzy ez prvky systéu sou znázorňovány ednoduchý špk; zčátky konce špek ohou ýt ohodnoceny lnční neo ednotkový koefcenty. Doplňkový grfcký útvr pro znázornění vzy př rozhodování, kdy předcházeící prvek e eden následuících prvků více; edná se o závslou dsgregc. Doplňkový grfcký útvr pro znázornění vzy př rozhodování, kdy předcházeících prvků e více následuící prvek e pouze eden; edná se o nezávslou gregc. Interkce s okolí vněší vzy systéu Vyezení koefcentů vze. lnční koefcent výstupu předcházeícího prvku * vydřue podíl výstupu z celkového nožství surovny n prvek neo zhodnocení ednotky výstupu. nožstevní koefcent výstupu předcházeícího prvku ve výroě * vydřue oe prvku nálně potřený ve výroě v ednotkách surovny. lnční koefcent vstupu následuícího prvku * vydřue oe vstupu, snížený o ztrátu (δ ) prvku npř. př zprcování; resp.: = - δ. nožstevní koefcent vstupu následuícího prvku * vydřue oe ednotek vstupu n vznk následuícího prvku v ednotkách surovny Pokud ze zdání nevyplývá přío hodnot koefcentů, e vždy stnoven n hodnotu.

7 4.3. Zákldní typy vze Vzy v dgrech systéu vždy usí vydřovt určtou přeěnu, přerozdělení č sloučení, tzn. kc č trnsforc prvků ez seou. Složená vz n soě prlelně sérově závslých prvků: Oecný tvr lnční podínky: 0 = + Složená vz n soě sérově závslých prlelně nezávslých prvků: Oecný tvr lnční podínky: 0 = + Jednoduchá vz n soě závslých prvků: Oecný tvr lnční podínky: 0 +

8 4.4. Možné vrnty vze v dgru - ednoduchá vz; u všech osttních závslých konunktvních nezávslých dsunktvních vícenásoných vze lze provést dekopozc n ednoduché vzy. Lze vyádřt: c d - dsunktvní složená vz, u které následuící prvky sou ez seou závslé. Lze vyádřt: c + d 0 c d - dsunktvní vícenásoná vz, u které následuící prvky sou ez seou nezávslé. Lze vyádřt: c d 0 c d - konunktvní složená vz, u které předcházeící prvky sou ez seou nezávslé. Lze vyádřt: c + d 0 c d - konunktvní vícenásoná vz, u které předcházeící prvky sou ez seou závslé. Lze vyádřt: - + d d 0 - c + d 0

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

Metoda konečných prvků. Robert Zemčík

Metoda konečných prvků. Robert Zemčík Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn 2014 1 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy

Více

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

4 NÁHODNÝ VEKTOR. Čas ke studiu kapitoly: 60 minut. Cíl: Po prostudování této kapitoly budete umět

4 NÁHODNÝ VEKTOR. Čas ke studiu kapitoly: 60 minut. Cíl: Po prostudování této kapitoly budete umět 4 NÁHODNÝ VEKTOR Čs ke studu kptol: 6 mnut Cíl: o prostudování této kptol udete umět popst náhodný vektor eho sdružené rozdělení vsvětlt pom mrgnální podmíněné rozdělení prvděpodonost popst stochstckou

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Pístový efekt výtahů ve stavebních objektech

Pístový efekt výtahů ve stavebních objektech Pístový efekt výthů ve stvebních objektech Ing. Jiří Pokorný, Ph.D. Hsičský záchrnný sbor Morvskoslezského krje úzení odbor Opv Těšínská 39, 746 01 Opv e-il: jiripokorny@ujil.cz Klíčová slov Pístový efekt,

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný

Více

LINEÁRNÍ PROGRAMOVÁNÍ

LINEÁRNÍ PROGRAMOVÁNÍ LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící

Více

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak,

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak, .6. Mocniny celý ocnitele I Předpokldy: 6, 6 Př. : Kteé ze dvou pvidel je teticky hezčí? ) Po kždé R, N pltí: +. ) Po kždé R,, N, > pltí:. Zákldní poždvek n káu tetického pvidl: Muí ýt co nejoecnější inie

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

š Ě ř š ř Ě š Ť ř š Ě ň š ň Ý š Ť Š š ň š Ťť š Ě ú ú Ě š ř š š Ť š š Ó Ť Ě š ň ř ú š ú ú Ť š š š š š š ť Ý ú š ť š ť šť Ž Ť š š ú š ň š Ý ť š ň Ť ň š ň Ě Ť ý ň š š š Ť š š Ť ú ň ť š ť Ě ň Ť ň š ú ú ť š

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP FP 5 Měření paraetrů solárních článků Úkoly : 1. Naěřte a poocí počítače graficky znázorněte voltapérovou charakteristiku solárního článku. nalyzujte vliv různé intenzity osvětlení, vliv sklonu solárního

Více

Staticky určité případy prostého tahu a tlaku

Staticky určité případy prostého tahu a tlaku Spoehvost nosné onstruce Ztížení: -stáé G součnte ztížení G -proěnné Q.součnte ztížení Q Ztížení: -chrterstcé -návrhové G,V, + Pevnost - chrterstcá y z prcovního r. -návrhová (souč.spoehvost t. Posouzení

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník VI, řada stavební Sorník vědekýh prí Vysoké školy áňské - Tehniké univerzity Ostrv číslo, rok 2006, ročník VI, řd stvení Ivet SKOTNICOVÁ ZMĚNY VE VÝPOČTOVÝCH METODÁCH TEPELNĚ TECHNICKÝCH NOEM Astrt The rtile desries the

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Náklady výroby elektrické energie

Náklady výroby elektrické energie Náklady výroby elektrické energie Marginální náklady (arginální ezní, přírůstkové) Marginální náklady jsou definovány jako přírůstek nákladů vyvolaných ezní přírůstke poptávky (produkce). MC = dtc dq TC

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

4 SÁLÁNÍ TEPLA RADIACE

4 SÁLÁNÍ TEPLA RADIACE SÁLÁNÍ TEPLA RADIACE Vyzařovaná energie tělese se přenáší elektroagnetický vlnění o různé délce vlny. Podle toho se rozlišuje záření rentgenové, ultrafialové, světelné, infračervené a elektroagnetické

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

DIPLOMOVÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY

DIPLOMOVÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Mateatka úvěrů Vedoucí dploové práce: Mgr Eva Bohanesová, PhD Rok odevzdání: 2010

Více

Č Ž Á Í ž é é ě ě ú ů ů ě ě š ů Ť é ě é ě š ě š ě ě š ů é ú é ě ž ě ě š ů ú ú ě é ú ě ě š ů ě ů ů ě ěž ů ž ěž ů é ú ěž ž ů ě ě ú é ů ů ú š ó ě ú ů ů ů ů ů ů š ú ž ú é ň ú ů ů š ě ě ě ú ú é ú ě ů ě ú ů

Více

Ú ů ěš Š ň š Ú ě ě ě ů ž ý ě Ú ž ý ž ý ů ď š ě ž ů ů ů ýš ě ý ý ů ě š ě ě Š ě ý ě ď ě š ýš ž ě š ěž ěž ů ěš ý ě š ý ý ý ý ý ý ý š š Ř ž ž ě ě ž ý ú ů ů ě ý š ě ě ě ě š š ň ě Č ý ě ěž ž ý ú ů ž ě ě ě ý

Více

Algoritmus určování rovnice roviny pro laserové skenování

Algoritmus určování rovnice roviny pro laserové skenování Algortus určování rovnce rovny pro lserové skenování Úvod Ing Bronslv Kosk, Ing Mrtn Štroner, PhD, Doc Ing Jří Pospíšl, CSc, ČVU - Fkult stvební, Prh V rác řešení projektu GA ČR Moderní optoelektroncké

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Rozhodnutí zadavatele o výběru nejvhodnější nabídky

Rozhodnutí zadavatele o výběru nejvhodnější nabídky Rozhodnutí zdvtele o výběru nejvhodnější nbídky 1. Veřejná zkázk Název veřejné zkázky: Registrční číslo projektu: Název projektu: Předpokládná hodnot bez DPH: Lhůt pro podávání nbídek: 2. ZŠ Břest Nákup

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

0 Úprava výrazov + = a d Zložený zlomok upravíme na jednoduchý podľa pravidla b

0 Úprava výrazov + = a d Zložený zlomok upravíme na jednoduchý podľa pravidla b Híc, P. Pokorný, M.: Mtetik pre infortikov prírodné ved 0 Úprv výrzov Táto kpitol je zerná n prácu s výrzi n ich úprv. Aj keď s prktick jedná o stredoškolské učivo, doporučujee čitteľovi, si prepočítl

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

Vysokoúčinná kapalinová chromatografie

Vysokoúčinná kapalinová chromatografie MC30P14 Vysokoúčnná kapalnová chroatografe, 010/011 Vysokoúčnná kapalnová chroatografe Josef Cvačka, 311011 3.11.011 1 MC30P14 Vysokoúčnná kapalnová chroatografe, 010/011 Základy chroatografckého procesu

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

š č š ě Ú č ě ú š č Úň ě ž Ú ě ň ž ň ě Ý š ů š ž úč č Š ň ď Ž č š ě ň ů č Ž č Ž ú ň č š ž Ž ů č ů Š ú š ě č š ě ů š ů ě šť ě š š Ž č ě ě š ď Š ž ď ě š ě ě š ě ě š š ě Ě č ó ů ě ů ů ě š ě ů č ž š č Š ó

Více

K 311 03/2007. K 311 Podkroví Knauf

K 311 03/2007. K 311 Podkroví Knauf K 311 03/2007 K 311 Podkroví Knuf K 3111 K 3112 K 3113 K 3114 Opláštění podkroví ez nosné konstrukce Opláštění podkroví dřevěná nosná konstrukce Opláštění podkroví kovová nosná konstrukce Opláštění podkroví

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

ý ý Í ř é Ž Ž é ú š ý é Č é ý ý é ř ř é é ž Č ř ý ř ř ř ř ř ř ř ý š ý ú š ř é ř ň é ř š é ž ř ř ž é é ý ý ř ž é š ů ř ř š ý š ý ř é š ů ř ý š ž ý é é ř ý ů ř ř ř ř š š ů š š š š š ů ů ř é š ř ý ň š ů ž

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

š ž é é Č é ě é ě ž Í ž é š ň é ž š ú ě ž ú é ě é Ó ž ě ě ý ý é š é ú ě š ě ú ň Ť ý ý ý ýš ý ý ě ý ýš š ě é ě ň ý ý ě ý š ě ý ě ý ě ě é ě ý ý ě é ě ď ě ý ý ě Ť ě ě ý ý ě ý ě ý ě Í ě ý ž ž é ě ý ě Í ý ě

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic

Více

NÁVRH DECENTRALIZOVANÉHO ŘÍZENÍ METODOU DYNAMICKÉ KOMPENZACE. Milan Cepák, Branislav Rehák, Vladimír Havlena ČVUT FEL, katedra řídicí techniky

NÁVRH DECENTRALIZOVANÉHO ŘÍZENÍ METODOU DYNAMICKÉ KOMPENZACE. Milan Cepák, Branislav Rehák, Vladimír Havlena ČVUT FEL, katedra řídicí techniky ÁVR DECETRALIZVAÉ ŘÍZEÍ METDU DYAMICÉ MPEZACE Mlan Cepák, ranslav Rehák, Vladír avlena ČVUT FEL, katedra řídcí technky Abstrakt: Tento příspěvek se zabývá návrhe decentralzovaného řízení rozlehlých systéů

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Výzva k podání nabídky včetně zadávací dokumentace na veřejnou zakázku malého rozsahu

Výzva k podání nabídky včetně zadávací dokumentace na veřejnou zakázku malého rozsahu Výzva k podání nabídky včetně zadávací dokuentace na veřejnou zakázku alého rozsahu Zadavatel Úřední název zadavatele: Krajské ředitelství policie Královéhradeckého kraje IČO: 75151545 Sídlo/ísto podnikání:

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

ÚZEMNÍ STUDIE - LOKALITA ROUDNIČSKÁ HRADEC KRÁLOVÉ k.ú. TŘEBEŠ

ÚZEMNÍ STUDIE - LOKALITA ROUDNIČSKÁ HRADEC KRÁLOVÉ k.ú. TŘEBEŠ ÚZEMNÍ TUDIE - LOKLIT ROUDNIČKÁ HRDEC KRÁLOVÉ k.ú. TŘEBEŠ HLVNÍ PROJEKTNT: ing.rch Krel CHMIED ml. UTOR TVBY : ing.rch Krel chmied ml. ODPOVĚDNÝ PROJEKTNT: ing.rch Krel chmied ml. INVETOR : Mgistrát měst

Více

skripta MZB1.doc 8.9.2011 1/81

skripta MZB1.doc 8.9.2011 1/81 skript MZB.doc 8.9. /8 skript MZB.doc 8.9. /8 Osh Osh... Zlomk... Dělitelnost v množině přirozených čísel... Trojčlenk... 9 Výrz s mocninmi s celočíselným eponentem ()... Výrz s mocninmi s rcionálním eponentem...

Více

ROZVAHA (BILANCE) ke dni 31.12.2005. Vltavotýnská. teplárenská a.s. ( v celých tisících Kč ) Sídlo, bydliště nebo místo IČ

ROZVAHA (BILANCE) ke dni 31.12.2005. Vltavotýnská. teplárenská a.s. ( v celých tisících Kč ) Sídlo, bydliště nebo místo IČ Zprcováno v souldu s vyhláškou č. 500/2002 S. ve znění pozdějších předpisů ROZVAHA (BILANCE) Vltvotýnská ke dni 31.12.2005 teplárenská.s. ( v celých tisících Kč ) Sídlo, ydliště neo místo IČ 62 49 74 21

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Využití analýzy odchylek při hodnocení ziskovosti finančních institucí

Využití analýzy odchylek při hodnocení ziskovosti finančních institucí 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí 8. 9. září 2010 Využtí nlýzy odchylek př hodnocení zskovost fnnčních nsttucí Dn Foršková, Dgmr Rchtrová

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

Elektrotechnika 1. Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu:

Elektrotechnika 1. Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu: Elektrotechnka arant předětu: doc ng Jří Sedláček, CSc Autoř textu: doc ng Jří Sedláček, CSc doc ng Mloslav Stenbauer, PhD Brno, leden Elektrotechnka Předluva Předkládaná skrpta slouží jako základní studjní

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Zadání příkladů. Zadání:

Zadání příkladů. Zadání: Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí

Více

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15 9 - Zpětná vz Michel Šeek Atomtické řízení 2015 16-3-15 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

9 Kladiva, průbojníky, sekáče

9 Kladiva, průbojníky, sekáče Kldiv, průojníky, sekáče Speciální postup při výroě kldiv KAIVO 1. Řezání: n stroji, plochá ocel se nřeže do poždovných tvrů:přesností řezu je zjištěn minimální spotře kvlitního mteriálu. 2. Kování: díly

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0

ROZVAHA. ke dni... BAB mont s.r.o. Klíčovská 805/11 Praha 9 190 00 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 Minimální závzný výčet informcí podle vyhlášky č. 500/2002 S. Písemnost yl podán elektronicky dne: 20.6.2012 Podcí : 2172526 Heslo zjištění stvu: c3d895fe Stv podání: vyřízeno ROZVAHA ke dni... 3 1. 1

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

= P1 + + DIV2 = DIV2 DIV DIV P DIV1 DIV. a 1+ P0 =

= P1 + + DIV2 = DIV2 DIV DIV P DIV1 DIV. a 1+ P0 = Obligce Finnční mngement Součsná hodnot obligcí kcií zákldní pojmy nominální hodnot kupóny dospělost typy s konstntním úokem s poměnným úokem s nulovým kupónem indexovné převoditelné Hotovostní tok obligce

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2)

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2) METODA PCA A JEJÍ IMPLEMENTACE V JAZYCE C++ Lukáš Frtsch, Ing. ČVUT v Praze, Fakulta elektrotechncká, Katedra radoelektronky Abstrakt Metoda PCA (Prncpal Coponent Analyss- analýza hlavních koponent) ůže

Více

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ Účele ěření je stanovení velkost ěřené velčny, charakterzující určtou specfckou vlastnost. Specfkace ěřené velčny ůže vyžadovat údaje o dalších

Více

Platné znění schválené usnesením rady města č. 103/2014 ze dne 4. 2. 2014 a radou Městského obvodu Liberec - Vratislavice nad Nisou dne 17. 2.

Platné znění schválené usnesením rady města č. 103/2014 ze dne 4. 2. 2014 a radou Městského obvodu Liberec - Vratislavice nad Nisou dne 17. 2. Pltné znění schválené usnesením rdy měst č. 103/2014 ze dne 4. 2. 2014 rdou Městského obvodu Liberec - Vrtislvice nd Nisou dne 17. 2. 2014 Interní předpis PRO ZŘIZOVÁNÍ SLUŽEBNOSTÍ Čl. 1 Předmět ceny 1.

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Odměrná analýza, volumetrie ODMĚRNÁ ANALÝZA, VOLUMETRIE. Základní kroky při odměrné analýze. 1. Odvážení/odměření vzorku

Odměrná analýza, volumetrie ODMĚRNÁ ANALÝZA, VOLUMETRIE. Základní kroky při odměrné analýze. 1. Odvážení/odměření vzorku Odměrná nlýz, volumetrie metod zložená n měření ojemu metod solutní: stnovení nlytu ze změřeného ojemu roztoku činidl o přesně známé koncentrci, který je zpotřeí k úplné stechiometricky definovné rekci

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

Softwarová podpora matematických metod v ekonomice a řízení

Softwarová podpora matematických metod v ekonomice a řízení Softwarová podpora matematckých metod v ekonomce a řízení Petr Sed a Opava 2013 Hrazeno z prostředků proektu OPVK CZ.1.07/2.2.00/15.0174 Inovace bakalářských studních oborů se zaměřením na spoluprác s

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Výfučtení: Geometrické útvary a zobrazení

Výfučtení: Geometrické útvary a zobrazení Výfučtení: Geometrické útvry zorzení V geometrii očs nrzíme n to, že některé geometrické orzce vykzují jistou symetrii. Popřípdě můžeme slyšet, že nějké dv útvry jsou si podoné. V tomto Výfučtení udeme

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Odpověď. konkurenci domácnosti firmy stát a. makroekonomie mikroekonomie mezinárodní ekonomie. Co? Jak? Pro koho? Proč? d

Odpověď. konkurenci domácnosti firmy stát a. makroekonomie mikroekonomie mezinárodní ekonomie. Co? Jak? Pro koho? Proč? d Přijímcí řízení kdemický rok 2012/2013 Kompletní znění testových otázek ekonomický přehled 1 Koš Znění otázky Odpověď Odpověď Odpověď Odpověď Správná ) ) c) d) odpověď 1. 1 Mezi ekonomické sujekty trhu

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více