Teoretické řešení střech (Josef Molnár, Jana Stránská, Diana Šteflová) 1. Všeobecné poznatky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Teoretické řešení střech (Josef Molnár, Jana Stránská, Diana Šteflová) 1. Všeobecné poznatky"

Transkript

1 Teoretické řešení střech (Josef Molnár, Jana Stránská, Diana Šteflová) (Zpracováno v rámci řešení projektu 08-CP--00--AT-COMENIUS-C). Všeobecné poznatky Nad budovou konstruujeme střechu. Většinou se skládá z rovin, které svírají s horizontální rovinou předepsané úhly. Střecha je dána půdorysem okapů, což jsou nejnižší vodorovné okraje střechy. Řešit střechu znamená sestrojit střešní roviny a jejich průsečnice tak, aby voda správně odtékala. Jestliže okap není součástí přímky, ale rovinnou křivkou, sestrojíme každým jeho bodem tečnu ke křivce okapu a nad ní rovinu, která svírá s průmětnou předepsaný úhel. Takto sestrojené roviny ve všech bodech daného okapu nám obalí plochu střechy. Při teoretickém řešení budeme předpokládat (jestliže neurčíme jinak), že :. všechny okapy jedné budovy leží v jedné horizontální rovině ( v téže výšce). roviny střechy svírají s touto horizontální rovinou stejné úhly (jsou téhož spádu). každým okapem prochází jedna rovina střechy,. ty hrany, přes které nesmí odtékat voda, vyznačujeme dvojitou nebo barevnou čarou. Teoreticky budeme tedy úlohu řešit tak, že každou úsečkou okapové hrany budovy, jako stopou roviny, sestrojíme jednu rovinu střechy. Při zobrazení volíme proto společnou horizontální rovinu okapových hran za průmětnu pravoúhlého promítání. Všechny roviny střech mají svírat s průmětnou stejný úhel α, o kterém budeme např. předpokládat, že se rovná 5º. Často však volba velikosti tohoto úhlu závisí na povětrnostních podmínkách (sněhu, větru, atd.), nebo na přání architekta, který stavbu navrhuje.(například na jihu Evropy je tento úhel menší, na severu naopak větší.) Používáme i výraz, že roviny, které svírají s horizontální rovinou stejné úhly, jsou stejného spádu. Za spád roviny potom bereme číslo, které udává tangenta toho ostrého úhlu, který rovina svírá s průmětnou. Roviny, které svírají s průmětnou úhel 5º, mají spád jednotkový (tg α = ) a potom mluvíme o rovinách jednotkového spádu.

2 . Při řešení střech bude třeba v pravoúhlém promítání vyřešit úlohy o průsečnicích rovin, které vytvářejí vlastní střechu, teda řešit úlohu :.. Sestrojit pravoúhlý průmět průsečnice dvou rovin, které svírají s průmětnou stejný úhel α, tedy sestrojit pravoúhlý průmět průsečnice rovin stejného spádu. Platí zde poznatek : Pravoúhlý průmět průsečnice dvou rovin, které svírají s průmětnou stejné úhly, a jejichž stopy nejsou rovnoběžné, půlí úhel stop těchto rovin... Stopy rovin však mohou být i rovnoběžné. Jestliže potom roviny svírají s průmětnou stejné úhly, jsou to a) roviny navzájem rovnoběžné a mají nevlastní průsečnici, jejíž pravoúhlý průmět je nevlastní přímka roviny π. b) roviny antiparalelní vzhledem k průmětně π. Pro pravoúhlý průmět jejich průsečnice do této roviny platí : Pravoúhlý průmět průsečnice dvou antiparalelních rovin vzhledem k průmětně π půlí vzdálenost jejich stop... Pro konstrukci průmětu střechy a jejích rovin je třeba ještě připomenout známý poznatek, že tři roviny, které nemají společnou přímku, se protínají v jediném bodě, kterým procházejí i jejich všechny tři průsečnice.. Různé typy střech nad obdélníkovým půdorysem Abychom mohli postupovat geometricky jednoduše, zopakujme, že zavádíme střešní rovinu místo hmotné krytiny a předpokládáme, že okapové hrany leží ve vodorovné rovině - tvoří tzv. půdorys střechy.

3 a) Pultová střecha (obr.) tvořená jednou rovinou. Spádovou přímku, tj. směr pohybu vody, vyznačujeme v průmětu šipkou kolmou vždy k okapové hraně, čímž zvýšíme názornost. b) Sedlová střecha (obr.) je tvořena dvěma rovinami (antiparalelní roviny) s rovnoběžnými stopami (okapovými hranami) BC AD, které se protínají ve vodorovné průsečnici EF zvané hřeben. Trojúhelníkům ABE a CDF říkáme štíty. c) Valbová střecha (obr.) vzniká opřením střešních rovin,,, stejného spádu o všechny okapové hrany obdélníkového půdorysu, čísla střešních rovin připisujeme někdy pro přehlednost k příslušným okapovým hranám. Pak průsečnice a označená - je to tzv. nároží (spádové šipky směřují šikmo od sebe)- půlí v půdorysu úhel okapových hran; podobně další nároží,,. Na obrázku je připojen také nárys, kde se jeví spád 5 obou trojúhelníkových valeb ABE a CDF ve skutečné velikosti. Bod společný několika střešním rovinám se obyčejně nazývá sběžiště; sbíhají se v něm nejméně tři průsečnice (E, F). E F E F A D B A D B C A B C E F A D A B 5 C D E F A D A B B C E F B C Obr. Obr. Obr.

4 . Řešení střech Při řešení mohou v zásadě nastat dva případy: a) Roviny mají stejné spádové měřítko a různoběžné stopy průsečnice půlí úhel sevřený stopami! p! h! s r! s! h p! b) Roviny mají shodná spádová měřítka a rovnoběžné roviny průsečnice tvoří osu pásu určeného stopami p!! s x! s x r! p

5 Příklad : Zadání: Jeden z postupů řešení: Začneme tím, že vybereme dvě lib. roviny a vyřešíme dle předchozího (osa úhlu nebo osa pásu) Pak zvolíme další dvě lib. roviny a postupujeme obdobně: Pokud vyčerpáme stopy všech zadaných rovin, je řešení hotové:

6 Další úlohy řešíme analogicky. Cvičení : Řešte střechu nad daným půdorysem.....

7 Při řešení úlohy je důležité pojmenovat všechny roviny. Často nestačí písmena řecké abecedy, které jsme zvyklí užívat při označování rovin, proto v tomto případě roviny střechy prostě očíslujeme. V našem případě jde o šest rovin (,,,, 5 a ). Jejich průsečnice, resp. pravoúhlé průměty těchto průsečnic do roviny π označujeme připsáním těch čísel rovin, kterých je označovaná přímka průsečnicí. Tak např. jsme dostali průsečnice,,... atd. Máme tak určitou kontrolu konstrukce. Z toho, že tři roviny mají v našem případě jeden společný bod, vyplývá, že např. průsečíkem přímek a musí procházet průsečnice rovin. Protože všechny roviny střechy svírají stejné úhly s průmětnou π, umíme jednoduchým způsobem - půlením úhlů nebo vzdáleností stop - sestrojit průměty jejich průsečnic do roviny π. Okolí průsečnice má tvar šikmého žlabu a nazývá se úžlabí (spádové šipky rovin, směřují šikmo k sobě) a též v půdorysu půlí úhel stop. Průsečnici říkáme střešní spoj. Řez A-B M! " µ 5 5 M 5 5 B A µ M x "! Obr.

8 . Různé možnosti řešení střechy Často se nám naskytne několik možností správného řešení střechy. Rozhodující je potom stanovisko praktického zhotovení vlastní střechy nebo stanovisko estetického vzhledu střechy. Příklad Obr.5. Řešení a na obr.5 je teoreticky správné, ale voda ze střechy by po. a po 8. rovině stékala na vodorovnou hranu do úžlabí 8, čímž by celá konstrukce střechy trpěla. Správné řešení je tedy b, protože průsečnice rovin a je hřebenem, z kterého voda stéká na obě strany po rovinách a. Všeobecně platí zásada : Vodorovná průsečnice střešních rovin musí být hřebenem, a ne úžlabím.. Na obr. je opět dvojí řešení příkladu. Přitom z estetických důvodů lépe vyhovuje řešení b. Nevyskytuje se tam šikmý hřeben, který by nepůsobil pěkným dojmem. Příklad a) b) ) a ) b

9 Cvičení : Řešte střechu nad daným půdorysem

10 5. Zakázaný okap Příklad b c a d 8 0 e g 9 f Obr.. Jestliže na některou část budovy nesmí stékat voda ze střechy např. štít, vyznačíme to na obrázku okapových hran zdvojenou nebo barevnou čarou. Říkáme, že na této části budovy je zakázaný okap. Je třeba si uvědomit, že v této části nebude potom okap, ale svislá vertikální zeď, kterou nazýváme štítem. Vodu ze zakázané části odvedeme použitím dalších - pomocných střešních rovin (obr.). Jestliže je zakázaný okap podél části g, použijeme roviny a, jejichž stopy jsou kolmé na stopu roviny. Pro různé poměry délek zakázaných částí rohů b < a < b, resp. c > d, nebo f = e, pro které odvodnění zavedeme pomocné roviny označené čísly 5 a, resp. a 8 nebo 9 a 0, dostaneme různé tvary průmětu průsečnic střešních rovin.

11 Stojí za povšimnutí: Při řešení případu Postupujeme, jak je ukázáno v kapitole. Jedná se o střech valbovou: Přidáním zakázaných okapů získáme střechu sedlovou: Pokud budou zakázané okapy na třech stěnách bude řešením střecha pultová:

12 Cvičení : Sestrojte střechu nad půdorysem se zakázanými okapy.....

13 . Budovy s dvorem Zajímavější situace nastávají, jestliže máme zastřešit budovy s dvory. Postupujeme podle týchž pravidel jako v předchozích případech. Cvičení : Sestrojte střechu budovy s dvorem....

14 Cvičení 5 : Sestrojte střechu budovy s dvorem a zakázanými okapy....

15 ŘEŠENÍ ÚLOH : Cvičení.... Cvičení

16 . Cvičení... Cvičení...

17 Cvičení 5:... Zajímavé střechy

18

19

20

21

22 Použitá literatura: Čeněk, G., Medek, V.: Deskriptívna geometria I, SVTL, Bratislava, 95 Féhler, J. a kol.: Deskriptívna geometria v príkladoch, SVTL, Bratislava, 959 Menšík, M.: Deskriptivní geometrie, I. díl, SNTL, Praha, 9 Harant, M., Lanta, O.: Deskriptivní geometrie pro II. a III. ročník SVVŠ, SPN, Praha, 95 Krofta, J., Šula, J., Stavitelství II. díl, SNTL, Praha, 95 Kargerová, M.:Dg pro technické školy vysoké, vyšší a střední, Montanex, Ostrava, Pracovní listy pro studenty Cvičení..

23 ..

24 Příklad Příklad

25 Cvičení...

26 . 5..

27 Příklad

28 Cvičení..

29 ..

30 Cvičení..

31 . Cvičení 5.

32 ..

Název. Řešení střech. Jméno a ová adresa autora. Obsah. Pomůcky. Poznámky

Název. Řešení střech. Jméno a  ová adresa autora. Obsah. Pomůcky. Poznámky Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Řešení střech Geometrie Josef Molnár, Jana Stránská, Diana Šteflová josef.molnar@upol.cz Rozvíjet prostorovou představivost,

Více

Vlasta Moravcová. Aplikace matematiky pro učitele, 13. prosince 2011

Vlasta Moravcová. Aplikace matematiky pro učitele, 13. prosince 2011 morava@karlin.mff.cuni.cz Katedra didaktiky matematiky MFF UK, Praha Aplikace matematiky pro učitele, 13. prosince 2011 Vstupní předpoklady okapy leží v jedné horizontální rovině (rovinu okapů můžeme chápat

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

3. Středoškolská stereometrie v anaglyfech

3. Středoškolská stereometrie v anaglyfech 3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

Pravoúhlá axonometrie. tělesa

Pravoúhlá axonometrie. tělesa Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

Zrcadlení v lineární perspektivě

Zrcadlení v lineární perspektivě Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Zrcadlení v lineární perspektivě Vypracoval: Lukáš Rehberger Třída: 8. M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji,

Více

pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)

pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.) Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným

Více

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Zdeněk Ovečka Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,

Více

Animované modely šroubových ploch

Animované modely šroubových ploch Animované modely šroubových ploch Jaroslav Bušek Abstrakt V příspěvku jsou prezentovány animované prostorové modely přímkových a cyklických šroubových ploch, které byly vytvořeny jako didaktické pomůcky

Více

NÁVOD K POKLÁDCE ŽIVIČNÉHO ŠINDELE TEGOLA CANADESE TYP MOSAIK

NÁVOD K POKLÁDCE ŽIVIČNÉHO ŠINDELE TEGOLA CANADESE TYP MOSAIK NÁVOD K POKLÁDCE ŽIVIČNÉHO ŠINDELE TEGOLA CANADESE TYP MOSAIK Úvod Jednoduchá a správná pokládka živičných šindelů TEGOLA CANADESE vyžaduje spojitý, rovný, čistý a suchý podklad. Podklad je tvořen obvykle

Více

Pravoúhlá axonometrie

Pravoúhlá axonometrie Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: Barbora Mrázová Třída: 8.M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Zadavatel:

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity Číslo projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB I. Autor :

Více

Mongeovo zobrazení. Osová afinita

Mongeovo zobrazení. Osová afinita Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A

Více

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Yulianna Tolkunova Geometrie stínu Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Petra Surynková, Ph.D. Studijní

Více

Mongeova projekce - úlohy polohy

Mongeova projekce - úlohy polohy Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova

Více

(Počátek O zvolte 8 cm zleva a 19 cm zdola; pomocný půdorys vysuňte o 7 cm dolů.) x 2

(Počátek O zvolte 8 cm zleva a 19 cm zdola; pomocný půdorys vysuňte o 7 cm dolů.) x 2 Teoretické řešení střech Zastřešení daného půdorysu s praktickou úpravou kavalírní perspektiva Řešené úlohy Příklad: V kavalírní perspektivě (kosoúhlé promítání do nárysny ν, ω =, q = ) zobrazte praktickou

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. 7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a

Více

Nauka o důlních škodách II. díl

Nauka o důlních škodách II. díl VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko geologická fakulta Institut geodézie a důlního měřictví Ing. Václav Mikulenka, PhD. Nauka o důlních škodách II. díl Ostrava 2008 ISBN 978 80

Více

TVORBA VÝROBNÍ DOKUMENTACE CV

TVORBA VÝROBNÍ DOKUMENTACE CV Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní TVORBA VÝROBNÍ DOKUMENTACE CV Návody do cvičení předmětu Výrobní dokumentace v systému CAD Dr. Ing. Jaroslav Melecký Ostrava 2011 Tyto studijní

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..07/.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Tento dokument je obsahově identický s oficiální tištěnou verzí. Byl vytvořen v systému TP online a v žádné případě nenahrazuje tištěnou verzi

Tento dokument je obsahově identický s oficiální tištěnou verzí. Byl vytvořen v systému TP online a v žádné případě nenahrazuje tištěnou verzi TP130 Ministerstvo dopravy a spojů České republiky odbor pozemních komunikací ODRAZKY PROTI ZVĚŘI Optické zařízení bránící zvěři ke vstupu na komunikaci TECHNICKÉ PODMÍNKY Schváleno MDS OPK č.j. 17647/00-120

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:

Více

Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56

Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56 Topografické plochy KG - L MENDELU KG - L (MENDELU) Topografické plochy 1 / 56 Obsah 1 Úvod 2 Křivky a body na topografické ploše 3 Řez topografické plochy rovinou 4 Příčný a podélný profil KG - L (MENDELU)

Více

BA008 Konstruktivní geometrie. Topografické plochy. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Topografické plochy. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Topografické plochy přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 3. března 2017 Základní literatura Králová, Alice Liška, Petr

Více

Geodetické polohové a výškové vytyčovací práce

Geodetické polohové a výškové vytyčovací práce Geodézie přednáška 3 Geodetické polohové a výškové vytyčovací práce Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické vytyčovací práce řeší úlohu

Více

Míra zaoblení, měřená výškou oblouku ve středu horní nebo zadní desky je individuální. Young doporučuje 25 stop (7625 mm) poloměr pro horní desku.

Míra zaoblení, měřená výškou oblouku ve středu horní nebo zadní desky je individuální. Young doporučuje 25 stop (7625 mm) poloměr pro horní desku. Klenutá pracovní deska pro konstrukci akustické kytary (Steel-String Guitar) Můj původní zdroj poznatků a inspirace pro stavbu akustické kytary byla kniha (Irving Sloane) [1]. Jeho podnětný dobře promyšlený

Více

Prùniky tìles v rùzných projekcích

Prùniky tìles v rùzných projekcích UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:

Více

II. TOPOGRAFICKÉ PLOCHY

II. TOPOGRAFICKÉ PLOCHY II. TOPOGRAFICKÉ PLOCHY 1. Základní úlohy 1.1 Základní pojmy Topografická plocha je omezující plocha části zjednodušeného zemského povrchu. Při jejím zobrazování se obvykle používá kótované promítání.

Více

VŠB TU OSTRAVA, Fakulta bezpečnostního inženýrství. Kreslení strojírenských výkresů. Ing. Eva Veličková

VŠB TU OSTRAVA, Fakulta bezpečnostního inženýrství. Kreslení strojírenských výkresů. Ing. Eva Veličková VŠB TU OSTRAVA, Fakulta bezpečnostního inženýrství Kreslení strojírenských výkresů Ing. Eva Veličková Obsah: 1. Strojírenské výkresy... 2 2. Pravoúhlé promítání, pohledy... 7 3. Zobrazování na strojírenském

Více

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY Díve, než spolen pikroíme k uivu o množinách bod, pokusíme se zopakovat nkteré jednoduché

Více

MODELOVÁNÍ V INVENTORU CV

MODELOVÁNÍ V INVENTORU CV Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní MODELOVÁNÍ V INVENTORU CV Návody do cvičení předmětu Grafické systémy II Oldřich Učeň Martin Janečka Ostrava 2011 Tyto studijní materiály

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe

Více

TVORBA VÝROBNÍ DOKUMENTACE

TVORBA VÝROBNÍ DOKUMENTACE Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní TVORBA VÝROBNÍ DOKUMENTACE Učební text předmětu Výrobní dokumentace v systému CAD Dr. Ing. Jaroslav Melecký Ostrava 2011 Tyto studijní materiály

Více

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány: Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 2. Rotační plochy In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 8 31. Persistent

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

2.1 Zobrazování prostoru do roviny

2.1 Zobrazování prostoru do roviny 43 2.1 Zobrazování prostoru do roviny br. 1 o x 1,2 V běžném životě se často setkáváme s instruktážními obrázky, technickými výkresy, mapami i uměleckými obrazy. Většinou jde o zobrazení prostorových útvarů

Více

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

ROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ:

ROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ: ROVIÁ GEOETRIE.. Vypočítej veliosti všech vnitřních úhlů tětivového čtyřúhelníu a veliosti úhlů sevřených jeho úhlopříčami. Vrcholy čtyřúhelníu leží v bodech, teré na obvodu ciferníu hodin znázorňují údaje,,,.

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze: DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

1. jarní série. Barevné úlohy

1. jarní série. Barevné úlohy Téma: Datumodeslání: 1. jarní série Barevné úlohy ½ º ÒÓÖ ¾¼½¼ ½º ÐÓ Ó Ýµ Háňa má krychli, jejíž stěny jsou tvořeny barevnými skly. Když se Háňa na svou kostku podívá jako na obrázku, vidí v každé ze sedmi

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ

KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm

Více

Montážní návod COMAX TAŠKA

Montážní návod COMAX TAŠKA Montážní návod COMAX TAŠKA Materiál: AlMn0,5Mg0,5 STŘECHY COMAX Velvary Malostranská 796 27324 Velvary Tel.: +420 315730124 www.strechycomax.cz Str. 1 STŘECHY COMAX, Malovarská 796, 273 24 Velvary 420

Více

MNOŽINY BODŮ. Základní informace o materiálu

MNOŽINY BODŮ. Základní informace o materiálu MNOŽINY BODŮ S množinami bodů se žáci středních škol poprvé setkávají v tematickém celku Planimetrie. Pro potřeby konstrukční geometrie se zpravidla učí postup vlastní konstrukce dané množiny, aniž přesně

Více

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Tvorba technické dokumentace

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Tvorba technické dokumentace Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035 Tvorba technické dokumentace Fáze projektové dokumentace z hlediska stavebního řízení Průběh stavebního řízení

Více

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

5 Pappova věta a její důsledky

5 Pappova věta a její důsledky 5 Pappova věta a její důsledky Pappos z Alexandrie (?90?350), řecký matematik a astronom. Pod označením Pappova věta je uváděno více vět. Proto je třeba uvést, o jaké z těchto vět hovoříme. Zde se budeme

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok

Více

Mongeovo zobrazení. Konstrukce stop roviny

Mongeovo zobrazení. Konstrukce stop roviny Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby

Více

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně

Více

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu Úloha 1 Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu 1.1 Úkol měření 1.Změřtezávislostanodovéhoproudu I a naindukcimagnetickéhopoleprodvěhodnotyanodovéhonapětí

Více

Podmínka samosvornosti:

Podmínka samosvornosti: Šroubové spoje Šroubové spoje patří mezi rozebíratelné spojení strojních součástí. Šrouby se podle funkce dělí na šrouby spojovací a pohybové. Spojovací šrouby se používají pro pevné spojení dvou nebo

Více

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření

Více

Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012

Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012 Projekt OPVK - CZ.1.07/2.3.00/09.0017 MATES - Podpora systematické práce s žáky SŠ v oblasti rozvoje matematiky Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012 ŘEŠITELNOST

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

BA008 Konstruktivní geometrie. Topografické plochy. Spojení objektu s topografickou plochou. pro kombinované studium

BA008 Konstruktivní geometrie. Topografické plochy. Spojení objektu s topografickou plochou. pro kombinované studium BA008 Konstruktivní geometrie pro kombinované studium Topografické plochy Spojení objektu s topografickou plochou přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 3. března 2017 Základní

Více

Střešní plechová krytina

Střešní plechová krytina Střešní plechová krytina Doprava, skladování a manipulace Doprava a skladování Technicko montážní návod Dopravu materiálu k zákazníkovi zajišťujeme nákladním vozidlem s hydraulickou rukou. Krytina je dodávaná

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY

NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY 1. PERSPEKTIVNÍ KRABIČKA Perspektivní krabička je krabička, většinou bez víka, s malým otvorem na jedné straně, uvnitř pomalovaná různými obrazci. Když se do krabičky

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

5. Konstrukční planimetrické úlohy

5. Konstrukční planimetrické úlohy 5 Konstrukční planimetrické úlohy 5.1 Řešení konstrukčních úloh 5. Konstrukční planimetrické úlohy Konstrukční úlohou rozumíme úlohu, ve které je požadováno sestrojení jistého geometrického útvaru (alespoň

Více

Zdeněk Halas. Aplikace matem. pro učitele

Zdeněk Halas. Aplikace matem. pro učitele Obyčejné diferenciální rovnice Nejzákladnější aplikace křivky Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Obyčejné diferenciální rovnice Aplikace matem. pro

Více

Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102

Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102 Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou

Více

Mongeovo zobrazení. Bod a přímka v rovině

Mongeovo zobrazení. Bod a přímka v rovině Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

Ing. arch. Jana Kaštánková, autorizovaná architektka ČKA 02 481

Ing. arch. Jana Kaštánková, autorizovaná architektka ČKA 02 481 ÚVOD, ZÁKLADNÍ ÚDAJE Zpracování zastavovací studie pro lokalitu v trati Tálky objednal u autorky územního plánu obce Obecní úřad ve Starovičkách v rámci smlouvy odborné technické pomoci. Předmětem řešení

Více

Lindab Usnadňujeme výstavbu. Lindab Safety. Bezpečnostní prvky SAFETY pro každou střechu

Lindab Usnadňujeme výstavbu. Lindab Safety. Bezpečnostní prvky SAFETY pro každou střechu Lindab Usnadňujeme výstavbu Lindab Safety Bezpečnostní prvky SAFETY pro každou střechu Lindab Safety Lindab Safety je sortiment použitelný pro všechny běžné typy střech z všeobecně používaných materiálů.

Více

PROSTOROVÉ ŘEŠENÍ APOLLONIOVÝCH ÚLOH POMOCÍ PROGRAMU CABRI 3D

PROSTOROVÉ ŘEŠENÍ APOLLONIOVÝCH ÚLOH POMOCÍ PROGRAMU CABRI 3D PROTOROVÉ ŘEŠENÍ APOLLONIOVÝCH ÚLOH POMOCÍ PROGRAMU CABRI 3D Jaroslav Krieg, Milan Vacka Vysoká škola technická a ekonomická v Českých Budějovicích Abstrakt: Příspěvek ukazuje na příkladu řešení některých

Více

Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto:

Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto: Karnaughovy mapy Metoda je použitelná již pro dvě vstupní proměnné, své opodstatnění ale nachází až s větším počtem vstupů, kdy návrh takového výrazu přestává být triviální. Prvním krokem k sestavení logického

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Číslo materiálu Název školy Autor Tematický celek Ročník CZ.1.07/1..00/.0029 VY_2_INOVACE_28-1 Střední průmyslová škola stavební, Resslova 2, České Budějovice Dalibor

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104 STEREOMETRIE Vzájemná poloha přímky a roviny Mgr. Jakub Němec VY_32_INOVACE_M3r0104 VZÁJEMNÁ POLOHA PŘÍMKY A ROVINY Podobně jako v předchozí lekci bude rozhodovat o vzájemné poloze jednorozměrného a dvourozměrného

Více