Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Rozměr: px
Začít zobrazení ze stránky:

Download "Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t."

Transkript

1 Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví firmy, z ěj se saží odhadout vývoj ce jejích akcií), psychologická aalýza (odhaduje chováí ostatích ivestorů), statistické modely časových dat atd. Pricipy techické aalýzy: Trží cey odrážejí a zahrují veškeré iformace předpokládá se efektiví trh, pro ceu c t tedy platí c t = c t + ε t. Cey se pohybují v tredech a tredy vytrvávají. Děí a trhu se opakují. Techická aalýza zkoumá jedak grafické formace vzikající a grafu cey akcie, jedak posuzuje vývoj cey pomocí techických idikátorů. Aalýza grafických formací Grafické formace jsou obrazce vziklé a grafu cey akcie. Aalýza grafických formací spočívá v jejich rozpozáí a vyvozeí závěrů z jejich existece. Veškerá takováto aalýza je ale založea a pozorováí grafu cey akcie, a proto je do začé míry subjektiví. V ásledujících grafech je silou čarou zobrazea cea, přerušovaou čarou objem akcií. (Omluvte sížeou kvalitu obrázků porucha eí a vašem přijímači) Reversí grafické formace Rozlišují se reversí formace (sigalizující změu tredu) a kosolidačí formace (sigalizující pokračováí tredu). Vrchol. Během dvou dů cea vyroste a klese a původí úroveň. Obchodovaé objemy jsou stále vysoké. Často je součástí složitějších formací. Po dokočeí formace bude cea ještě ějaký čas klesat. Do. Opačá formace k vrcholu. Vývoj objemů je stejý. Po dokočeí formace bude cea ještě ějaký čas růst. Hlava a ramea vrchol. Velké objemy obchodů doprovázejí levé rameo a hlavu. Klese-li a koci cea pod liii krku (spojice da levého a pravého ramee), bude dál klesat alespoň o vzdáleost mezi vrcholem hlavy a liií krku. Opačou formací je hlava a ramea do.

2 Hlava a ramea do. Zaobleý vrchol (talířek). Podobě jako obyčejý vrchol sigalizuje změu tredu, ale změa cey je pozvolější a vývoj objemů odlišý. Opačý vývoj cey má zaobleé do. Vzestupý trojúhelík. Poptávka roste, až se setká s abídkou a stejé ceě. Když je abídka vyčerpáa, cea zače růst. Měla by růst alespoň o počátečí výšku trojúhelíka. Opačou formací je sestupý trojúhelík. Obdélík. Nabídka a poptávka se vyvíjejí shodě, akoec převáží růst či pokles podle vývoje objemů (objemy rostou při růstu cey cea bude akoec růst, a aopak). Dvojitý a trojitý vrchol a do. Od okamžiku utvořeí formace bude cea pokračovat ve změěém tredu miimálě o vzdáleost mezi vrcholy a dy. Kosolidačí grafické formace Klesající vlajka. astává v rostoucím tredu. Objemy jsou zpočátku vysoké. Očekává se, že po skočeí vlajky bude pokračovat původí rostoucí tred. Opakem je rostoucí vlajka.

3 Praporek v rostoucím tredu. Podobý jako vlajka. Opakem je praporek v klesajícím tredu. Kosolidačí hlava a ramea vrchol. Opakem je kosolidačí hlava a ramea do. Tredy a tredové liie Rostoucí, klesající, postraí tred: Rozlišují se podle toho, zda maxima a miima rostou či klesají. Pokud cea prolomí spojici maxim či spojici miim (tredový kaál) alespoň o 3 %, bude se dál cea pohybovat ve směru prolomeí. Tredový kaál (vzestupý). Techické idikátory kapitálového trhu Fukce techický idikátor přiřadí pro každý obchodí de t akcii reálé číslo vypovídající o vývoji její cey. Klouzavé průměry Jedoduchý klouzavý průměr Je-li c t cea akcie v čase t, délka klouzavého průměru, pak klouuavý průměr je defiová jako S t () = c t i Doporučeí z hlediska krátkodobého horizotu: c t S t () a c t > S t () ákup akcie (její cea začala růst oproti miulému vývoji) c t S t () a c t < S t () prodej 3

4 Z hlediska dlouhodobého horizotu: <, srováí dlouhodobého a krátkodobého vývoje S t ( ) S t ( ) a S t ( ) > S t ( ) ákup S t ( ) S t ( ) a S t ( ) < S t ( ) prodej Obdobé použití mají i ásledující klouzavé průměry. Triagulárí klouzavý průměr Je to vlastě klouzavý průměr provedeý dvakrát za sebou, ejvětší váhu mají data ležící uprostřed periody délky. Pro = k ( sudé): T t () = k (c t + c t (k )c t k+ + kc t k+ + (k )c t k c t k+ Pro = k ( liché): = k k ( k (i + )c t i + (k i )c t k i ) Vážeý klouzavý průměr Směrem do miulosti váhy klesají. Expoeciálí klouzavý průměr k T t () = k(k + ) ( k (i + )c t i + (k i)c t k i ) W t () = ( i)c t i ( + ) Oproti vážeému průměru jsou váhy expoeciálí, avíc bere v úvahu všecha miulá data (e je periodu délky ). Klouzavá regrese t E t = α( α) i c t i + ( α) t c, kde α = + Klouzavá regrese využívá prokládáí přímky posledími pozorováími metodou ejmeších čtverců. Jde tedy o regresí model y = Xβ + ε, kde c t + c t + ( ) X =.., y = odhad parametrů β má tvar b = (X T X) X T y, tedy b (0) t = ( ) (( + ). c t c t, β = c t i 6 β (0) t β () t ( i)c t i ) 4

5 b () t = potom se defiuje klouzavá regrese jako Pásmová aalýza Procetí pásma ( ) ( ( i)c t i 6( + ) c t i ) T S t () = b (0) t + b () t ( + ) Sestrojíme grafy cey c t, horí hraice pásma ft h = ( + k)ma t (), dolí hraice pásma ft d = ( k)ma t (), kde k (0, ) je kostata určující šířku pásma a MA je ějaký typ klouzavého průměru. Doporučeí: cea poblíž spodí hraice pásma (ft h. = c t ) ákup cea poblíž horí hraice pásma (ft d. = c t ) prodej Bolligerova pásma Oproti procetímu pásmu eí jeho šířka kostatí, ale měí se v závislosti a volatilitě akcie. Jako M A se užívá jedoduchý klouzavý průměr. ft h = c t i + k (c t i c t j ) f d t j=0 = c t i k (c t i c t j ) Doporučují se hodoty = 0, k =, jiak se používá stejě jako procetí pásmo. Oscilátory Oscilátory jsou idikátory měřící změu cey za zvoleé časové období. Mometum absolutí: MOM t () = c t c t relativí: MOM t () = ct c t 00 Použití absolutího mometa: c t > c t, MOM t () 0, MOM t () > 0 ákup c t < c t, MOM t () 0, MOM t () < 0 prodej U relativího mometa je situace obdobá (je osciluje kolem 00). Rate of chage ROC t () = c t c t c t 00 Nákup se doporučuje, pokud ROC t () klesá do výrazě záporých hodot (očekává se růst cey), prodej, pokud ROC t () roste a abývá kladých hodot. j=0 5

6 Idex relativí síly Oproti předchozím oscilátorům ebývají jeho hodoty chybě ovlivňováy vývojem miulých dat, elimiuje případé esmyslé hodoty vzikající apř. u mometa v případě, že chybí ěkterá vstupí data. RSI t () = 00( + U() D() ), U() = (c t i c t i ) +, D() = (c t i c t i ) RSI t () (0, 00), zvolí se dolí a horí hraice h (50, 00) a d (0, 50) (apř. 80 a 0). Pro RSI t () < d se doporučuje ákup, pro RSI t () > h prodej. Ceově-objemové a objemové idikátory Ceově objemové a objemové idikátory jsou skupiou idikátorů pracujících s objemem obchodů s akcií V t. Bilace objemu OBV t = t;c t >c t V t t;c t <c t V t Průběh křivky OBV t je většiou podobý průběhu křivky cey c t. Pokud se tedy tred OBV t změí z klesajícího a rostoucí, doporučuje se ákup, při změě tredu a klesající aopak prodej. Ceově-objemový tred P V T t = c t c t V t c t c t c t;c t >c t c t t;c t <c t t Oproti OBV t zohledňuje P V T t také relativí změu cey a je proto přesější. Jiak se používá stejým způsobem. Volume rate of chage V ROC t () = V t V t V t 00 Používá se opět obdobě jako předchozí idikátory. Volatilita Volatilita vyjadřuje míru proměosti cey akcie v čase. Směrodatá odchylka Std t () = (c t i c t i ) Hlaví ceové vrcholy bývají doprovázey vysokou volatilitou, hlaví ceová da ízkou volatilitou. Proto lze při ízkých hodotách Std t () očekávat změu ceového tredu a rostoucí, doporučuje se tedy ákup, aopak při ízkých hodotách Std t () se doporučuje prodej. V t 6

7 Chaikiova volatilita ChV t (, m, k) = E t(max i Mi i, ) E t m (Max i Mi i, ) 00% E t m (Max i Mi i, ) kde Max i = max,...,k c t i, Mi i = mi,...,k c t i, a E t (Max i Mi i, ) je expoeciálí klouzavý průměr v čase t délky počítaý z ceového rozpětí za období délky k, m udává vzdáleost mezi deším a srovávaým klouzavým průměrem. Díky defiici epracující s vlastí velikostí cey, ale je s jejím průběhem, je možé porovávat Chaikiovu volatilitu i u dvou akcií podobého typu. Jiak se s í pracuje podobě jako se směrodatou odchylkou. Idikátory celkového trhu Cey jedotlivých akcií se většiou pohybují v souladu s celkovým tredem trhu, proto se celkový pohyb ce a trhu zkoumá pomocí idikátorů celkového trhu. Ozačíme M zvoleou možiu akcií, M = p její velikost, c (j) t cea j-té akcie, T I t p počet akcií obchodovaých v de t, AI t = = počet akcií, jejichž cea miulý de vzrostla, j;c (j) t >c (j) t DI t = = počet akcií, jejichž cea předchozí de klesla, F I j;c (j) t <c (j) t = = počet j;c (j) t t =c (j) t akcií, jejichž cea se miulý de eměila. AI t + DI t + F I t = T I t. Advace-declie-ratio Použití: ADR t h a ADR t > h ákup ADR t d a ADR t < d prodej h > d > 0 jsou zvoleé kostaty. Advace-all-ratio ADR t = AI t DI t pro DI t 0, ADR t = AI t jiak Používá se jako ADR t, ale h, d (0, ) AAR t = AI t p McCleellaův součtový idex m MSI t (m,, ) = (MA t i (, AI t i DI t i ) MA t i (, AI t i DI t i )) MA t (, AI t DI t ) je klouzavý průměr délky počítaý z rozdílu AI t DI t, m je parametr udávající délku sledovaého období, < < m. MSI t zkoumá rozdíly mezi krátkodobým a dlouhodobým klouzavým průměrem v časech t m +,... t. MSI t 0 a MSI t > 0 ákup MSI t 0 a MSI t < 0 prodej. 7

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

množina všech reálných čísel

množina všech reálných čísel /6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP Istituce i zazameaé operace jsou fiktiví. Ukázkové případy - sezam Případ Vykazující účetí Vykázaé Části I až XIII Straa jedotka (zkráceě až 3) A Půjčka od baky Město, v roce +1, T2 v roce +1, T7, T8,

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

9. Měření závislostí ve statistice Pevná a volná závislost

9. Měření závislostí ve statistice Pevná a volná závislost Dráha [m] 9. Měřeí závislostí ve statistice Měřeí závislostí ve statistice se zabývá především zkoumáím vzájemé závislosti statistických zaků vícerozměrých souborů. Závislosti přitom mohou být apříklad

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64.

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64. 81 Vyšší mociy Předpoklady: 0081 Př 1: Doplň místo obdélíčků správé číslo a) ( ) = b) = 0, 0000 e) ( ) = 0, ( 0) = 100 = f) ( ) = 8 a) ( ) = 8 b) 0, 0 0, 0000 = ( ) 0,8 0, 0 = 100 = e) ( ) = f) ( ) = 8

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA

Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Středoškolská techika 05 Setkáí a prezetace prací středoškolských studetů a ČVUT ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Duša Köig Středí průmyslová škola strojická

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj)

Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj) Rozhodovací stromy Úloha klasifikace objektů do tříd. Top dow iductio of decisio trees (TDIDT) - metoda divide ad coquer (rozděl a pauj) metoda specializace v prostoru hypotéz stromů (postup shora dolů,

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová PE 30 Podiková ekoomika Garat: Eva KISLINGEROVÁ Téma Metody mezipodikového srováváí Eva Kisligerová Téma Eva Kisligerová Vysoká škola ekoomická v Praze 003 - Mezipodikové srováváí Poprvé 956- koferece

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Téma: 11) Dynamika stavebních konstrukcí

Téma: 11) Dynamika stavebních konstrukcí Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí: Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymázium, Šterberk, Horí ám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šabloa III/2 Iovace a zkvalitěí výuky prostředictvím ICT Ozačeí materiálu VY_32_INOVACE_Hor018 Vypracoval(a), de Mgr. Radek

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více