SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ"

Transkript

1 SPEKTRUM ELEKTROMAGNETICKÉHO ZÁENÍ Elektromagnetická vlna Z elektiny a magnetismu již víte, že v elektrickém obvodu, do kterého je zapojen kondenzátor a cívka, vzniká elektromagnetické kmitání, které lze pomocí dvouvodiového vedení penášet, resp. pomocí plvlnného dipólu penášet tzv. elektromagnetickým polem. Toto pole se penáší prostednictvím elektromagnetických vln. Každá elektromagnetická vlna má dv složky: elektrickou složku, kterou pedstavuje vektor intenzity elektrického pole E, a magnetickou složku, kterou tvoí vektor magnetické indukce B. Ob složky jsou na sebe navzájem kolmé a ješt navíc jsou ob kolmé na smr šíení vlnní. To znamená, že každé elektromagnetické vlnní je píné vlnní. Na obrázku. 1 se elektromagnetická vlna šíí v kladném smru osy x, vektor intenzity elektrického pole se promítá do osy y a vektor magnetické indukce do osy z. Navíc platí, že u postupné vlny jsou oba vektory ve fázi ob veliiny nabývají svých maximálních hodnot ve stejném okamžiku. Obr. 1: Elektromagnetická vlna Z vlastní zkušenosti a z pedchozích lekcí víte, že krom svtla existují další druhy elektromagnetických vln: nkteré penášejí rozhlasové a televizní vysílání, jiné ohívají jídlo v mikrovlnné troub, další zpsobují opálení pokožky nebo procházejí pes rzná tlesa a umožují zkoumat vnitní složení. Díky dalším elektromagnetickým vlnám mžeme používat mobilní telefony nebo být pipojeni k internetu, poslouchat kompaktní disky nebo sledovat filmy na DVD nebo ovládat televizor dálkovým ovládáním. Cílem této lekce je vytvoit pehled elektromagnetických vlnní a jejich nejdležitjších vlastností. Jednotlivé druhy elektromagnetického vlnní se od sebe liší nap. vlnovou délkou, schopností pronikat látkami nebo vznikem. Mají však také spoustu spolených vlastností. Všechny se ve vakuu šíí stejnou rychlostí jako svtlo (tj m.s -1 ), všechny mají elektrickou i magnetickou složku, které nelze oddlit. Všechny druhy také pi šíení podléhají ohybu vlnní, interferenci a v neposlední ad také disperzi. Maxwellova duha První úplné vysvtlení teorie elektromagnetických vln podal v roce 1865 James Clerk Maxwell. Z jeho teorie elektromagnetického vlnní poprvé vyplynulo, že svtlo je elektromagnetické vlnní. Na jeho poest se íká spektru

2 elektromagnetických vln seazených podle vlnové délky Maxwellova duha. Je schématicky zaznaena na obr.. 2. Obr. 2: Maxwellova duha (pevzato z (Pozn. Další povedené zpracování spektra najdete v [2]) Mezi jednotlivými druhy elektromagnetického vlnní není ostrá hranice, jednotlivé druhy se mohou ásten pekrývat. Technické vlny Nejvtší vlnovou délku mají tzv. technické vlny, nkdy též oznaované jako nízkofrekvenní vlny. Jsou to elektromagnetické vlny, které vznikají v rzných technických zaízeních. Jejich vlnová délka dosahuje ádov nkolik desítek až tisícovek kilometr. Pedstavte si nap. elektrický obvod pipojený do bžné rozvodné sít. Frekvence stídavého proudu je 50 Hz. Ze vztahu mezi frekvencí a vlnovou délkou mžeme urit jejich vlnovou délku: f c m m Rozhlasové a televizní vlny Elektromagnetické vlny, které penášejí rozhlasové a televizní vysílání oznaujeme jako rozhlasové a televizní vlny. Jejich vlnová délka leží v intervalu 10 4 m až 10-2 m. Všechny vznikají v tzv. oscilaních obvodech jako dsledek pemny energie elektrického pole na energii magnetického pole. V tomto rozsahu také leží elektromagnetické vlny, které používají mobilní telefony. Mikrovlny Mikrovlny jsou elektromagnetické vlny, jejichž vlnová délka leží v rozmezí 10-2 m až 10-4 m. Našly rozsáhlé využití v technické praxi: používají se v radarové technice ke zjišování polohy a vzdálenosti letících tles, v moderní komunikaní technice se používají k bezdrátovému propojení poíta. Své místo našly také v kuchyni jejich psobení na molekuly vody se využívá k ohevu pokrm v mikrovlnné troub (tato vlastnost byla objevena náhodou pracovníkovi radarové stanice se v blízkosti zdroje mikrovlnného záení rozpustila okoláda). Jak vlastn funguje mikrovlnná trouba se mžete podívat na sérii navazujících java aplet na stránkách Coloradské univerzity, resp. na stránkách NASA. Infraervené záení V roce 1800 provádl jeden z nejvýznamnjších astronom všech dob, William Herschel, sérii pokus, pi kterých studoval teplotní úinky jednotlivých ástí sluneního záení. Zjistil, že teplota v oblasti, kde dopadá modré svtlo, je menší než teplota v oblasti, kam dopadá svtlo ervené, a dokonce že v oblasti tsn za

3 ervenou hranou spektra (mimo oblast viditelného záení) je teplota ješt vyšší. Toto nov objevené záení dostalo oznaení infraervené záení (= záení, které leží pod ervenou oblastí; zkrácen jej oznaujeme jako IR záení z anglického infra red). Herschel také pozdji dokázal, že pro toto záení platí zákon odrazu vlnní a lomu vlnní. Dnes již víme, že zdrojem infraerveného záení jsou tlesa s vysokou teplotou, pípadn speciální výbojky i diody. Infraervené záení vysílají prakticky všechna tlesa. Této vlastnosti tles se používá v dalekohledech pro noní pozorování nebo v tzv. termovizi. Také podstatn lépe než svtlo prochází zakalenými prostedími (nap. mlha, ), což našlo uplatnní v meteorologii nebo ve vojenské technice (letecká technika tepeln navádné ízené stely, pístroje pro noní létání). Velmi rozsáhlé použití našlo v elektronice veškerá dálková ovládání v sob obsahují diodu, která vyzauje v infraervené oblasti pokyny nap. pro zmnu programu, snížení hlasitosti, atd. S dalším využitím infraerveného záení se mžete seznámit zde. Tamtéž také najdete nkteré snímky vyfotografované v infraervené oblasti. Svtlo Svtlo je elektromagnetické vlnní vnímatelné lidským okem. Jeho vlnové délky leží v intervalu 390 nm 790 nm. Podrobnji jsou jeho vlastnosti popsány v lekci Úvod do optiky. Ultrafialové záení Ultrafialové záení bylo objeveno pouze rok (1861) po objevu infraerveného záení. Nmecký fyzik Johann Wilhelm Ritter zkoumal, jestli existuje neviditelné záení také za modrým koncem spektra. Pi experimentu, pi kterém studoval rozklad chloridu stíbrného vlivem sluneního svtla v rzných ástech sluneního spektra (rozkládá se na chlor a tmavé stíbro). Zjistil, že nejrychleji reakce probhne až za modrým koncem spektra, kde není oima nic viditelné. Nové záení se pvodn jmenovalo chemické, dnes jej oznaujeme jako ultrafialové záení (= za fialovou; zkrácen jej oznaujeme jako UV záení z anglického ultra violet). Vlnové délky ultrafialového záení leží v intervalu 400 nm 10 nm. Podle vlnové délky dále rozlišujeme ti typy ultrafialového záení: UV A (vlnové délky od 390 nm do 320 nm), UV B (vlnové délky od 320 nm do 280 nm), a UV C (vlnové délky od 280 nm do 10 nm). Zdrojem UV záení jsou tlesa s vysokou teplotou (nap. Slunce, další hvzdy nebo elektrický oblouk) nebo speciální výbojky (nap. výbojka plnná párami rtuti, která se používá jako horské slunce). Neprochází obyejným sklem, proto je nutné pi výrob speciálních výbojek používat zvláštní druh skla tzv. kemenné sklo. Zpsobuje ionizaci vzdušného kyslíku ( podílí se na tvorb ozónu), má chemické úinky (zernání fotocitlivé vrstvy), biologické úinky (zhndnutí pokožky, ve velkých dávkách mže vyvolat rakovinu kže). Opt se mžete podívat na stránky NASA vnované ultrafialovému záení.

4 Rentgenové záení Rentgenové záení objevil v roce 1895 nmecký fyzik Willhelm Conrad Röntgen, když zkoumal vlastnosti katodového záení (= záení tvoené svazkem urychlených elektron). Toto záení po dopadu na kovovou elektrodu vyvolává vznik nového elektromagnetického záení, které Röntgen oznail jako paprsky X (toto oznaení se stále ješt používá v anglicky mluvících zemích X rays). Paprsky X mají velkou energii a jsou schopny procházet také neprhlednými pedmty. Rentgenové záení je tedy záení s vlnovými délkami 10 nm až 1 pm které vzniká ve speciálních výbojových trubicích rentgenkách viz obr.. 3. Její hlavní souást tvoí žhavená katoda, ze které v dsledku termoemise vyletují elektrony. Tyto elektrony jsou urychlovány elektrickým naptím a dopadají na anodu (vtšinou vyrobenou z wolframu). Elektrony na anod zabrzdí a pedají svou kinetickou energii atomm, které tvoí látku anody. V dsledku toho se anoda zahívá a je teba ji chladit (vodou, otáením kolem její osy). Tímto zpsobem vzniká spojité (= brzdné = bílé) rentgenové záení. Na energii rentgenového záení se pemní pouze velmi malá ást (1 % - 2 %) energie dopadajících elektron. Vlnová délka vzniklého rentgenového záení závisí na energii letících elektron, tj. na urychlovacím naptí. ím je urychlovací naptí vtší, tím je vlnová délka rentgenové záení kratší. Velikost elektrického proudu v rentgence ovlivuje intenzitu rentgenového záení. Pozn.: Vznik rentgenového záení je inverzním jevem k fotoelektrickému jevu, kdy dopadající záení uvoluje z kovu elektrony. Obr. 3: Rentgenka (pevzato z: Rozlišujeme dva základní druhy rentgenového záení: 1. spojité závisí pouze na urychlovacím naptí, nezávisí na materiálu, z nhož je anoda vyrobena; rozložení intenzity rentgenového záení v závislosti na vlnové délce je zachyceno na obr. 4: z nj vyplývá, že existuje pro každou hodnotu

5 urychlovacího naptí existuje minimální vlnová délka rentgenového záení; tuto nejkratší vlnovou délku oznaujeme jako krátkovlnná mez spojitého záení. Mžeme ji vypoítat na základ zákona zachování energie: energie dopadajícího elektronu se všechna pemní na energii fotonu rentgenového záení. Platí: E eu hf hc hc 0. 0 eu Po dosazení íselných hodnot získáme vztah mezi krátkovlnnou mezí a urychlovacím naptím: 1234,5 0 U nm. Obr. 4: Rozložení intenzity spojitého RTG záení podle vlnové délky (pevzato z [3]) Pozn.: Všimnte si, že se tvar tchto kivek mírn liší od kivky popisující záení absolutn erného tlesa u erného tlesa existovala nenulová pravdpodobnost, že se vyzáí foton s libovolnou vlnovou délkou. U spojitého RTG záení se mže pi daném naptí vyzáit s nejkratší vlnovou délkou 0, protože jinak by byl porušen zákon zachování energie (vznikající foton by ml vtší energii než elektron, který jeho vznik zpsobil) 2. charakteristické závisí na vlastnostech látky, z níž je vyrobena anoda; na rozdíl od spojitého záení má výrazné árové spektrum vzniká pi interakci elektronu (vyletivšího ze žhavené katody) s elektronem ve vnitních slupkách elektronového obalu tento elektron je vyražen z atomu a na jeho místo sestupují elektrony z vyšších slupek; pi tom se vyzáí charakteristická série ar. rozložení intenzity podle vlnové délky Rentgenové záení opt našlo velmi rozsáhlé použití v praxi. Nejastji se s ním setkáte v lékaství (každý z vás už urit nkdy byl na rentgenu prohlédnte si

6 hezký java aplet, který simuluje vznik rentgenového snímku ruky; krom klasického rentgenového vyšetení se v posledních letech hodn zaíná využívat poítaové tomografie (CT z anglického Computer Tomography) její princip mžete najít teba v [5]. Díky velmi krátké vlnové délce rentenového záení mžeme pozorovat jeho ohyb na krystalických látkách ( tzv. rentgenová strukturní analýza). Další využití rentgenového záení v prmyslu a v lékaství najdete zde. Stejn jako ultrafialové záení je rentgenové záení ve velkých dávkách škodlivé, a proto je teba se ped ním chránit. Gama záení Záení gama objevil roku 1900 Paul Villard. Na rozdíl od rentgenového záení, které vzniká jako dsledek energetických pemn v elektronovém obalu atomu, vzniká gama záení v atomovém jáde pi djích, které doprovázejí vznik záení alfa nebo beta. Je vysoce pronikavé, do materiál proniká lepe než záení alfa nebo záení beta. Na pohlcení záení je teba velké masy materiálu. Vhodnjší jsou materiály s vyšším atomovým íslem a hustotou. Používá se nap. pi sterilizaci nástroj, pi ošetování jídla, hlavn masa a zeleniny (aby zstaly déle erstvé). Pestože mže samo zpsobovat rakovinu, používá se pi jejím léení (tzv. Lekselv gama nž využívá nkolika paprsk záení zamených na místo nádoru, aby zabil rakovinou zasažené buky; v ostatních místech prochází jen jeden paprsek, a proto jsou zdravé buky mén poškozené a pežijí). Stránky NASA vnované gama záení. Použitá literatura: [1] BARTUŠKA, K. Sbírka ešených úloh z fyziky IV. 1. vyd. Praha: Prometheus 2000 [2] HALLIDAY, D., RESNICK, R., WALKER, J.: Fyzika. 1. vyd. Brno: VUTIUM, 2000 [3] HORÁK, Z., KRUPKA, F.: Fyzika. 2. vyd. Praha: SNTL, 1976 [4] JAVORSKIJ, B. M., SELEZN V, J. A. Pehled elementární fyziky. 1. vyd., Praha: SNTL, 1989 [5] LEPIL, O. Fyzika pro gymnázia Optika. 3. vyd. Praha: Prometheus, 2002 [6] PIŠÚT, J. a kol. Fyzika pro IV. roník gymnázií. 1. vyd. Praha: SPN, 1987 [7] VON LAUE, M. Djiny fyziky. 1. vyd. Praha: Orbis, 1958

Obr. 1: Elektromagnetická vlna

Obr. 1: Elektromagnetická vlna svtla Svtlo Z teorie elektromagnetického pole již víte, že svtlo patí mezi elektromagnetická vlnní, a jako takové tedy má dv složky: elektrickou složku, kterou pedstavuje vektor intenzity elektrického

Více

24. Elektromagnetické vlnní

24. Elektromagnetické vlnní 4. Elektromagnetické vlnní Podstatu elektromagnetického vlnní vyložil ve. polovin 19. století James Clarc Maxwell. Z jeho teorie elektromagnetického pole vyplývá, že kolem ástic s nábojem, které se pohybují

Více

Název: Druhy elektromagnetického záření

Název: Druhy elektromagnetického záření Název: Druhy elektromagnetického záření Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie, Chemie) Tematický celek:

Více

6. Elektromagnetické záření

6. Elektromagnetické záření 6. Elektromagnetické záření - zápis výkladu - 34. až 35. hodina - A) Elektromagnetické vlny a záření (učebnice strana 86-95) Kde všude se s nimi setkáváme? Zapneme-li rozhlasový nebo televizní přijímač

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

FYZIKA Elektromagnetické vlnění

FYZIKA Elektromagnetické vlnění Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Elektromagnetické

Více

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny: DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale

Více

Metodický list: Spustit v aplikaci MS Office PowerPoint. Prezentaci je vhodné doplnit výkladem.

Metodický list: Spustit v aplikaci MS Office PowerPoint. Prezentaci je vhodné doplnit výkladem. Název materiálu: Elektromagnetické záření 2 Jméno autora: Mgr. Magda Zemánková Materiál byl vytvořen v období: 2. pololetí šk. roku 2010/2011 Materiál je určen pro ročník: 9. Vzdělávací oblast: Fyzika

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektromagnetické

Více

ELEKTROMAGNETICKÉ ZÁŘENÍ

ELEKTROMAGNETICKÉ ZÁŘENÍ FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA ELEKTROMAGNETICKÉ ZÁŘENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu

Více

17. Elektrický proud v polovodiích, užití polovodiových souástek

17. Elektrický proud v polovodiích, užití polovodiových souástek 17. Elektrický proud v polovodiích, užití polovodiových souástek Polovodie se od kov liší pedevším tím, že mají vtší rezistivitu (10-2.m až 10 9.m) (kovy 10-8.m až 10-6.m). Tato rezistivita u polovodi

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC.

KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC. KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC. Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Základy fyzikálněchemických

Základy fyzikálněchemických Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé

Více

OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3

OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 OBECNÁ FYZIKA III (KMITY, VLNY, OPTIKA), FSI-TF-3 GARANT PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI) VYUUJÍCÍ PEDMTU: Prof. RNDr. Jií Petráek, Dr. (ÚFI), CSc., Mgr. Vlastimil Kápek, Ph.D. (ÚFI) JAZYK VÝUKY:

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena.

Na základě toho vysvětlil Eisnstein vnější fotoefekt, kterým byla platnost tohoto vztahu povrzena. Vlnově-korpuskulární dualismus, fotony, fotoelektrický jev vnější a vnitřní. Elmg. teorie záření vysvětluje dobře mnohé jevy v optice interference, difrakci, polarizaci. Nelze jí ale vysvětlit např. fotoelektrický

Více

FYZIKA Světelné vlnění

FYZIKA Světelné vlnění Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Světelné

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

16. Franck Hertzův experiment

16. Franck Hertzův experiment 16. Franck Hertzův experiment Zatímco zahřáté těleso vysílá spojité spektrum elektromagnetického záření, mají např. zahřáté páry kovů nebo plyny, v nichž probíhá elektrický výboj, spektrum čárové. V uvedených

Více

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla

Více

9. Fyzika mikrosvěta

9. Fyzika mikrosvěta Elektromagnetické spektrum 9.1.1 Druy elektromagnetickéo záření 9. Fyzika mikrosvěta Vlnění různýc vlnovýc délek mají velmi odlišné fyzikální vlastnosti. Různé druy elektromagnetickéo záření se liší zejména

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta 4. Jaderná fyzika Stavba atomu Atomy byly dlouho považovány za nedlitelné. Postupem asu se zjistilo, že mají jádro složené z proton a z neutron a elektronový obal tvoený elektrony. Jaderná fyzika se zabývá

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

Hezká fyzika z po íta e

Hezká fyzika z po íta e J. Hubeák: Hezká fyzika z poítae Hezká fyzika z poítae JOSEF HUBEÁK Univerzita Hradec Králové Poíta je univerzální nástroj a studenti, žáci a uitelé jej bžn používají. I když doslouží, je stále zajímavým

Více

23. Mechanické vlnní. Postupné vlnní:

23. Mechanické vlnní. Postupné vlnní: 3. Mechanické vlnní Mechanické vlnní je dj, pi které ástice pružného prostedí kitají kole svých rovnovážných poloh a tento kitavý pohyb se penáší postupuje) od jedné ástice k druhé vlnní že vzniknout pouze

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola

Více

Úloha č. 1: CD spektroskopie

Úloha č. 1: CD spektroskopie Přírodovědecké fakulta Masarykovy univerzity v Brně Předmět: Jméno: Praktikum z astronomie Andrea Dobešová Obor: Astrofyzika ročník: II. semestr: IV. Název úlohy Úloha č. 1: CD spektroskopie Úvod: Koho

Více

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu).

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu). P9: NDT metody 2/5 - Princip průmyslové radiografie spočívá v umístění zkoušeného předmětu mezi zdroj vyzařující RTG nebo gama záření a detektor, na který dopadá záření prošlé daným předmětem. - Uvedeným

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Počátky kvantové mechaniky. Petr Beneš ÚTEF

Počátky kvantové mechaniky. Petr Beneš ÚTEF Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl

Více

Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK

Optika. Co je světlo? Laser vlastnosti a využití. Josef Štěpánek Fyzikální ústav MFF UK Optika Co je světlo? Laser vlastnosti a využití Josef Štěpánek Fyzikální ústav MFF UK Optika Vědecká disciplína zabývající se světlem a zářením obdobných vlastností (optické záření) z hlediska jeho vzniku,

Více

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice

Více

frekvence f (Hz) perioda T = 1/f (s)

frekvence f (Hz) perioda T = 1/f (s) 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu

Více

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM

PENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:

Více

CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ

CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný

Více

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření.

Čím je teplota látky větší (vyšší frekvence kmitů), tím kratší je vlnová délka záření. KVANTOVÁ FYZIKA 1. Záření tělesa Částice (molekuly, ionty) pevných a kapalných látek, které jsou zahřáté na určitou teplotu, kmitají kolem rovnovážných poloh. Při tomto pohybu kolem nich vzniká proměnné

Více

1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment

1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Rychlost světla a její souvislost s prostředím

Rychlost světla a její souvislost s prostředím Rychlost světla a její souvislost s prostředím Jak byla změřena rychlost světla? První, kdo přišel s myšlenkou konečné rychlosti světla, byl Francis Bacon. Ve své práci Novum Organum Scientiarum tvrdil,

Více

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x) NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Fyzikální podstata DPZ

Fyzikální podstata DPZ Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

Spektroskop. Anotace:

Spektroskop. Anotace: Spektroskop Anotace: Je bílé světlo opravdu bílé? Liší se nějak světlo ze zářivky, žárovky, LED baterky, Slunce, UV baterky, výbojek a dalších zdrojů? Vyrobte si jednoduchý finančně nenáročný papírový

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

INTERFERENCE SVTLA. Obr. 1: Interference svtla. Troška historie

INTERFERENCE SVTLA. Obr. 1: Interference svtla. Troška historie INTERFERENCE SVTLA Každý z nás již jist vid oejové skvrny na mokré vozovce nebo mýdové bubiny. Píinou jejich duhového zbarvení je jev, který nazýváme interference svta a patí mezi zákadní jevy tzv. vnové

Více

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty.

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty. 2.snímek Historie rentgenového záření Na počátku vzniku stál německý fyzik W.C. Röntgen (1845-1923). V roce 1895 objevil při studiu výbojů v plynech neznámý druh záření. Röntgen zkoumal katodové záření,

Více

MĚŘENÍ PLANCKOVY KONSTANTY

MĚŘENÍ PLANCKOVY KONSTANTY Úloha č. 14a MĚŘENÍ PLANCKOVY KONSTANTY ÚKOL MĚŘENÍ: 1. Změřte napětí U min, při kterém se právě rozsvítí červená, žlutá, zelená a modrá LED. Napětí na LED regulujte potenciometrem. 2. Nakreslete graf

Více

Elektromagnetické vlnění

Elektromagnetické vlnění Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit

Více

Historie. - elektrizace tením (elektron = jantar) - Magnetismus magnetovec pitahuje železo. procházející proud vytváí magnetické pole

Historie. - elektrizace tením (elektron = jantar) - Magnetismus magnetovec pitahuje železo. procházející proud vytváí magnetické pole Historie Staréecko: elektrizace tením (elektron = jantar) Magnetismus magnetovec pitahuje železo Hans Christian Oersted objevil souvislost mezi elektinou a magnetismem procházející proud vytváí magnetické

Více

Světlo x elmag. záření. základní principy

Světlo x elmag. záření. základní principy Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =

Více

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické

Více

Environmentální fyzika

Environmentální fyzika Environmentální fyzika Renata Holubová Olomoucký fyzikální kaleidoskop 2005 ! " # Environmentální fyzika -globálními problémy lidstva, tedy hlavn jejich fyzikální podstatou a možnostmi jejich technického

Více

Efektivní hodnota proudu a nap tí

Efektivní hodnota proudu a nap tí Peter Žilavý: Efektivní hodnota proudu a naptí Efektivní hodnota proudu a naptí Peter Žilavý Katedra didaktiky fyziky MFF K Praha Abstrakt Píspvek experimentáln objasuje pojem efektivní hodnota stídavého

Více

ELEKTROMAGNETICKÉ ZÁŘENÍ

ELEKTROMAGNETICKÉ ZÁŘENÍ VY_32_INOVACE_FY.16 ELEKTROMAGNETICKÉ ZÁŘENÍ Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Elektromagnetické záření Jakýkoli

Více

OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Rozklad světla Když světlo prochází hranolem, v důsledku dvojnásobného lomu na rozhraních

Více

Elektromagnetické vlnění, vlny a částice

Elektromagnetické vlnění, vlny a částice Elektromagnetické vlnění, vlny a částice Vznik elektromagnetického záření Elektromagnetické vlnění vzniká, když částice s elektrickým nábojem se pohybuje se zrychlením. Příklady: - Střídavé napětí v anténě:

Více

Elektromagnetická záření

Elektromagnetická záření Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Elektromagnetická záření Světlo je elektromagnetické vlnění a jeho zdrojem jsou přeměny energie v atomech a

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Správa obsahu ízené dokumentace v aplikaci SPM Vema

Správa obsahu ízené dokumentace v aplikaci SPM Vema Správa obsahu ízené dokumentace v aplikaci SPM Vema Jaroslav Šmarda, smarda@vema.cz Vema, a. s., www.vema.cz Abstrakt Spolenost Vema patí mezi pední dodavatele informaních systém v eské a Slovenské republice.

Více

Princip fotovoltaika

Princip fotovoltaika Fotovoltaiku lze chápat jako technologii s neomezeným r?stovým potenciálem a?asov? neomezenou možností výroby elektrické energie. Nejedná se však pouze o zajímavou technologii, ale také o vysp?lé (hi-tech)

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

VY_32_INOVACE_01_PŘEHLED ELEKTROMAGNETICKÝCH VLN_28

VY_32_INOVACE_01_PŘEHLED ELEKTROMAGNETICKÝCH VLN_28 VY_32_INOVACE_01_PŘEHLED ELEKTROMAGNETICKÝCH VLN_28 Autor: Mgr. Pavel Šavara Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo

Více

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy

Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Elektrodynamika, elektrický proud v polovodičích, elektromagnetické záření, energie a její přeměny, astronomie, světelné jevy Kvarta 2 hodiny týdně

Více

Hmotnostní analyzátory a detektory iont

Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory Hmotnostní analyzátory Rozdlí ionty v prostoru nebo v ase podle jejich m/z Analyzátory Magnetický analyzátor (MAG) Elektrostatický analyzátor

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Elektrický proud v plynech

Elektrický proud v plynech Elektrický proud v plynech Vedení el. proudu v plynech Čisté suché plyny (např.vzduch) prakticky neobsahují volné částice s nábojem, a proto jsou dobrými izolanty. Ale tzv. ionizační činidla (ionizátory)

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici

7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici 7. Měření rychlosti zvuku ze zpoždění signálu v akustické trubici Problém A. Přímé změření vlnové délky zvuku ve vzduchu za normálního tlaku v Kundtově trubici pro pět různých frekvencí nízkofrekvenčního

Více

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí.

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Petr Martínek martip2@fel.cvut.cz, ICQ: 303-942-073 27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Multiplexování (sdružování) - jedná se o

Více

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn!

2.1 Pokyny k otev eným úlohám. 2.2 Pokyny k uzav eným úlohám. Testový sešit neotvírejte, po kejte na pokyn! MATEMATIKA základní úrove obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bod Hranice úspšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. asový limit pro ešení

Více

24. Elektromagnetické kmitání a vlnění

24. Elektromagnetické kmitání a vlnění 24. Elektromagnetické kmitání a vlnění 1. Elektromagnetické kmity ( elektromagnetický oscilátor, rozbor elektromagnetických kmitů, elektromagnetický oscilátor v praxi ) 2. Elektromagnetické vlny ( jejich

Více

STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více