Teoretické řešení střech (Josef Molnár, Jana Stránská, Diana Šteflová) 1. Všeobecné poznatky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Teoretické řešení střech (Josef Molnár, Jana Stránská, Diana Šteflová) 1. Všeobecné poznatky"

Transkript

1 Teoretické řešení střech (Josef Molnár, Jana Stránská, Diana Šteflová) (Zpracováno v rámci řešení projektu 08-CP--00--AT-COMENIUS-C). Všeobecné poznatky Nad budovou konstruujeme střechu. Většinou se skládá z rovin, které svírají s horizontální rovinou předepsané úhly. Střecha je dána půdorysem okapů, což jsou nejnižší vodorovné okraje střechy. Řešit střechu znamená sestrojit střešní roviny a jejich průsečnice tak, aby voda správně odtékala. Jestliže okap není součástí přímky, ale rovinnou křivkou, sestrojíme každým jeho bodem tečnu ke křivce okapu a nad ní rovinu, která svírá s průmětnou předepsaný úhel. Takto sestrojené roviny ve všech bodech daného okapu nám obalí plochu střechy. Při teoretickém řešení budeme předpokládat (jestliže neurčíme jinak), že :. všechny okapy jedné budovy leží v jedné horizontální rovině ( v téže výšce). roviny střechy svírají s touto horizontální rovinou stejné úhly (jsou téhož spádu). každým okapem prochází jedna rovina střechy,. ty hrany, přes které nesmí odtékat voda, vyznačujeme dvojitou nebo barevnou čarou. Teoreticky budeme tedy úlohu řešit tak, že každou úsečkou okapové hrany budovy, jako stopou roviny, sestrojíme jednu rovinu střechy. Při zobrazení volíme proto společnou horizontální rovinu okapových hran za průmětnu pravoúhlého promítání. Všechny roviny střech mají svírat s průmětnou stejný úhel α, o kterém budeme např. předpokládat, že se rovná 5º. Často však volba velikosti tohoto úhlu závisí na povětrnostních podmínkách (sněhu, větru, atd.), nebo na přání architekta, který stavbu navrhuje.(například na jihu Evropy je tento úhel menší, na severu naopak větší.) Používáme i výraz, že roviny, které svírají s horizontální rovinou stejné úhly, jsou stejného spádu. Za spád roviny potom bereme číslo, které udává tangenta toho ostrého úhlu, který rovina svírá s průmětnou. Roviny, které svírají s průmětnou úhel 5º, mají spád jednotkový (tg α = ) a potom mluvíme o rovinách jednotkového spádu.

2 . Při řešení střech bude třeba v pravoúhlém promítání vyřešit úlohy o průsečnicích rovin, které vytvářejí vlastní střechu, teda řešit úlohu :.. Sestrojit pravoúhlý průmět průsečnice dvou rovin, které svírají s průmětnou stejný úhel α, tedy sestrojit pravoúhlý průmět průsečnice rovin stejného spádu. Platí zde poznatek : Pravoúhlý průmět průsečnice dvou rovin, které svírají s průmětnou stejné úhly, a jejichž stopy nejsou rovnoběžné, půlí úhel stop těchto rovin... Stopy rovin však mohou být i rovnoběžné. Jestliže potom roviny svírají s průmětnou stejné úhly, jsou to a) roviny navzájem rovnoběžné a mají nevlastní průsečnici, jejíž pravoúhlý průmět je nevlastní přímka roviny π. b) roviny antiparalelní vzhledem k průmětně π. Pro pravoúhlý průmět jejich průsečnice do této roviny platí : Pravoúhlý průmět průsečnice dvou antiparalelních rovin vzhledem k průmětně π půlí vzdálenost jejich stop... Pro konstrukci průmětu střechy a jejích rovin je třeba ještě připomenout známý poznatek, že tři roviny, které nemají společnou přímku, se protínají v jediném bodě, kterým procházejí i jejich všechny tři průsečnice.. Různé typy střech nad obdélníkovým půdorysem Abychom mohli postupovat geometricky jednoduše, zopakujme, že zavádíme střešní rovinu místo hmotné krytiny a předpokládáme, že okapové hrany leží ve vodorovné rovině - tvoří tzv. půdorys střechy.

3 a) Pultová střecha (obr.) tvořená jednou rovinou. Spádovou přímku, tj. směr pohybu vody, vyznačujeme v průmětu šipkou kolmou vždy k okapové hraně, čímž zvýšíme názornost. b) Sedlová střecha (obr.) je tvořena dvěma rovinami (antiparalelní roviny) s rovnoběžnými stopami (okapovými hranami) BC AD, které se protínají ve vodorovné průsečnici EF zvané hřeben. Trojúhelníkům ABE a CDF říkáme štíty. c) Valbová střecha (obr.) vzniká opřením střešních rovin,,, stejného spádu o všechny okapové hrany obdélníkového půdorysu, čísla střešních rovin připisujeme někdy pro přehlednost k příslušným okapovým hranám. Pak průsečnice a označená - je to tzv. nároží (spádové šipky směřují šikmo od sebe)- půlí v půdorysu úhel okapových hran; podobně další nároží,,. Na obrázku je připojen také nárys, kde se jeví spád 5 obou trojúhelníkových valeb ABE a CDF ve skutečné velikosti. Bod společný několika střešním rovinám se obyčejně nazývá sběžiště; sbíhají se v něm nejméně tři průsečnice (E, F). E F E F A D B A D B C A B C E F A D A B 5 C D E F A D A B B C E F B C Obr. Obr. Obr.

4 . Řešení střech Při řešení mohou v zásadě nastat dva případy: a) Roviny mají stejné spádové měřítko a různoběžné stopy průsečnice půlí úhel sevřený stopami! p! h! s r! s! h p! b) Roviny mají shodná spádová měřítka a rovnoběžné roviny průsečnice tvoří osu pásu určeného stopami p!! s x! s x r! p

5 Příklad : Zadání: Jeden z postupů řešení: Začneme tím, že vybereme dvě lib. roviny a vyřešíme dle předchozího (osa úhlu nebo osa pásu) Pak zvolíme další dvě lib. roviny a postupujeme obdobně: Pokud vyčerpáme stopy všech zadaných rovin, je řešení hotové:

6 Další úlohy řešíme analogicky. Cvičení : Řešte střechu nad daným půdorysem.....

7 Při řešení úlohy je důležité pojmenovat všechny roviny. Často nestačí písmena řecké abecedy, které jsme zvyklí užívat při označování rovin, proto v tomto případě roviny střechy prostě očíslujeme. V našem případě jde o šest rovin (,,,, 5 a ). Jejich průsečnice, resp. pravoúhlé průměty těchto průsečnic do roviny π označujeme připsáním těch čísel rovin, kterých je označovaná přímka průsečnicí. Tak např. jsme dostali průsečnice,,... atd. Máme tak určitou kontrolu konstrukce. Z toho, že tři roviny mají v našem případě jeden společný bod, vyplývá, že např. průsečíkem přímek a musí procházet průsečnice rovin. Protože všechny roviny střechy svírají stejné úhly s průmětnou π, umíme jednoduchým způsobem - půlením úhlů nebo vzdáleností stop - sestrojit průměty jejich průsečnic do roviny π. Okolí průsečnice má tvar šikmého žlabu a nazývá se úžlabí (spádové šipky rovin, směřují šikmo k sobě) a též v půdorysu půlí úhel stop. Průsečnici říkáme střešní spoj. Řez A-B M! " µ 5 5 M 5 5 B A µ M x "! Obr.

8 . Různé možnosti řešení střechy Často se nám naskytne několik možností správného řešení střechy. Rozhodující je potom stanovisko praktického zhotovení vlastní střechy nebo stanovisko estetického vzhledu střechy. Příklad Obr.5. Řešení a na obr.5 je teoreticky správné, ale voda ze střechy by po. a po 8. rovině stékala na vodorovnou hranu do úžlabí 8, čímž by celá konstrukce střechy trpěla. Správné řešení je tedy b, protože průsečnice rovin a je hřebenem, z kterého voda stéká na obě strany po rovinách a. Všeobecně platí zásada : Vodorovná průsečnice střešních rovin musí být hřebenem, a ne úžlabím.. Na obr. je opět dvojí řešení příkladu. Přitom z estetických důvodů lépe vyhovuje řešení b. Nevyskytuje se tam šikmý hřeben, který by nepůsobil pěkným dojmem. Příklad a) b) ) a ) b

9 Cvičení : Řešte střechu nad daným půdorysem

10 5. Zakázaný okap Příklad b c a d 8 0 e g 9 f Obr.. Jestliže na některou část budovy nesmí stékat voda ze střechy např. štít, vyznačíme to na obrázku okapových hran zdvojenou nebo barevnou čarou. Říkáme, že na této části budovy je zakázaný okap. Je třeba si uvědomit, že v této části nebude potom okap, ale svislá vertikální zeď, kterou nazýváme štítem. Vodu ze zakázané části odvedeme použitím dalších - pomocných střešních rovin (obr.). Jestliže je zakázaný okap podél části g, použijeme roviny a, jejichž stopy jsou kolmé na stopu roviny. Pro různé poměry délek zakázaných částí rohů b < a < b, resp. c > d, nebo f = e, pro které odvodnění zavedeme pomocné roviny označené čísly 5 a, resp. a 8 nebo 9 a 0, dostaneme různé tvary průmětu průsečnic střešních rovin.

11 Stojí za povšimnutí: Při řešení případu Postupujeme, jak je ukázáno v kapitole. Jedná se o střech valbovou: Přidáním zakázaných okapů získáme střechu sedlovou: Pokud budou zakázané okapy na třech stěnách bude řešením střecha pultová:

12 Cvičení : Sestrojte střechu nad půdorysem se zakázanými okapy.....

13 . Budovy s dvorem Zajímavější situace nastávají, jestliže máme zastřešit budovy s dvory. Postupujeme podle týchž pravidel jako v předchozích případech. Cvičení : Sestrojte střechu budovy s dvorem....

14 Cvičení 5 : Sestrojte střechu budovy s dvorem a zakázanými okapy....

15 ŘEŠENÍ ÚLOH : Cvičení.... Cvičení

16 . Cvičení... Cvičení...

17 Cvičení 5:... Zajímavé střechy

18

19

20

21

22 Použitá literatura: Čeněk, G., Medek, V.: Deskriptívna geometria I, SVTL, Bratislava, 95 Féhler, J. a kol.: Deskriptívna geometria v príkladoch, SVTL, Bratislava, 959 Menšík, M.: Deskriptivní geometrie, I. díl, SNTL, Praha, 9 Harant, M., Lanta, O.: Deskriptivní geometrie pro II. a III. ročník SVVŠ, SPN, Praha, 95 Krofta, J., Šula, J., Stavitelství II. díl, SNTL, Praha, 95 Kargerová, M.:Dg pro technické školy vysoké, vyšší a střední, Montanex, Ostrava, Pracovní listy pro studenty Cvičení..

23 ..

24 Příklad Příklad

25 Cvičení...

26 . 5..

27 Příklad

28 Cvičení..

29 ..

30 Cvičení..

31 . Cvičení 5.

32 ..

Vlasta Moravcová. Aplikace matematiky pro učitele, 13. prosince 2011

Vlasta Moravcová. Aplikace matematiky pro učitele, 13. prosince 2011 morava@karlin.mff.cuni.cz Katedra didaktiky matematiky MFF UK, Praha Aplikace matematiky pro učitele, 13. prosince 2011 Vstupní předpoklady okapy leží v jedné horizontální rovině (rovinu okapů můžeme chápat

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

3. Středoškolská stereometrie v anaglyfech

3. Středoškolská stereometrie v anaglyfech 3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

Zrcadlení v lineární perspektivě

Zrcadlení v lineární perspektivě Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Zrcadlení v lineární perspektivě Vypracoval: Lukáš Rehberger Třída: 8. M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji,

Více

Animované modely šroubových ploch

Animované modely šroubových ploch Animované modely šroubových ploch Jaroslav Bušek Abstrakt V příspěvku jsou prezentovány animované prostorové modely přímkových a cyklických šroubových ploch, které byly vytvořeny jako didaktické pomůcky

Více

NÁVOD K POKLÁDCE ŽIVIČNÉHO ŠINDELE TEGOLA CANADESE TYP MOSAIK

NÁVOD K POKLÁDCE ŽIVIČNÉHO ŠINDELE TEGOLA CANADESE TYP MOSAIK NÁVOD K POKLÁDCE ŽIVIČNÉHO ŠINDELE TEGOLA CANADESE TYP MOSAIK Úvod Jednoduchá a správná pokládka živičných šindelů TEGOLA CANADESE vyžaduje spojitý, rovný, čistý a suchý podklad. Podklad je tvořen obvykle

Více

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva

ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Zdeněk Ovečka Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT. Číslo projektu Číslo a název šablony klíčové aktivity Číslo projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB I. Autor :

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: Barbora Mrázová Třída: 8.M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Zadavatel:

Více

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Yulianna Tolkunova. Geometrie stínu. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Yulianna Tolkunova Geometrie stínu Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Petra Surynková, Ph.D. Studijní

Více

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. 7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed

Více

Geodetické polohové a výškové vytyčovací práce

Geodetické polohové a výškové vytyčovací práce Geodézie přednáška 3 Geodetické polohové a výškové vytyčovací práce Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické vytyčovací práce řeší úlohu

Více

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH

ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH ROČNÍKOVÁ PRÁCE TEORETICKÉ ŘEŠENÍ STŘECH Vypracoval: Jan Vojtíšek Třída: 8.M Školní rok: 2011/2012 Seminář: Aplikace Deskriptivní geometrie Prohlašuji, že jsem svou ročníkovou práci napsal samostatně a

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ..07/.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Tento dokument je obsahově identický s oficiální tištěnou verzí. Byl vytvořen v systému TP online a v žádné případě nenahrazuje tištěnou verzi

Tento dokument je obsahově identický s oficiální tištěnou verzí. Byl vytvořen v systému TP online a v žádné případě nenahrazuje tištěnou verzi TP130 Ministerstvo dopravy a spojů České republiky odbor pozemních komunikací ODRAZKY PROTI ZVĚŘI Optické zařízení bránící zvěři ke vstupu na komunikaci TECHNICKÉ PODMÍNKY Schváleno MDS OPK č.j. 17647/00-120

Více

VŠB TU OSTRAVA, Fakulta bezpečnostního inženýrství. Kreslení strojírenských výkresů. Ing. Eva Veličková

VŠB TU OSTRAVA, Fakulta bezpečnostního inženýrství. Kreslení strojírenských výkresů. Ing. Eva Veličková VŠB TU OSTRAVA, Fakulta bezpečnostního inženýrství Kreslení strojírenských výkresů Ing. Eva Veličková Obsah: 1. Strojírenské výkresy... 2 2. Pravoúhlé promítání, pohledy... 7 3. Zobrazování na strojírenském

Více

Nauka o důlních škodách II. díl

Nauka o důlních škodách II. díl VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko geologická fakulta Institut geodézie a důlního měřictví Ing. Václav Mikulenka, PhD. Nauka o důlních škodách II. díl Ostrava 2008 ISBN 978 80

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY Díve, než spolen pikroíme k uivu o množinách bod, pokusíme se zopakovat nkteré jednoduché

Více

TVORBA VÝROBNÍ DOKUMENTACE CV

TVORBA VÝROBNÍ DOKUMENTACE CV Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní TVORBA VÝROBNÍ DOKUMENTACE CV Návody do cvičení předmětu Výrobní dokumentace v systému CAD Dr. Ing. Jaroslav Melecký Ostrava 2011 Tyto studijní

Více

Míra zaoblení, měřená výškou oblouku ve středu horní nebo zadní desky je individuální. Young doporučuje 25 stop (7625 mm) poloměr pro horní desku.

Míra zaoblení, měřená výškou oblouku ve středu horní nebo zadní desky je individuální. Young doporučuje 25 stop (7625 mm) poloměr pro horní desku. Klenutá pracovní deska pro konstrukci akustické kytary (Steel-String Guitar) Můj původní zdroj poznatků a inspirace pro stavbu akustické kytary byla kniha (Irving Sloane) [1]. Jeho podnětný dobře promyšlený

Více

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Mongeovo zobrazení. Konstrukce stop roviny

Mongeovo zobrazení. Konstrukce stop roviny Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby

Více

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Více

MODELOVÁNÍ V INVENTORU CV

MODELOVÁNÍ V INVENTORU CV Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní MODELOVÁNÍ V INVENTORU CV Návody do cvičení předmětu Grafické systémy II Oldřich Učeň Martin Janečka Ostrava 2011 Tyto studijní materiály

Více

TVORBA VÝROBNÍ DOKUMENTACE

TVORBA VÝROBNÍ DOKUMENTACE Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní TVORBA VÝROBNÍ DOKUMENTACE Učební text předmětu Výrobní dokumentace v systému CAD Dr. Ing. Jaroslav Melecký Ostrava 2011 Tyto studijní materiály

Více

Podmínka samosvornosti:

Podmínka samosvornosti: Šroubové spoje Šroubové spoje patří mezi rozebíratelné spojení strojních součástí. Šrouby se podle funkce dělí na šrouby spojovací a pohybové. Spojovací šrouby se používají pro pevné spojení dvou nebo

Více

Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012

Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012 Projekt OPVK - CZ.1.07/2.3.00/09.0017 MATES - Podpora systematické práce s žáky SŠ v oblasti rozvoje matematiky Výjezdní soustředění matematických talentů Karlov pod Pradědem 5. 8. 5. 2012 ŘEŠITELNOST

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Tvorba technické dokumentace

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Tvorba technické dokumentace Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035 Tvorba technické dokumentace Fáze projektové dokumentace z hlediska stavebního řízení Průběh stavebního řízení

Více

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie

BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava

Více

1. jarní série. Barevné úlohy

1. jarní série. Barevné úlohy Téma: Datumodeslání: 1. jarní série Barevné úlohy ½ º ÒÓÖ ¾¼½¼ ½º ÐÓ Ó Ýµ Háňa má krychli, jejíž stěny jsou tvořeny barevnými skly. Když se Háňa na svou kostku podívá jako na obrázku, vidí v každé ze sedmi

Více

ROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ:

ROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ: ROVIÁ GEOETRIE.. Vypočítej veliosti všech vnitřních úhlů tětivového čtyřúhelníu a veliosti úhlů sevřených jeho úhlopříčami. Vrcholy čtyřúhelníu leží v bodech, teré na obvodu ciferníu hodin znázorňují údaje,,,.

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

Lindab Usnadňujeme výstavbu. Lindab Safety. Bezpečnostní prvky SAFETY pro každou střechu

Lindab Usnadňujeme výstavbu. Lindab Safety. Bezpečnostní prvky SAFETY pro každou střechu Lindab Usnadňujeme výstavbu Lindab Safety Bezpečnostní prvky SAFETY pro každou střechu Lindab Safety Lindab Safety je sortiment použitelný pro všechny běžné typy střech z všeobecně používaných materiálů.

Více

MNOŽINY BODŮ. Základní informace o materiálu

MNOŽINY BODŮ. Základní informace o materiálu MNOŽINY BODŮ S množinami bodů se žáci středních škol poprvé setkávají v tematickém celku Planimetrie. Pro potřeby konstrukční geometrie se zpravidla učí postup vlastní konstrukce dané množiny, aniž přesně

Více

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření

Více

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104

STEREOMETRIE. Vzájemná poloha přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0104 STEREOMETRIE Vzájemná poloha přímky a roviny Mgr. Jakub Němec VY_32_INOVACE_M3r0104 VZÁJEMNÁ POLOHA PŘÍMKY A ROVINY Podobně jako v předchozí lekci bude rozhodovat o vzájemné poloze jednorozměrného a dvourozměrného

Více

5. Konstrukční planimetrické úlohy

5. Konstrukční planimetrické úlohy 5 Konstrukční planimetrické úlohy 5.1 Řešení konstrukčních úloh 5. Konstrukční planimetrické úlohy Konstrukční úlohou rozumíme úlohu, ve které je požadováno sestrojení jistého geometrického útvaru (alespoň

Více

Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru...

Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru... Středové promítání Středové promítání dané průmětnou r a bodem S (S r) je zobrazení prostoru... E ~ 3 (bez S) na r takové, že obrazem bodu A je bod A =SA r. rozšířená euklidovská přímka E ~ 1 E1 U E ~

Více

Střešní plechová krytina

Střešní plechová krytina Střešní plechová krytina Doprava, skladování a manipulace Doprava a skladování Technicko montážní návod Dopravu materiálu k zákazníkovi zajišťujeme nákladním vozidlem s hydraulickou rukou. Krytina je dodávaná

Více

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu Úloha 1 Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu 1.1 Úkol měření 1.Změřtezávislostanodovéhoproudu I a naindukcimagnetickéhopoleprodvěhodnotyanodovéhonapětí

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

Zdeněk Halas. Aplikace matem. pro učitele

Zdeněk Halas. Aplikace matem. pro učitele Obyčejné diferenciální rovnice Nejzákladnější aplikace křivky Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Obyčejné diferenciální rovnice Aplikace matem. pro

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Montážní návod COMAX TAŠKA

Montážní návod COMAX TAŠKA Montážní návod COMAX TAŠKA Materiál: AlMn0,5Mg0,5 STŘECHY COMAX Velvary Malostranská 796 27324 Velvary Tel.: +420 315730124 www.strechycomax.cz Str. 1 STŘECHY COMAX, Malovarská 796, 273 24 Velvary 420

Více

PROSTOROVÉ ŘEŠENÍ APOLLONIOVÝCH ÚLOH POMOCÍ PROGRAMU CABRI 3D

PROSTOROVÉ ŘEŠENÍ APOLLONIOVÝCH ÚLOH POMOCÍ PROGRAMU CABRI 3D PROTOROVÉ ŘEŠENÍ APOLLONIOVÝCH ÚLOH POMOCÍ PROGRAMU CABRI 3D Jaroslav Krieg, Milan Vacka Vysoká škola technická a ekonomická v Českých Budějovicích Abstrakt: Příspěvek ukazuje na příkladu řešení některých

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Ing. arch. Jana Kaštánková, autorizovaná architektka ČKA 02 481

Ing. arch. Jana Kaštánková, autorizovaná architektka ČKA 02 481 ÚVOD, ZÁKLADNÍ ÚDAJE Zpracování zastavovací studie pro lokalitu v trati Tálky objednal u autorky územního plánu obce Obecní úřad ve Starovičkách v rámci smlouvy odborné technické pomoci. Předmětem řešení

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Výukovápříručka. Ocelové patky

Výukovápříručka. Ocelové patky Výukovápříručka Ocelové patky Obsah Přípoj sloupu s patním plechem...3 Přípoj sloupu zabetonováním...16 2 Přípoj sloupu s patním plechem Zadání V rámci tohoto příkladu stanovíme momentovou únosnost patky

Více

Deskriptivní geometrie II.

Deskriptivní geometrie II. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie

Více

Téma 6 Rovinné nosníkové soustavy

Téma 6 Rovinné nosníkové soustavy Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

KONSTRUKCE ŠIKMÝCH STŘECH

KONSTRUKCE ŠIKMÝCH STŘECH stavitel Scia Engineer E u ro kó d y i nte g ro va n é v s o f t wa re více než 20 let vývoje soōware nejrozšíǝenģjší systém pro staɵku nejúplnģjší posudky na trhu ocel, beton, dǝevo a hliník dle EC veškeré

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:

Více

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce ta profilové maturitní zkoušky z předmětu Stavební konstrukce 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4. Dimenzování ocelových válcovaných

Více

Předmět: Konstrukční cvičení - modelování součástí ve 3D. Téma 5: Další možnosti náčrtů a modelování

Předmět: Konstrukční cvičení - modelování součástí ve 3D. Téma 5: Další možnosti náčrtů a modelování Předmět: Konstrukční cvičení - modelování součástí ve 3D Téma 5: Další možnosti náčrtů a modelování Učební cíle Vytvářet obrysy tvarů v rovinách jiných, než základní rovině XY. Vytváření pracovních tvarů

Více

Zobrazení a řezy těles v Mongeově promítání

Zobrazení a řezy těles v Mongeově promítání UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

ČSN EN 1991-1-4 Zatížení větrem 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6.

ČSN EN 1991-1-4 Zatížení větrem 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. ČSN EN 1991-1-4 Zatížení větrem 1. Všeobecně 2. Návrhové situace 3. Modely zatížení větrem 4. Rychlost a tlak větru 5. Zatížení větrem 6. Součinitele konstrukce c s c d 7. Součinitele tlaků a sil 8. Zatížení

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

Geonext Open Source Software ve výuce matematiky a fyziky - 1

Geonext Open Source Software ve výuce matematiky a fyziky - 1 Tak vznikl třídílný cyklus seminářů s názvem Open Source Software ve výuce matematiky a fyziky a tři stejnojmenné brožurky s jednoduchým popisem ovládání a možností využití jednotlivých programů: OSS ve

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

NAD KROKVEMI. Pavatex Isolair. Pavatex Pavatherm Plus. Pavatex Pavatherm Combi. Technologický postup - desky PAVATEX - nad krokvemi

NAD KROKVEMI. Pavatex Isolair. Pavatex Pavatherm Plus. Pavatex Pavatherm Combi. Technologický postup - desky PAVATEX - nad krokvemi Technologický postup - desky PAVATEX - nad krokvemi DŘEVOVLÁKNITÉ DESKY NAD KROKVEMI Pavatex Isolair Pavatex Pavatherm Plus Pavatex Pavatherm Combi Tabulka 1 : vlastnosti desek Pavatex Tabulka 2 : tepelně-izolační

Více

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L

Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů

Více

3. Způsoby namáhání stavebních konstrukcí

3. Způsoby namáhání stavebních konstrukcí 3. Způsoby namáhání stavebních konstrukcí Každému přetvoření stavební konstrukce odpovídá určitý druh namáhání, který poznáme podle výslednice vnitřních sil ve vyšetřovaném průřezu. Lze ji obecně nahradit

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Střešní desku graficky definujeme referenční čárou a obrysem. Výškové umístění střechy definujeme v místě referenční čáry, sklon střechy definujeme

Střešní desku graficky definujeme referenční čárou a obrysem. Výškové umístění střechy definujeme v místě referenční čáry, sklon střechy definujeme Střešní desku graficky definujeme referenční čárou a obrysem. Výškové umístění střechy definujeme v místě referenční čáry, sklon střechy definujeme úhlem. Průhledové zobrazení - využijeme pro zobrazení

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

Jak připravíme animovaný model a využijeme grafické zvýraznění

Jak připravíme animovaný model a využijeme grafické zvýraznění Jak připravíme animovaný model a využijeme grafické zvýraznění Ukázka 4.1 Geometrie Stopa objektu Osová souměrnost a stejnolehlost Sestrojíme modely, které budou demonstrovat vlastnosti shodných a podobných

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

VEŘEJNÁ VYHLÁŠKA MĚSTO LITOMYŠL. OPATŘENÍ OBECNÉ POVAHY č. 2/2008

VEŘEJNÁ VYHLÁŠKA MĚSTO LITOMYŠL. OPATŘENÍ OBECNÉ POVAHY č. 2/2008 VEŘEJNÁ VYHLÁŠKA MĚSTO LITOMYŠL OPATŘENÍ OBECNÉ POVAHY č. 2/2008 Zastupitelstvo města Litomyšl, příslušné podle 6 odst. 5 písm. d) zákona č. 183/2006 Sb., o územním plánování a stavebním řádu (stavební

Více

6.1 Základní pojmy. 6.1.1 Zákonné měřicí jednotky.

6.1 Základní pojmy. 6.1.1 Zákonné měřicí jednotky. 6. Měření úhlů. 6.1 Základní pojmy 6.1.1 Zákonné měřicí jednotky. 6.1.2 Vodorovný úhel, směr. 6.1.3 Svislý úhel, zenitový úhel. 6.2 Teodolity 6.2.1 Součásti. 6.2.2 Čtecí pomůcky optickomechanických teodolitů.

Více

Cvičení podporující prostorovou představivost. Josef Molnár molnar@inf.upol.cz. Podpořit prostorovou představivost pomocí cvičení různé úrovně.

Cvičení podporující prostorovou představivost. Josef Molnár molnar@inf.upol.cz. Podpořit prostorovou představivost pomocí cvičení různé úrovně. ROMOTE MSc OIS TÉMATU MATEMATIKA 3 ázev Tematický celek Jméno a e-mailová adresa autora Cíle Obsah omůcky Cvičení podporující prostorovou představivost Geometrie Josef Molnár molnar@inf.upol.cz odpořit

Více

Uložení nosných konstrukcí

Uložení nosných konstrukcí Ministerstvo dopravy České Republiky Obor pozemních komunikací TP 75 Uložení nosných konstrukcí mostů pozemních komunikací TECHNICKÉ PODMÍNKY Schváleno MD OPK č.j. 58/06-120-RS/1 ze dne 24.1.2006 s účinností

Více

11. Geometrická optika

11. Geometrická optika Trivium z optiky 83 Geometrická optika V této a v následující kapitole se budeme zabývat studiem světla v situacích, kdy je možno zanedbat jeho vlnový charakter V tomto ohledu se obě kapitoly podstatně

Více

Hladiny, barvy, typy čar, tloušťka čar. hodina 6.

Hladiny, barvy, typy čar, tloušťka čar. hodina 6. Hladiny, barvy, typy čar, tloušťka čar. hodina 6. Obsah a cíl hodiny Pokud jste postupovali dle předchozích hodin (lekcí) měli byste ovládat standardní konstrukční příkazy a být schopni vytvořit v AutoCadu

Více

OBRÁBĚNÍ DŘEVA. Mgr. Jan Straka

OBRÁBĚNÍ DŘEVA. Mgr. Jan Straka OBRÁBĚNÍ DŘEVA Mgr. Jan Straka Obrábění je technologický pochod, kterým vytváříme požadovaný tvar obrobku ve stanovených rozměrech a v požadované kvalitě obrobených ploch. Obrábění se dělí podle způsobu

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB II. Autor

Více

Jan Perný 05.09.2006. využíváme při orientaci pomocí kompasu. Drobná odchylka mezi severním

Jan Perný 05.09.2006. využíváme při orientaci pomocí kompasu. Drobná odchylka mezi severním Měření magnetického pole Země Jan Perný 05.09.2006 www.pernik.borec.cz 1 Úvod Že planeta Země má magnetické pole, je známá věc. Běžně této skutečnosti využíváme při orientaci pomocí kompasu. Drobná odchylka

Více

Středoškolská odborná činnost 2005/2006

Středoškolská odborná činnost 2005/2006 Středoškolská odborná činnost 2005/2006 12. tvorba učebních pomůcek, didaktická technologie DESKRIPTIVNÍ GEOMETRIE Autoři: Martin Hlaváč, Michal Křen SPŠ, Kollárova 617, 686 01 Uherské Hradiště, 3. ročník

Více

ŠROUBOVÉ SPOJE VÝKLAD

ŠROUBOVÉ SPOJE VÝKLAD ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k

Více

Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů.

Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů. Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů Kartografie přednáška 10 Měření úhlů prostorovou polohu směru, vycházejícího

Více

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0

Geometrie pro FST 2. Plzeň, 28. srpna 2013, verze 6.0 Geometrie pro FST 2 Pomocný učební text František Ježek, Světlana Tomiczková Plzeň, 28. srpna 2013, verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie pro FST 2, který vyučujeme

Více

REGULAČNÍ PLÁN CENTRÁLNÍ MĚSTSKÉ ZÓNY RÝMAŘOV

REGULAČNÍ PLÁN CENTRÁLNÍ MĚSTSKÉ ZÓNY RÝMAŘOV REGULAČNÍ PLÁN CENTRÁLNÍ MĚSTSKÉ ZÓNY RÝMAŘOV A. TEXTOVÁ ČÁST Urbanistické středisko Ostrava, s.r.o. VI/2015 ÚZEMNĚ PLÁNOVACÍ DOKUMENTACE A PODKLADY, ÚTP, PROJEKTOVÁ A PORADENSKÁ ČINNOST, EKOLOGIE, GIS

Více