Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t."

Transkript

1 Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví firmy, z ěj se saží odhadout vývoj ce jejích akcií), psychologická aalýza (odhaduje chováí ostatích ivestorů), statistické modely časových dat atd. Pricipy techické aalýzy: Trží cey odrážejí a zahrují veškeré iformace předpokládá se efektiví trh, pro ceu c t tedy platí c t = c t + ε t. Cey se pohybují v tredech a tredy vytrvávají. Děí a trhu se opakují. Techická aalýza zkoumá jedak grafické formace vzikající a grafu cey akcie, jedak posuzuje vývoj cey pomocí techických idikátorů. Aalýza grafických formací Grafické formace jsou obrazce vziklé a grafu cey akcie. Aalýza grafických formací spočívá v jejich rozpozáí a vyvozeí závěrů z jejich existece. Veškerá takováto aalýza je ale založea a pozorováí grafu cey akcie, a proto je do začé míry subjektiví. V ásledujících grafech je silou čarou zobrazea cea, přerušovaou čarou objem akcií. (Omluvte sížeou kvalitu obrázků porucha eí a vašem přijímači) Reversí grafické formace Rozlišují se reversí formace (sigalizující změu tredu) a kosolidačí formace (sigalizující pokračováí tredu). Vrchol. Během dvou dů cea vyroste a klese a původí úroveň. Obchodovaé objemy jsou stále vysoké. Často je součástí složitějších formací. Po dokočeí formace bude cea ještě ějaký čas klesat. Do. Opačá formace k vrcholu. Vývoj objemů je stejý. Po dokočeí formace bude cea ještě ějaký čas růst. Hlava a ramea vrchol. Velké objemy obchodů doprovázejí levé rameo a hlavu. Klese-li a koci cea pod liii krku (spojice da levého a pravého ramee), bude dál klesat alespoň o vzdáleost mezi vrcholem hlavy a liií krku. Opačou formací je hlava a ramea do.

2 Hlava a ramea do. Zaobleý vrchol (talířek). Podobě jako obyčejý vrchol sigalizuje změu tredu, ale změa cey je pozvolější a vývoj objemů odlišý. Opačý vývoj cey má zaobleé do. Vzestupý trojúhelík. Poptávka roste, až se setká s abídkou a stejé ceě. Když je abídka vyčerpáa, cea zače růst. Měla by růst alespoň o počátečí výšku trojúhelíka. Opačou formací je sestupý trojúhelík. Obdélík. Nabídka a poptávka se vyvíjejí shodě, akoec převáží růst či pokles podle vývoje objemů (objemy rostou při růstu cey cea bude akoec růst, a aopak). Dvojitý a trojitý vrchol a do. Od okamžiku utvořeí formace bude cea pokračovat ve změěém tredu miimálě o vzdáleost mezi vrcholy a dy. Kosolidačí grafické formace Klesající vlajka. astává v rostoucím tredu. Objemy jsou zpočátku vysoké. Očekává se, že po skočeí vlajky bude pokračovat původí rostoucí tred. Opakem je rostoucí vlajka.

3 Praporek v rostoucím tredu. Podobý jako vlajka. Opakem je praporek v klesajícím tredu. Kosolidačí hlava a ramea vrchol. Opakem je kosolidačí hlava a ramea do. Tredy a tredové liie Rostoucí, klesající, postraí tred: Rozlišují se podle toho, zda maxima a miima rostou či klesají. Pokud cea prolomí spojici maxim či spojici miim (tredový kaál) alespoň o 3 %, bude se dál cea pohybovat ve směru prolomeí. Tredový kaál (vzestupý). Techické idikátory kapitálového trhu Fukce techický idikátor přiřadí pro každý obchodí de t akcii reálé číslo vypovídající o vývoji její cey. Klouzavé průměry Jedoduchý klouzavý průměr Je-li c t cea akcie v čase t, délka klouzavého průměru, pak klouuavý průměr je defiová jako S t () = c t i Doporučeí z hlediska krátkodobého horizotu: c t S t () a c t > S t () ákup akcie (její cea začala růst oproti miulému vývoji) c t S t () a c t < S t () prodej 3

4 Z hlediska dlouhodobého horizotu: <, srováí dlouhodobého a krátkodobého vývoje S t ( ) S t ( ) a S t ( ) > S t ( ) ákup S t ( ) S t ( ) a S t ( ) < S t ( ) prodej Obdobé použití mají i ásledující klouzavé průměry. Triagulárí klouzavý průměr Je to vlastě klouzavý průměr provedeý dvakrát za sebou, ejvětší váhu mají data ležící uprostřed periody délky. Pro = k ( sudé): T t () = k (c t + c t (k )c t k+ + kc t k+ + (k )c t k c t k+ Pro = k ( liché): = k k ( k (i + )c t i + (k i )c t k i ) Vážeý klouzavý průměr Směrem do miulosti váhy klesají. Expoeciálí klouzavý průměr k T t () = k(k + ) ( k (i + )c t i + (k i)c t k i ) W t () = ( i)c t i ( + ) Oproti vážeému průměru jsou váhy expoeciálí, avíc bere v úvahu všecha miulá data (e je periodu délky ). Klouzavá regrese t E t = α( α) i c t i + ( α) t c, kde α = + Klouzavá regrese využívá prokládáí přímky posledími pozorováími metodou ejmeších čtverců. Jde tedy o regresí model y = Xβ + ε, kde c t + c t + ( ) X =.., y = odhad parametrů β má tvar b = (X T X) X T y, tedy b (0) t = ( ) (( + ). c t c t, β = c t i 6 β (0) t β () t ( i)c t i ) 4

5 b () t = potom se defiuje klouzavá regrese jako Pásmová aalýza Procetí pásma ( ) ( ( i)c t i 6( + ) c t i ) T S t () = b (0) t + b () t ( + ) Sestrojíme grafy cey c t, horí hraice pásma ft h = ( + k)ma t (), dolí hraice pásma ft d = ( k)ma t (), kde k (0, ) je kostata určující šířku pásma a MA je ějaký typ klouzavého průměru. Doporučeí: cea poblíž spodí hraice pásma (ft h. = c t ) ákup cea poblíž horí hraice pásma (ft d. = c t ) prodej Bolligerova pásma Oproti procetímu pásmu eí jeho šířka kostatí, ale měí se v závislosti a volatilitě akcie. Jako M A se užívá jedoduchý klouzavý průměr. ft h = c t i + k (c t i c t j ) f d t j=0 = c t i k (c t i c t j ) Doporučují se hodoty = 0, k =, jiak se používá stejě jako procetí pásmo. Oscilátory Oscilátory jsou idikátory měřící změu cey za zvoleé časové období. Mometum absolutí: MOM t () = c t c t relativí: MOM t () = ct c t 00 Použití absolutího mometa: c t > c t, MOM t () 0, MOM t () > 0 ákup c t < c t, MOM t () 0, MOM t () < 0 prodej U relativího mometa je situace obdobá (je osciluje kolem 00). Rate of chage ROC t () = c t c t c t 00 Nákup se doporučuje, pokud ROC t () klesá do výrazě záporých hodot (očekává se růst cey), prodej, pokud ROC t () roste a abývá kladých hodot. j=0 5

6 Idex relativí síly Oproti předchozím oscilátorům ebývají jeho hodoty chybě ovlivňováy vývojem miulých dat, elimiuje případé esmyslé hodoty vzikající apř. u mometa v případě, že chybí ěkterá vstupí data. RSI t () = 00( + U() D() ), U() = (c t i c t i ) +, D() = (c t i c t i ) RSI t () (0, 00), zvolí se dolí a horí hraice h (50, 00) a d (0, 50) (apř. 80 a 0). Pro RSI t () < d se doporučuje ákup, pro RSI t () > h prodej. Ceově-objemové a objemové idikátory Ceově objemové a objemové idikátory jsou skupiou idikátorů pracujících s objemem obchodů s akcií V t. Bilace objemu OBV t = t;c t >c t V t t;c t <c t V t Průběh křivky OBV t je většiou podobý průběhu křivky cey c t. Pokud se tedy tred OBV t změí z klesajícího a rostoucí, doporučuje se ákup, při změě tredu a klesající aopak prodej. Ceově-objemový tred P V T t = c t c t V t c t c t c t;c t >c t c t t;c t <c t t Oproti OBV t zohledňuje P V T t také relativí změu cey a je proto přesější. Jiak se používá stejým způsobem. Volume rate of chage V ROC t () = V t V t V t 00 Používá se opět obdobě jako předchozí idikátory. Volatilita Volatilita vyjadřuje míru proměosti cey akcie v čase. Směrodatá odchylka Std t () = (c t i c t i ) Hlaví ceové vrcholy bývají doprovázey vysokou volatilitou, hlaví ceová da ízkou volatilitou. Proto lze při ízkých hodotách Std t () očekávat změu ceového tredu a rostoucí, doporučuje se tedy ákup, aopak při ízkých hodotách Std t () se doporučuje prodej. V t 6

7 Chaikiova volatilita ChV t (, m, k) = E t(max i Mi i, ) E t m (Max i Mi i, ) 00% E t m (Max i Mi i, ) kde Max i = max,...,k c t i, Mi i = mi,...,k c t i, a E t (Max i Mi i, ) je expoeciálí klouzavý průměr v čase t délky počítaý z ceového rozpětí za období délky k, m udává vzdáleost mezi deším a srovávaým klouzavým průměrem. Díky defiici epracující s vlastí velikostí cey, ale je s jejím průběhem, je možé porovávat Chaikiovu volatilitu i u dvou akcií podobého typu. Jiak se s í pracuje podobě jako se směrodatou odchylkou. Idikátory celkového trhu Cey jedotlivých akcií se většiou pohybují v souladu s celkovým tredem trhu, proto se celkový pohyb ce a trhu zkoumá pomocí idikátorů celkového trhu. Ozačíme M zvoleou možiu akcií, M = p její velikost, c (j) t cea j-té akcie, T I t p počet akcií obchodovaých v de t, AI t = = počet akcií, jejichž cea miulý de vzrostla, j;c (j) t >c (j) t DI t = = počet akcií, jejichž cea předchozí de klesla, F I j;c (j) t <c (j) t = = počet j;c (j) t t =c (j) t akcií, jejichž cea se miulý de eměila. AI t + DI t + F I t = T I t. Advace-declie-ratio Použití: ADR t h a ADR t > h ákup ADR t d a ADR t < d prodej h > d > 0 jsou zvoleé kostaty. Advace-all-ratio ADR t = AI t DI t pro DI t 0, ADR t = AI t jiak Používá se jako ADR t, ale h, d (0, ) AAR t = AI t p McCleellaův součtový idex m MSI t (m,, ) = (MA t i (, AI t i DI t i ) MA t i (, AI t i DI t i )) MA t (, AI t DI t ) je klouzavý průměr délky počítaý z rozdílu AI t DI t, m je parametr udávající délku sledovaého období, < < m. MSI t zkoumá rozdíly mezi krátkodobým a dlouhodobým klouzavým průměrem v časech t m +,... t. MSI t 0 a MSI t > 0 ákup MSI t 0 a MSI t < 0 prodej. 7

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

Technická Analýza. c.člá. Fio banka, a.s. Fio banka, a.s. Zdroj: Bloomberg 6/2011

Technická Analýza. c.člá. Fio banka, a.s. Fio banka, a.s. Zdroj: Bloomberg 6/2011 Technická Analýza c.člá Fio banka, a.s. Index S&P 500 překonal poslední maxima, která byla pod 1350. To je obecně považováno za býčí znamení. Proražení maxim bylo ale falešné a hodnota indexu se vrátila

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

- 1 - Ekonomicko-matematické metody II Rozhodování a rozhodovací modely

- 1 - Ekonomicko-matematické metody II Rozhodování a rozhodovací modely Ekoomicko-matematické metody II Rozhodováí a ozhodovací modely Vybaé aplikace - Řízeí a všech jeho úovích - Zemědělství - Hazadí hy - Běžá každodeí ozhodutí Poblém k zamyšleí - Lze systematicky bohatout

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

Václav Klaus. Žijeme v době drtivé převahy levicové, zeleno-socialistické ideologie.

Václav Klaus. Žijeme v době drtivé převahy levicové, zeleno-socialistické ideologie. červe - 2013 NEWSLETTER NEWSLETTER červe /2013 Prví rozmluvy a Haspaulce Vítězslav Kremlík: IPCC podvádí veřejost Otázka IVK: Jsou u ás potraviy dražší ež u sousedů? (Petr Bedl, Petr Havel, Miroslav Toma,

Více

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky,

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky, Výročí zpráva 2O13 z z z Úvodí slovo geerálího ředitele Vážeí parteři České exportí baky, jistě jste již zazameali, že ai miulý rok ebyl pro baku lehký. Věřím však, že většia z vás pochopila pravou podstatu

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Katedra softwarového inženýrství MFF UK Malostranské náměstí 25, 118 00 Praha 1 - Malá Strana

Katedra softwarového inženýrství MFF UK Malostranské náměstí 25, 118 00 Praha 1 - Malá Strana Katedra softwarového ižeýrství MFF UK Malostraské áměstí 25, 8 00 Praha - Malá Straa, v. 3.5 co jsou "techiky přeosu dat"? Katedra softwarového ižeýrství, Matematicko-fyzikálí fakulta, Uiverzita Karlova,

Více

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky Minulá přednáška - podstatné Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Typologie nákladů firmy Náklady v krátkém období Náklady v dlouhém období Důležité vzorce TC = FC + VC AC =

Více

Evropské stres testy bankovního sektoru

Evropské stres testy bankovního sektoru Evropské stres testy bankovního sektoru Evropský bankovní sektor, podobně jako americký na přelomu 2008 a 2009, se dostal v 2Q letošního roku do centra pozornosti investorů v souvislosti s narůstajícími

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Obsah. Poptávka spotřebitele - 1 - Petr Voborník

Obsah. Poptávka spotřebitele - 1 - Petr Voborník Obsah Obsah... Poptávka spotřebitele.... ndividuální poptávka (po statku ).... Vliv změny důchodu spotřebitele na poptávku..... Důchodová spotřební křivka..... Druhy statků... 3 CC, kde je určitým druhem

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010

Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010 Technická analýza a AOS Prezentace pro Českou asociaci treasury, Praha, 27.4.2010 Štěpán Pírko, Asset Management Colosseum, a.s. pirko@colosseum.cz Obsah 1. Co je a co není TA? 2. Charting 3. Indikátory

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

OBSAH ÚVOD 1 HISTORIE FOREXU 3 HLAVNÍ HRÁČI NA FOREXU 5 JAK SE VYTVÁŘEJÍ CENY NA FOREXU? 7 VÍCE O TRŽNÍCH MECHANISMECH 9 PÁKOVÝ EFEKT 11

OBSAH ÚVOD 1 HISTORIE FOREXU 3 HLAVNÍ HRÁČI NA FOREXU 5 JAK SE VYTVÁŘEJÍ CENY NA FOREXU? 7 VÍCE O TRŽNÍCH MECHANISMECH 9 PÁKOVÝ EFEKT 11 OBSAH ÚVOD 1 KAPITOLA 1 HISTORIE FOREXU 3 KAPITOLA 2 HLAVNÍ HRÁČI NA FOREXU 5 KAPITOLA 3 JAK SE VYTVÁŘEJÍ CENY NA FOREXU? 7 KAPITOLA 4 VÍCE O TRŽNÍCH MECHANISMECH 9 4.1 Jak vypočítáte zisk nebo ztrátu

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Pavel Kolář přednosta kliniky rehabilitace ve fakultní nemocnici Motol, proděkan II. lékařské fakulty UK

Pavel Kolář přednosta kliniky rehabilitace ve fakultní nemocnici Motol, proděkan II. lékařské fakulty UK lede 2011 Emigrace lékařů je zbytečá Pavel Kolář: Emigrace lékařů je zbytečá Petr Piťha: Aežka Přemyslova 800 let od arozeí Marti Slaý: Státí rozpočet a rok 2011 Václav Klaus: Sto let od arozeí George

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

Příjmové veličiny na trhu VF

Příjmové veličiny na trhu VF Trh práce Vysvětlivky: SR = short run = krátké období, množství kapitálových statků je fixní R = long run = dlouhé období, množství kapitálových statků je variabilni Příjmové veličiny na trhu VF Příjem

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ústav stavební ekonomiky a řízení Fakulta stavební VUT Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ing. Dagmar Palatová dagmar@mail.muni.cz Agregátní nabídka a agregátní poptávka cena

Více

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročík LVII 28 Číslo 5, 2009 ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ L. Papírík

Více