monokulárně. Celkový rozsah binokulárního vidění je 180 (od temporální strany P oka po temporální stranu levého oka) a monokulárního zorného pole se

Rozměr: px
Začít zobrazení ze stránky:

Download "monokulárně. Celkový rozsah binokulárního vidění je 180 (od temporální strany P oka po temporální stranu levého oka) a monokulárního zorného pole se"

Transkript

1

2 ÚVOD Je to tady jaro a s ním i třetí číslo časopisu. V novém roce, v novém kabátě a se spoustou zajímavých článků. Tím série překvapení nekončí, nově můžete časopis sledovat i na webových stránkách ocima.cz. A co vás čeká v budoucnu? Chystáme pro vás soutěž o zajímavé ceny, takže sledujte náš Facebook. A opět hledáme nové tváře, které by s námi chtěly spolupracovat, takže vemte místo a přidejte se do rozjetého vlaku. Hana Pustková OBSAH ÚVOD... 2 ZORNÉ POLE... 3 JSTE ZODPOVĚDNÍ ŘIDIČI?... 5 OPTA TOXOPLASMOSA A OKO... 9 OČNÍ DOMINANCE ANISEIKONIE 1. díl SLOVNÍČEK POJMŮ POVRCHOVÉ ÚPRAVY 3. díl... 19

3 ZORNÉ POLE Binokulární vidění (prostorové vidění) je závislé na součinnosti obou očí, a proto je omezené na oblast binokulárního zorného pole, tedy oblast zorného pole, kde se vnitřní části zorných polí obou očí vzájemně překrývají a obrazy v této oblasti zorného pole splynou v jeden. Pojďme si tedy něco povědět o tom, co to vlastně zorné pole je a jakým způsobem ovlivňuje naše vidění. Zorné pole je tedy široká oblast v prostoru, rozprostírající se kolem fixačního bodu, který oko sleduje. Obrazy bodů nacházející se v této oblasti dopadají na sítnici. Zásadní poznatky o zorném poli přinesl již Leonardo da Vinci ( nl ), který zjistil, že rozsah zorného pole od bodu fixace je větší jak 90. V roce 1668 objevil Mariotte slepou skvrnu. První, kdo po-psal neurčité výpadky zorného pole, byl Hippoktares ( př. nl ) a nazval je jako hemianopie. V roce 1708 Boerhouve definoval skotom, jehož význam pochází z Řecké slovo Skotos a znamená tem-notu. Na něho navázal v roce 1817 Joesph Beer Georg, který používá výrazy jako "centrální skotom" a "paracentrální skotom". [1] V roce 1801 fyzik a lékař Thomas Young ( ) jako první změřil vnější hranice zorného pole. Jeho hodnoty měření se od dnešních hodnot lišily asi jen o 10 v horní oblasti zorného pole. Ostatní hodnoty se téměř shodovaly s dnešními. V roce 1825 na Yangovu práci navázal biolog Jana Evangelista Purkyně ( ), který po-sunul temporální hranice zorného pole z 90 na 100. [1] Rozsah zorného pole je fyziologicky omezený například nosním kořenem, nadočnicovým obloukem, očnicí, nebo tvářemi. Čím více budou oči zapadnuté do očnice, tím více se bude rozsah pole zmenšovat. Jako první vnímáme v zorném poli pohyb, pak následují barvy. Největší rozsah monokulárního zorného pole máme pro bílou barvu a to: směrem temporálně , nazálně 60, nahoru a dolů 70. Menší rozsah je pak naměřený pro barvu modrou, červenou a nejmenší pro barvu zelenou. Při pohledu oběma očima se větší část zorných polí pravého a levého oka překrývá a tím nám umožňuje prostorové (stereoskopické) vidění. Horizontální rozsah stereoskopického binokulárního vidění je 120. Jen malá část zorných polí se temporálně nepřekrývá a je vnímána jedním okem tedy

4 monokulárně. Celkový rozsah binokulárního vidění je 180 (od temporální strany P oka po temporální stranu levého oka) a monokulárního zorného pole se uvádí 150 (90 temporálně + 60 nazálně). [2][3] Rozlišovací schopnost oka značně klesá od centra k periférii. Je to způsobené fyziologickým rozmístěním světločivých elementů na sítnici oka. V centrální části, v místě nejostřejšího vidění zvané fovea, se nachází pouze čípky (jejich celkový počet je 6-7 miliónů). Směrem do periférie se počet čípků snižuje a začínají se objevovat tyčinky (celkový počet 120 miliónů) až jejich počet zcela vymizí a vnímáme jen prostřednictvím tyčinek. Centrální vidění je ostré a barevné, zatím co periferní vidění vnímá odstíny černé a bíle, ale pro nás je vnímání periferií velmi důležité z hlediska adaptace na tmu, umožňuje nám orientovat se v prostoru a je citlivé k vnímání pohybu. [3] Defekty v zorném poli označujeme jako skotomy a jedná se o ohraničené výpadky zorného pole, podle vnímatelnosti při poklesu víčka je rozlišujeme na absolutní skotom - výpadek se týká všech podnětů, relativní skotom - Výpadek se týká jen některých podnětů, například pacient vidí pohyb, ale nevidí barvu, pozitivní skotom jedná se o defekt v zorném poli, který si pacient uvědomuje jako skvrnu, která ho omezuje a negativní skotom takový to výpadek si pacient neuvědomuje a fyziologickým negativním skotomem je slepá skvrna tzv. Mariottův bod, který se nachází temporálně, 15 od bodu fixace a představuje promítnutí terče zrakového nervu do prostoru (terč na sítnici je nazálně). Dále skotomy můžeme rozlišit podle jejich místa výskytu, tvaru, rozsahu například na centrální, centrocekální, pericentrální atd. Je nutné si uvědomit, že na sítnici dopadají obrazy pře-vrácené a zmenšené, tedy co se nachází vpravo / vlevo, dopadá na sítnici vlevo / vpravo a co se nachází nahoře / dole dopadá dolů / nahoru. Zorné pole představuje jakousi samozřejmost. Ale existuje řada příčin, kdy dochází k omezení zorného pole, nebo ke vzniku skotomů, které ovlivňují zrakovou pohodu a kvalitu našeho života. Jednou z příčin omezení zorného pole mohou být i víčka. Jaké patologie v postavení víček mohou významně ovlivnit zorné pole a jak víčka vyšetřujeme, o tom si povíme něco v příštím čísle.

5 Reference [1] History of Perimetry. Perimetry In-troduction Guide [online]. Germany: Oculus. [vid ]. Dostupné z: <http://www.optomes.com.tr/tr/dosya/1-539/h/perimetryintroduction-guide1.pdf> [2] JUREČKA, Tomáš. Anatomie a fyziol-ogie oka I. Brno, Přednáška zorné pole. Masarykova Univerzita. [3] HORNOVÁ, Jara. Oční propedeutika. Praha: Garda Publishing, s. ISBN Bc. Kamila Laťaková, Dis. 5. ročník Optometrie VÍTE, ŽE? Víte proč se žlutá skvrně říká žlutá? Žlutá skvrna ve skutečnosti zaživa není vůbec žlutá, nýbrž o něco červenější než okolí. Tento přívlastek však makula dostala podle toho, že se žlutou jeví u mrtvoly. * * ROSYPAL, Stanislav. Nový přehled biologie. : Scientia, S Makula z anatomického hlediska zahrnuje plochu o průměru 5,5 cm. Ačkoli název možná získala až na pitevně, nezapomínejme, že obsahuje lutein a zeaxantin, což jsou pigmenty žluté barvy ze skupiny karotenoidů. ** ** ŘEHÁK, Jiří REHÁK, Matúš. Venózní okluze sítnice. 5. vyd. Praha: Grada, 6455, 578 s. JSTE ZODPOVĚDNÍ ŘIDIČI? Dá se říct, že skoro každý z nás je nebo se do budoucna stane řidičem automobilu. V rámci vlastní bezpečnosti a bezpečnosti silniční dopravy bychom měli věnovat dostatečnou péči svým očím. Pokud člověk nemá zrak ve stoprocentním nasazení, měl by vždy používat brýlovou korekcí. Jak vidí řidič, který brýle potřebuje, ale nepoužívá je, a jak to eventuálně může dopadnout, si můžete přečíst v tomto článku. Emetropie Emetropické oko je takové oko, u kterého se pozorovaný obraz předmětu v nekonečnu zobrazí ostře na sítnici bez použití akomodace. V tomto případě sítnice odpovídá optickému nekonečnu a leží v rovině

6 ohniska optického systému. Emetropické oko nepotřebuje pro vidění žádnou refrakční pomůcku. Na obrázku níže emetropické oko zahlédne chodce ve 250 metrech před sebou - v případě brzdění z rychlosti 50 km/h zbývá 222 metrů, aby zastavil - po brzdění z 90km/h zbývá 160 metrů - pokud auto brzdí ze 130 km/h zbývá 121 metrů k tomu, aby dobrzdil. Ametropie U ametropického oka neleží obrazové ohnisko optické soustavy na sítnici, ale buď před, nebo za sítnicí. Pokud leží obrazové ohnisko před sítnicí, jedná se o myopii, pokud leží za ní, jde o hypermetropii. Kromě odlišné délky oka od oka emetropického mohou být dalším důvodem ametropie jiné poloměry křivosti lámavých ploch. V poslední řadě se může jednat o abnormální indexy lomu optických prostředí oka. Ve všech případech neleží daleký bod v nekonečnu, ale v jiné vzdálenosti. Pokud nepoužijeme brýlovou korekci pro odstranění nepravidelnosti, oko nevidí předměty více či méně ostře. V případě řidičů je kompenzace ametropie nutná. Myopie Myopie je refrakční vada, při které se obraz z nekonečna zobrazí ostře až za sítnicí. Pokud člověk není korigovaný, vidí vzdálené předměty rozmazaně, blízké předměty ostře. Má problém s oslněním. Aby myopické oko vidělo i vzdálené předměty ostře, předkládáme před něj nejslabší rozptylnou čočku, se kterou je dosažené ostré vidění. Díky ní se obraz posune zpět na sítnici a je vnímán ostře. Pokud myopa překorigujeme, bude nucen více akomodovat a dojde k vyvolání astenopických potížím, jako je bolest hlavy, pálení očí nebo například slzení. Na obrázku níže pozorujeme myopického řidiče s nekorigovanou vadou -0,75 dpt. V tomto případě řidič zahlédne chodce ve 125 metrech před sebou. - pokud by jel rychlostí 50km/h zbývá mu na zabrzdění jen 97 metrů - po brzdění z 90km/h zbývá řidiči již jen 35 metrů

7 - pokud by jel 130 km/h zbývá -4 metrů, v tomto případě by to znamenalo, že řidič nestačí dobrzdit před chodcem a chodce by přejel. Na dalším obrázku má řidič již refrakční vadu 2 dpt. Je vidět značný pokles zrakové ostrosti. Tento řidič by zahlédl chodce až ve 25 metrech před sebou - při rychlostí 50km/h by auto zastavil až -3 metry za chodcem. - Při brzdění z 90 km/h by chodce přejel o -65 metrů - při rychlosti 130 km/h by nedobrzdil o -104 metrů. I na tomto příkladu je vidět, že nekorigovaná refrakční vada je při řízení zásadní. Hypermetropie Hypermetropické oko je oko, u něhož se obraz pozorovaného předmětu z nekonečna zobrazí ostře v konečné vzdálenosti za sítnicí. Dalekozraké oko je oko příliš krátké, nebo má ke své délce příliš nízkou optickou mohutnost. Hypermetrop nevidí moc dobře ani do dálky ani do blízka. Při nízké vadě oko nemusí mít do dálky žádný problém. Při akomodační kompenzaci způsobuje asteno-pické potíže. K tomu aby se obraz posunul zpět na sítnici a vytvořil ostrý obraz, použijeme nejvyšší možnou spojnou čočku, při které nedojde ke zhoršení zrakového vjemu. Na obrázku výše pozorujeme dalekozrakého řidiče s nízkou refrakční vadou. Tato nízká hodnota mu umožňuje dobré vidění do dálky. Řidič ale potřebuje vidět i dobře na střední vzdálenost, v tomto případě je touto vzdáleností palubní deska s ukazateli rychlosti. Zaostřit na palubní desku mu dělá značný problém. Díky tomu nemůže sledovat rychlost, kterou jede a může hrozit havárie díky větší rychlosti, než je povolena. Astigmatismus Astigmatické oko nemá ve všech meridiánech stejnou optickou mohutnost. Rohovka není ideální kulová plocha, a proto je téměř každé oko zatíženo fyziologickým astigmatismem. Tedy optická mohutnost rohovky ve svislém řezu je o 0,5 dpt větší než v řezu horizontálním. Astigmatismus bývá nejčastěji způsobený nesouměrností rohovky, někdy asymetrií lámavých ploch čočky. Astigmatismus se u řidičů může projevovat slzením a pálením očí, dále řidič může mít pocit snížené soustředěnosti nebo dokonce bolesti hlavy. Většinou mívají řidiči problém při jízdě v automobilu v noci. Obraz

8 vnímají celkově rozostřený a zamlžený. Nedokáže dobře zaostřit na žádnou vzdálenost. Problém mu dělá při předjíždění odhadnout hloubku prostoru a vzdálenosti. Na obrázku níže vidíme zorné pole řidiče, který má cyl 3 dpt ax 170. Vidíme značně rozmazaný celý obraz, který znesnadňuje orientaci i celkové vnímání. Věřím, že všichni čtenáři vidí silnici jako řidič prvního obrázku a pokud ne, brzy budou. Doufejme, že potkáme na silnicích co nejméně bezohledných řidičů. Reference [1] Essilor Praktická refrakce. Listy očních optiků. 08, [2] Jaroš, Adam Blesk.cz. [Online] 21. duben [Citace: ] /podivejte-se-jak-vidi-ridic-ktery-nenosibryle-je-postrachem-silnic.html. [3] Kuchyňka, Pavel a kolektiv, a Oční lékařství. Praha : Grada, [4] Polášek, Jaroslav Technický sborník oční optiky. Praha : Oční optika, [5] NeoVize, 0ční klinika Brno Dok-tor-zdraví.cz. [Online] 10. květen [Citace: ] ktor-zdravi.cz/clanky/ridite-a-nemate-zrak-v-poradkupodivejte-se-jak-vidi-lide-s-nezkorigovanou-ocni-vadou/. Zdroj obrázků: [1] [5] Bc. Veronika Janatová 5. ročník Optometrie OPTA 2014 V únoru proběhla jedna z důležitých událostí ve světě optiky, optometrie a oftalmologie. Opta je akce, na které se daří úspěšně skloubit vícero aktivit najednou. Už dávno to není jen veletrh, ale i společenská událost, díky které máte možnost setkat se s přáteli, nakoupit obruby či se dozvědět něco nového. No jo, ale co z toho student má? Kromě toho, že nasaje atmosféru svého budoucího povolání, lze tady uplatnit pořekadlo: Když nemůže Mohamed k hoře, musí hora k Mohamedovi! Není skvělé, že zrovna ve městě, kde studujete, se odehrává akce takového rozměru? Sjedou se na ni nejen firmy, ale i majitelé a ostatní zaměstnanci očních optik, očních center a můžete si na ní naklonit svoji pracovní štěstěnu nebo karmu chcete-li.

9 Ale jaká byla vlastně letošní Opta? Grandiózní, pestrá, neotřelá, vkusná, střízlivá, dvacetiletá, vzdělávací, novátorská, skvělá. Podívejme se na ni ve fotografiích. V rámci nedělního programu byla letos pro návštěvníky nachystána jedna novinka, a to možnost navštívit veletrh Styl a Kabo zaměřený na módu, obuv a kožené zboží. A že jste to letos nestihli? Tak si ji příští rok rozhodně nenechejte ujít. Už teď si můžete zapsat do kalendáře, že se uskuteční na brněnském výstavišti. Hana Pustková 1. ročník Ortoptiky TOXOPLASMOSA A OKO Toxoplasmosa je infekční onemocnění člověka a zvířat způsobené prvokem Toxoplasma gondii. Infekce probíhá u většiny nakažených bez klinických příznaků nebo jen s mírnými příznaky (uzlinová forma). Infekce je nejvíc nebezpečná pro plod v prvním a druhém trimestru těhotenství a pro imunodeficientní pacienty (např. pacienti s HIV, po transplantacích či po ozáření). Kongenitální (vrozená) toxoplasmosa má v Evropě nízkou incidenci, mnohem častější je toto onemocnění v zemích Jižní Ameriky, především v místech s nedostatečnou hygienou. U 70-90% případů dochází k recidivující chorioretinitidě, dalším následkem onemocnění může být mikroftalmus, katarakta, panuveitida (zánět celé oblasti uvey, tj. iridocyklitida a choroiditida) a atrofie očního nervu. Toxoplasmosa může být uni- nebo bi- laterální. Obvykle se nevyskytuje jen jeden z výše zmíněných projevů, ale většinou jsou v kombinaci, např. chorioretinitida, katarakta a strabismus. Při zánětu sítnice bývá přítomný edém a zvýšený nitrooční tlak. Získaná toxoplasmosa se u dětí téměř nevyskytuje, týká se převážně imunodeficientních pacientů. Může se projevovat jako nekróza a těžká destrukce v ostře ohraničených okrscích sítnice, při velmi těžkém zánětu také zkalení sklivce. Subjektivním příznakem je mlhavé vidění, plovoucí zákalky ve sklivci a zhoršení zrakové ostrosti podle umístění zánětlivého infiltrátu

10 na sítnici. Obvykle je postižen zadní pól sítnice nebo oblast nazálně od makuly k terči zrakového nervu. Zánětlivé ložisko se hojí pigmentovou jizvou, typická jizva je ostře ohraničená, provázená centrální chorioretinální atrofií a hyperpigmentací okolí. I po letech od zhojení může dojít k reaktivaci onemocnění a dalšímu zjizvení tkáně. Toxoplasmosa se diagnostikuje pomocí sérologického vyšetření krve, punkce komorové tekutiny, diagnostickou pars plana vitrektomií (PPV), skiaskopií, nepřímou oftalmoskopií v mydriáze. Mezi další diagnostické procedury řadíme fluorescenční angiografii (FA), indocyaninová fluorescenční angiografii (ICFA), optickou koherentní tomografii (OCT) nebo ultrazvukovou sonografii (UVZ). Léčbu je třeba zahájit co nejdříve, neboť je účinná pouze v akutní fázi onemocnění, pokud infekce přejde do chronického stádia, léky jsou neúčinné. Včasně zahájená léčba umožní zrychlení hojení ložiska, a to zmenší výslednou jizvu po hojení. K léčbě se používá mono nebo kombi terapie. Nejčastěji se používá trojkombinace pyrimetamin, sulfadiazin a prednison. Při monoterapii azitromycin po dobu od 3 do 6 týdnů. Je kontraindikována léčba kortikosteroidy. Pro léčbu je možné použít i fotokoagulaci, kryoterapii a vitrektomii. Při fotokoagulaci a kryoterapii je nutné zvážit rizika při zákroku, jako je možnost intraretinálního krvácení, krvácení do sklivce, či odchlípení sítnice nebo objevení sítnicových cyst. Pars plana vitrektomie se používá při zkalení sklivce. Reference [1] Ophthalmologic Manifestations of Toxoplasmosis. LIHTEH, Wu. Medscape [online]. 2013, [cit ]. Dostupné z: scape.com/article/ overview [2] KUCHYŇKA, Pavel. Oční lékařství. 1.vyd. Praha: Grada, 2007, [40], 768 s. ISBN Mgr. Hana Nevřivá absolvent Optometrie OČNÍ DOMINANCE V minulém čísle jsme se podrobně věnovali stranové preferenci a dozvěděli jsme se, jak je to s lateralitou horních a dolních končetin. V tomto příspěvku se budeme zabývat dominancí očí. Dozvíme se také

11 nejen to, že oční dominance není pouze jedna (jak se mnozí možná domnívají), ale i jak lze jednotlivé dominance zjišťovat a jaký význam má určení oční dominance pro praxi. Zlomovým bodem pro oční dominanci, je rok 1861, kdy G. M. Humphrey u očí zjistil funkční nesouměrnost. A od tohoto okamžiku se oční dominanci věnuje neustálá pozornost. Předpokládáme, že každý člověk má jedno oko vedoucí. Rozdíl je pouze v intenzitě, jakou se oko prosazuje při binokulárním vidění. Dominantní oko nemusí mít vždy lepší zrakovou ostrost, ta ale nesmí být výrazně horší než je u oka nedominantního. Pokud tedy není vidění u obou očí stejné z patologického nebo refraktivního důvodu či je přítomen strabismus, nabývá lepší oko výrazné převahy. Je-li zraková ostrost na obou očích přibližně stejná, lze ji ve větším nebo menším stupni prokázat za použití vhodných zkoušek. Ve vedení se mohou obě oči při dívání do dálky a do blízka střídat (emetropické oko do dálky, myopické do blízka). Stanovení oční dominance je významné při zrakové korekci. Při plné monokulární korekci nemusí být binokulární korekce vždy korekcí optimální (plná korekce nedominantního oka může narušit vliv oka dominantního a způsobit tak astenopické potíže). Pojďme se tedy blíže podívat na druhy oční dominance. Existují tři typy: a) senzorická b) okulomotorická c) směrová. Při senzorické dominanci dává zrakový systém přednost jednomu oku před druhým anebo druhé oko snadněji tlumí (senzoricky nedominantní oko je oproti senzoricky dominantnímu oku snadněji utlumeno). Rozhodující může být kvalita obrazu či vzdálenost pozorovaného předmětu při alternujícím vidění. Jedním z příkladů uplatnění senzorické dominance může být monokulární mikroskopie, kdy při pohledu do okuláru mikroskopu či do hledáčku fotoaparátu upřednostníme jedno z očí (to senzoricky dominantní) a druhé většinou úplně zavřeme. Toto si můžeme jednoduše sami vyzkoušet. Oko, které používáme při monokulárním vidění, je označováno jako oko zaměřovací. Senzorickou dominanci na dálku lze určit při pohledu na optotyp s odpovídající korekcí. Před jedno oko předsazujeme hodnotu dané

12 adice, kterou jsme zjistili během vyšetření refrakce a zjišťujeme rozdíl v jasu a kontrastu znaků při zamlženém pravém a následně levém oku. Při srovnání obou obrazů je lepší vjem při zamlžení senzoricky nedominantního oka (jsou-li znaky jasnější při zamlžení levého oka, tedy že levé oko snáší zamlžení lépe, levé oko je v tomto případě okem nedominantním, pravé oko je tedy senzoricky dominantní do dálky). Obdobně lze testovat senzorickou dominanci do blízka, s tím rozdílem, že předsazujeme rozptylku. U okulomotorické dominance se při binokulárním vidění projevuje u jednoho oka lepší fixace (např. při fixační disparitě u heteroforie se dominantní oko odchyluje méně). K vyšetření okulomotorické dominance lze s výhodou použít MKH testů s fixační značkou. Směrová dominance je nejvyužívanějším typem oční dominance. Zjišťujeme směrovost při binokulárním vidění. Určujeme tedy oko, se kterým se zaměřujeme na konkrétní předmět. Toto oko, označujeme jako oko řídící. Směrovou dominanci lze poměrně jednoduše a spolehlivě určit např. manuskopem. Jedná se o čtyřboký jehlan s obdélníkovou základnou v šíři obličeje, vysoký je asi 20 cm, zúžený na vrcholu do otvoru 3x4 cm. Tímto jehlanem se vyšetřovaný dívá oběma očima na nějaký malý předmět (např. obrázek či malý nápis), který vyšetřující drží v úrovni svých očí ve vzdálenosti 3 až 4 metry od vyšetřovaného. V otvoru manuskopu pak vyšetřující vidí oko, které předmět fixuje, to je pak okem vedoucím. Směrovou dominanci lze také testovat např. pomocí metody hrany a palce, kdy si oběma očima vybereme nějaké vertikální rozhraní a před něj předložíme svůj vztyčený palec. Střídavě zavíráme levé a pravé oko. Nebo pohledem přes otvor, kdy si z rukou vytvoříme průhled, jímž se budeme dívat na nějaký předmět, který vidíme na zdi. Poté opět střídavě zavíráme pravé a levé oko. Pokud nám pozorovaný objekt při pozorování jedním okem, zůstává v průhledu, či zůstává vztyčený palec na pozorované hraně, jedná se o oko dominantní. Při pohledu druhým okem obraz více uskočí, v tom případě se jedná o oko nedominantní. Výše popsané dominance se nemusí vždy nacházet na stejném oku, tedy že by jedno oko bylo dominantní současně pro všechny tři

13 typy dominance. Je možné, že kupříkladu pravé oko bude mít dominanci senzorickou a levé dominanci směrovou. Nejvýznamnějším pro optometristickou praxi je především stanovení dominantního oka pro aplikaci kontaktních čoček metodu monovision. Při této metodě korigujeme dominantní oko do dálky, nedominantní oko korigujeme do blízka. Při metodě monovision tak dochází k aniseikonii. Nestejná velikost obrazů vznikajících na sítnici je snesitelná do rozdílu 2-2,5 D a ne všem klientům může tato metoda vyhovovat. Období, při kterém si zákazník musí na tuto metodu aplikace kontaktních čoček zvykat, se nazývá adaptační období a je u každého individuální, obvykle však trvá cca 14 dní. V tomto období je nutné se vyvarovat všech aktivit, ve kterých je v první řadě zapotřebí prostorového vidění (to je totiž po tuto dobu zhoršené), zakázané je především řízení motorových vozidel. Další význam má stanovení oční dominance před laserovým zákrokem. Lékaři toto stanovení pomáhá zvolit priority léčby. Pro pacienta bude v prvních dnech po operaci lepší, pokud bude jeho dominantní oko bez potíží. Ke stanovení oční dominance přistupujeme u každého zákazníka vždy individuálně dle jeho konkrétních přání a potřeb, pro které bude zvolená korekce sloužit. Pro praxi je vhodné si nejprve určit, jakou konkrétní korekci budeme pro zákazníka volit a tedy na jaký typ oční dominance se následně při vyšetřování zaměřit. Reference: ANTON, Milan. Refrakční vady a jejich vyšetřovací metody. 3. přeprac. vyd. Brno: Národní centrum ošetřovatelství a nelékařských zdravotnických oborů, 2004, 96 s. ISBN X. CENDELÍN, Jiří. Poznámky z přednášek předmětu Kontaktní čočky II, Kladno: ČVUT, FBMI, 2011 DAŇKOVÁ, Veronika. Posouzení binokulárních funkcí v praxi optometristy. Brno: Masarykova univerzita, Fakulta lékařská, Vedoucí diplomové práce MUDr. Šárka Skorkovská CSc. DRNKOVÁ, Zdena a Růžena SYLLABOVÁ. Záhada leváctví a praváctví. Praha: Avicenum, ISBN MAŠKOVÁ, Alice. Laserové operace pro korekci dalekozrakosti metodou lasek. Brno: Masarykova univerzita, Fakulta lékařská, Vedoucí diplomové práce MUDr. Rudolf Autrata, CSc., MBA SALMON, Thomas O. Vision Science lll - Binocular vision: Lecture 11 - Ocular Dominance. In: [online]. [cit ]. Dostupné z:

14 Bc. Kateřina Zirmová, Dis. 5. ročník Optometrie ANISEIKONIE 1. díl Definice aniseikonie Přeloženo z řeckého aniseikonia znamená "nestejné obrazy". Jedná se o binokulární stav, kdy obraz v jednom oku je vnímán v odlišné velikosti v porovnání s obrazem druhého oka. Rozlišujeme dva různé typy aniseikonie: statická a dynamická aniseikonie. Statická aniseikonie nebo aniseikonie ve zkratce znamená, že ve statické situaci, kdy oči hledí v určitém směru, se vnímané obrazy liší ve velikosti. Dynamická aniseikonie neboli (opticky indukovaná) anisophorie znamená, že oči se stáčí v jiném poměru, tak aby se pohledové osy střetly v jednom bodě v prostoru. Toto je zvláště obtížné pro oční rotace ve vertikálním směru. Aniseikonie je cílovým parametrem, který se měří a koriguje. Naproti tomu, anisophorie je více či méně dána korekci aniseikonie. Hodnoty aniseikonie podle definice udávají, jak moc by mělo být pravé oko zvětšeno či zmenšeno, aby se aniseikonie vyrušila. Například, naměřená aniseikonie 5% znamená, že obraz v pravém oku je vnímán přibližně o 5% větší než obraz v levém oku, a proto aniseikonie je korigována zmenšením obrazu pravého oka o 5 % (nebo zvětšení obrazu na levé oko o přibližně 5%, nebo kombinace obou). Pacienti s rizikem aniseikonie Další obrázek schematicky ukazuje, jak oko vnímá velikost obrazu. Objekty z vnějšího světa jsou zobrazeny s určitým optickým zvětšením/zmenšením na sítnici. Dále receptory sítnice přetvářejí obraz do "pixelů" a tyto informace jsou zpracovávány v mozku. Aniseikonie

15 může nastat v případě rozdílu mezi očima v některém ze tří kroků, znázorněných na Obr. 3. Lidé s opticky indukovanou aniseikonií mohou být anisometropové, pacienti s pseudofakií či pacienti refrakční chirurgie. Aniseikonie může být navozena také změnami na sítnici. V důsledku komprese či roztažení sítnice, způsobené různými očními chorobami nebo oční chirurgií, bude obraz promítaný na sítnici zpracováván větším či menším počtem receptorů. Vnímaný obraz bude vypadat větší nebo menší (macropsie nebo micropsie). Může se také objevit zkreslení obrazu, tzv. metamorfopsie a to i vícečetně nahodile. Tento typ aniseikonie se může objevovat u pacientů s odchlípením sítnice, s makulárními dírami, makulárním edémem nebo s retinoschisis. Příznaky aniseikonie Bannon a Triller sepsali seznam charakteristických pří-znaků aniseikonie, založených na studii s 500 pacienty (viz tabulka 1). Burian publikoval podobný seznam představující symptomy, na které si pacienti nejčastěji stěžovali. Tyto symptomy rozdělil do tří skupin: I. Astenopické příznaky II. Poškozená fúze a/nebo špatná stereopse III. Anomální prostorová lokalizace

16 Klinicky významné hodnoty aniseikonie Aniseikonie je klinicky významná při hodnotách 3-5%. Někdy u citlivých jedinců se může objevit podezření na příznaky z nízké aniseikonie, ale je dost možné, že tyto příznaky jsou způsobeny opticky indukovanou anisophorií a ne aniseikonií. Z anglického originálu přeložila a upravila Mgr. Gabriela Cvancigerová Absolventka Optometrie LF MU SLOVNÍČEK POJMŮ INSET Inset znamená umístění a decentraci progresivního kanálu a dílu pro dívání do blízka oproti dílu pro dívání do dálky. Standardní velikost decentrace u konvenčních progresivních čoček je 2,5 mm. Poloha očí při dívání do blízka závisí na mnoha proměnných. Pevná poloha dílu do blízka u konvenčních čoček vede k zužování binokulárního zorného pole, které je způsobeno tím, že se oči nedívají středem oblasti určené pro dívání do blízka. Variabilní inset znamená, že je decentrace proměnlivá, závisí na individuálních parametrech a čtecích návycích klienta. Horizontální poloha variabilního insetu je závislá zvláště na čtecí vzdálenosti (poloze hlavního pracovního bodu HPB), PD klienta, vrcholové lámavosti dílu do dálky v ose 180 a vrcholové vzdálenosti (VD). [1] ARTEFICIÁLNÍ HETEROFORIE Arteficiální heteroforie je uměle navozený stav heteroforie (skrytého šilhaní). Vzniká jako následek nesprávně centrovaných (decentrovaných) brýlových čoček. Paprsky, které procházejí skrze decentrovanou čočku, jsou v důsledku prizmatického účinku vychýleny ze svého rovnoběžného průběhu. Oko je nuceno stočit se ve směru vychýleného paprsku a vznikne tak skryté šilhání. To je spojeno s nadměrným fúzním úsilím. [2]

17 HEMERALOPIE/ NYKTALOPIE Hemeralopie je porucha adaptace na tmu šeroslepost neboli denní slepota, pacient vidí lépe za šera a za tmy, najdeme ji u totální barvosleposti. Vyšetřujeme ji adaptometry, a to např. Hartingerovým nebo Birch Hirschfeldovým. Adaptometry zjišťujeme nejnižší osvětlení, které vyšetřovaný odliší od tmy. Nejprve adaptujeme vyšetřovaného na světlo dívá se asi 10 min na jasně osvětlenou plochu. Poté za úplné tmy v krátkých intervalech nabízíme hraniční osvětlení, které vyšetřovaný právě odliší od tmy. Vyšetření adaptace trvá ¾ hodiny Nyktalopie neboli noční slepota může být vrozená, ale častěji získaná. Její příčinou je nedostatečný přívod nebo špatná resorpce vitamínu A, který se podílí na syntéze rodopsinu. Dále může být způsobena poruchou pigmentového a smyslového epitelu sítnice či degenerativní myopií. Vyšetřujeme ji nyktometry, které měří orientačně jen rychlost fáze adaptace, sledují pouze zotavení po oslnění (vyšetření u řidičů z povolání). STILESŮV CRAWFORDŮV EFEKT Stiles Crawfordův efekt je vlastnost lidského oka, která odkazuje na citlivost fotoreceptorů. Tento efekt lze rozdělit na dva druhy, které jsou oba závislé na vlnové délce světla a nejvíce se projevují za fotopických podmínek. Světlo vstupující do oka v blízkosti okraje pupily vyvolá nižší odezvu fotoreceptorů než světlo se stejnou intenzitou vstupující do oka středem pupily. Reakce fotoreceptorů je podstatně nižší při nízkém úhlu, pod kterým vstupuje světlo do oka při okraji pupily. Nejvyšší odezvu fotoreceptorů vyvolá světlo vstupující do oka 0,2 až 0,5 mm nasálně od středu pupily. Barva monochromatického světla vstupující do oka v blízkosti okraje pupily je odlišná v porovnání se světlem stejné vlnové délky, která vstoupí do oka středem pupily, bez ohledu na celkovou intenzitu obou světel. S-C efekt se podílí na korekci otvorové vady. Absorpce světla na sítnici závisí na úhlu dopadu paprsků na sítnici. Paprsky vzdálenější od optické osy se podílí na tvorbě obrazu méně, proto dochází k menšímu

18 podráždění v oku. Výhodu proto mají lidé s menším průměrem pupily. [3,4] IRADIACE zdánlivé zvětšení rozměrů osvětleného předmětu proti temnému pozadí a naopak ozařování (zejm. ultrafialovými paprsky) vystřelování bolesti z postiženého místa do vzdálenějších oblastí (Bolest při pankreatitidě vyzařuje často do levé poloviny břicha, při ledvinné kolice u mužů do varlat, u infarktu myokardu např. do levé horní končetiny apod. Nápadná je i. při chorobách páteře, které tak mohou napodobovat onemocnění vnitřních orgánů.) BANGERTROVY FILTRY (FOLIE) Bangerterovy okluzní filtry jsou průsvitné fólie z tenkého pružného vinylu s různým stupněm ztmavení, jejichž cílem je vyrovnat prostorový kontrast dominantního oka na kontrast oka amblyopického. Filtry se lepí na brýlovou čočku, je možné jej zastřihnout do tvaru očnice obruby. Folie se volí podle odpovídající zrakové ostrosti, označení 0,0-1,0. Rozsah: BOF -0.0 bez zrakové ostrosti, úplná okluze BOF-LP bez zrakové ostrosti, pouze světlocit BOF-LT -0.1 ostrost menší než 20/300 BOF -0,1 ostrost 20/200 BOF -0.2 ostrost 20/100 BOF -0.3 ostrost 20/70 BOF -0.4 ostrost 20/50 BOF -0.6 ostrost 20/30 BOF -0.8 ostrost 20/25 BOF -1.0 ostrost 20/20 Bangerterovy filtry jsou vhodné pro léčbu lehké a střední tupozrakosti spojené se strabismem, pro optimální výsledek je vhodné kombinovat je v průběhu léčby s klasickou okluzí. [5,6]

19 Reference: [1] MÝLKOVÁ, Magdaléna. Progresivní a degresivní brýlové čočky - aplikace vhodného typu dle individuálních parametrů klienta. 2012, 86 l. [2] ŘIHOŠKOVÁ, Šárka. Důsledky nepřesně zhotovených brýlí. 2009, 61 l. [3]http://www.merglova.webzdarma.cz/OCT%203/OCT%203/%C3%9Avod+otvorov%C3%A1 %20vada.doc [4] [5] https://theses.cz/id/166mu0/amblyopie_a_jej_lba.txt [6] Mgr. Hana Nevřivá, absolventka Optometrie POVRCHOVÉ ÚPRAVY 3. díl 4. Hydrofobní a olejofobní úprava Po nanesení AR vrstvy je brýlová čočka mikroskopicky poměrně hrbolatá, a proto na ní snadno ulpívají nečistoty, jako je prach, otisky prstů a kapky vody. Pokud jste nositeli brýlí, jistě tušíte, že je velmi nepříjemné, když Vám ve výhledu zavazí nějaká šmouha. K tomu, aby se snadno dala odstranit, byly vyvinuty hydrofobní a olejofobní povrchové úpravy (tzv. superhydrofobní), které zajistí snazší čištění čočky. Jaká jsou ovšem kritéria hydrofobnosti, potažmo olejofobnosti? Jedná se o veličinu, kterou nazýváme kontaktní úhel. Čím je kontaktní úhel vyšší, tím je povrch hydrofobnější a naopak. Na obrázcích lze pozorovat, (shora dolů) jak se chová povrch čočky bez úprav (60 ), s nejnovějšími typy úprav (např. SEECoat, Crizal Forte, Solitaire Protect Plus, a pod a více). Nanášení těchto úprav dnes probíhá prakticky výhradně v procesu vakuového napařování, a to společně s většinou ostatních vrstev. 5. Antistatická úprava Jednou z nejaktuálnějších novinek na poli povrchových úprav je vrstva, která má antistatické účinky, a tím zvyšuje odolnost čočky proti ulpívání prachových částic na jejím povrchu. Kromě toho, že je tak povrch čočky udržován ve větší čistotě,

20 zároveň je tak čočka více chráněna proti mikroskopickému poškození úprav a tím jejich poškrábání. Výhodu má tato úprava obzvláště u méně důsledných klientů, kteří častěji čistí čočky za sucha. Ale vzhledem k tomu, že je díky této úpravě významně prodloužena životnost povrchových úprav, vyplatí se každému klientovi. 6. Anti-UV vrstva Tento typ úpravy se stal v posledních několika měsících pravděpodobně nejskloňovanějším typem povrchové úpravy. Na našem trhu jsou dnes k dostání brýlové čočky, které se pyšní tzv. E-SPF certifikátem, tedy certifikátem UV ochrany, a to hned ve variantách SPF 25 a SPF 50. Tato vrstva je součástí zadní antireflexní vrstvy a je koncipována tak, aby při dopadu světelného paprsku na zadní plochu čočky bylo UV spektrum propuštěno skrze čočku a neodrazilo se tak do oka. Výhodné je použití na všech dioptrických brýlových čočkách a především pak na brýlových čočkách s absorpční vrstvou. 7. UV-filtr Minerální čočky přirozeně nepropouští světlo v rozsahu nm, organické čočky do nm, u polykarbonátu je to pak 385 nm. Čočky z materiálu trivex pak 100% UV záření. 8. Absorpční vrstva napařovaná Jedná se o vrstvu nanášenou na zadní plochu minerálních čoček metodou vakuového napařování. 9. Absorpční vrstva barvená Nejedná se o povrchovou úpravu v pravém slova smyslu, ale pro úplnost si ji zmíníme. Brýlové čočky barvíme máčením do roztoku barviva o určité teplotě. Molekuly barviva pronikají do struktury čočky difuzí. Brýlové čočky barvíme v klasických odstínech šedé, hnědé a zelené. Dále můžeme čočky barvit v tzv. BlueBlocking barvách a barvách, které zjasňují či zvyšují kontrast. U plastových čoček je možno též využít tzv. fashion odstínů, kde najdeme například růžovou, modrou, žlutou, fialovou a mnoho dalších.

Očima. TOXOPLASMOSA A OKO Prvok se zálibou pro oči. OPTA 2014 Starý nový veletrh. JSTE ZODPOVĚDNÍ ŘIDIČI? aneb jak vidíme.

Očima. TOXOPLASMOSA A OKO Prvok se zálibou pro oči. OPTA 2014 Starý nový veletrh. JSTE ZODPOVĚDNÍ ŘIDIČI? aneb jak vidíme. Studentský časopis Optometrie a Ortoptiky TOXOPLASMOSA A OKO Prvok se zálibou pro oči OPTA 2014 Starý nový veletrh JSTE ZODPOVĚDNÍ ŘIDIČI? aneb jak vidíme. Je to tady jaro a s ním i třetí číslo časopisu.

Více

F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci

F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci František Pluháček Katedra optiky PřF UP v Olomouci Obsah přednášky Optický systém lidského oka Zraková ostrost Dioptrické vady oka a jejich korekce Další vady optické soustavy oka Akomodace a vetchozrakost

Více

FYZIKA. Oční vady. 9. ročník

FYZIKA. Oční vady. 9. ročník FYZIKA Oční vady 9. ročník 13. 2. 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt je

Více

Jméno: Michal Hegr Datum: 15.11. 2011. Oko

Jméno: Michal Hegr Datum: 15.11. 2011. Oko Jméno: Michal Hegr Datum: 15.11. 2011 Referát na téma: Oko Oko Oko je smyslový orgán reagující na světlo (fotoreceptor), tedy zajišťující zrak. V průběhu vývoje živočichů došlo k výraznému rozvoji od světločivných

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

CENÍK ČOČEK DIOPTRICKÝCH

CENÍK ČOČEK DIOPTRICKÝCH Y LG Č W V Y Ĥ M F to CENÍK ČOČEK DIOPTR DIOPTRICKÝCH Ý Y LG Č W V Y Ĥ M F to Index 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 PROFI 1,5 PROFI 1,5 Rx PROFI PLUS 1,6 SFÉRICKÉ PROFI 1,6 Rx SFÉRICKÉ PROFI

Více

SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou

SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou SOUSTAVA SMYSLOVÁ Informace o okolním světě a o vlastním těle dostáváme prostřednictvím smyslových buněk Smyslové buňky tvoří základ čidel Čidla jsou vybavena vždy pro příjem a zpracování určitého podnětu

Více

Výukový materiál. zpracovaný v rámci projektu

Výukový materiál. zpracovaný v rámci projektu Výukový materiál zpracovaný v rámci projektu Základní škola Sokolov,Běžecká 2055 pracoviště Boženy Němcové 1784 Název a číslo projektu: Moderní škola, CZ.1.07/1.4.00/21.3331 Šablona: III/2 Inovace a zkvalitnění

Více

Presbyopie a související

Presbyopie a související Presbyopie a související vergenční potíže František Pluháček katedra optiky Obsah přednp ednášky Jevy spojené s pohledem do blízka Presbyopie a její vyšetření Insuficience konvergence Jevy spojené s pohledem

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

5.2.10 Oko. Př. 1: Urči minimální optickou mohutnost lidského oka. Předpoklady: 5207, 5208

5.2.10 Oko. Př. 1: Urči minimální optickou mohutnost lidského oka. Předpoklady: 5207, 5208 5.2.0 Oko Předpoklady: 5207, 5208 Pedagogická poznámka: Obsah této hodiny se asi nedá stihnout za 45 minut, ale je možné přetahovat v další hodině, která na tuto plynule navazuje. Cílem hodiny není nahrazovat

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

MY VISION@ PROGRESIVNÍ ČOČKY JAK NA TO

MY VISION@ PROGRESIVNÍ ČOČKY JAK NA TO MY VISION@ PROGRESIVNÍ ČOČKY JAK NA TO Michal Novák DiS. David Krátký DiS. Přání a potřeby zákazníka (komunikace,empatie) Refrakce s důrazem na adici pro progresivní a degresivní čočky Výběr obruby a progresivních

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Jedinečný. vizuální. zážitek. Eye-Point Technology III Natural Posture IntelliCorridor As-Worn Quadro

Jedinečný. vizuální. zážitek. Eye-Point Technology III Natural Posture IntelliCorridor As-Worn Quadro Jedinečný vizuální zážitek Eye-Point Technology III Natural Posture IntelliCorridor As-Worn Quadro SHAMIR AUTOGRAPH III SHAMIR AUTOGRAPH III JE NOVÁ VYVÁŽENÁ PROGRESIVNÍ ČOČKA, KTERÁ JE ZALOŽENA NA REVOLUČNÍM

Více

7. Světelné jevy a jejich využití

7. Světelné jevy a jejich využití 7. Světelné jevy a jejich využití - zápis výkladu - 41. až 43. hodina - B) Optické vlastnosti oka Oko = spojná optická soustava s měnitelnou ohniskovou vzdáleností zjednodušené schéma oka z biologického

Více

Oko - stavba oka a vady

Oko - stavba oka a vady Oko - stavba oka a vady Masarykova ZŠ a MŠ Velká Bystřice projekt č. CZ.1.07/1.4.00/21.1920 Název projektu: Učení pro život Č. DUMu: VY_32_INOVACE_31_18 Tématický celek: Člověk Autor: Renata Kramplová

Více

Tematické okruhy k odborné zkoušce v rámci SZZ v bakalářském studijním oboru Optika a optometrie

Tematické okruhy k odborné zkoušce v rámci SZZ v bakalářském studijním oboru Optika a optometrie Tematické okruhy k odborné zkoušce v rámci SZZ v bakalářském studijním oboru Optika a optometrie Studijní program: B3921 - Biomedicínská a klinická technika Studijní obor: 5345R030 - Optika a optometrie

Více

F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci

F. Pluháček. František Pluháček Katedra optiky PřF UP v Olomouci František Pluháček Katedra optiky PřF UP v Olomouci 1 Přehled okohybných odchylek odchylka obvyklá velikost binokulární fúze vyšetřovací podmínky fixační disparita < 5 (< 0,15 pd) ano binokulární fúze

Více

Novinky ve vývoji individuálních progresivních čoček. Petr Ondřík Rodenstock ČR, s.r.o.

Novinky ve vývoji individuálních progresivních čoček. Petr Ondřík Rodenstock ČR, s.r.o. Novinky ve vývoji individuálních progresivních čoček. Petr Ondřík Rodenstock ČR, s.r.o. 06 March 2013, Page 1 Trend ve vývoji individuálních progresivních čoček. Astigmatismus do blízka. Výsledky univerzitní

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

F. Pluháček FORIE. František Pluháček Katedra optiky PřF UP v Olomouci. Kongres OPTOMETRIE, Olomouc 18.-19.9.2010 1/41

F. Pluháček FORIE. František Pluháček Katedra optiky PřF UP v Olomouci. Kongres OPTOMETRIE, Olomouc 18.-19.9.2010 1/41 FORIE František Pluháček Katedra optiky PřF UP v Olomouci Kongres OPTOMETRIE, Olomouc 18.-19.9.2010 1/41 OBSAH Základní zhodnocení BV Vyšet etření a analýza forií Kongres OPTOMETRIE, Olomouc 18.-19.9.2010

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

SEIKO EMBLEM. Přirozené jednoduché vidění. Lehká adaptace

SEIKO EMBLEM. Přirozené jednoduché vidění. Lehká adaptace Přirozené jednoduché vidění Lehká adaptace Dynamický krok dopředu! SEIKO, vynálezce vnitřních progresivních čoček a technologie FREE FORM, uvedl na trh další moderní generaci progresivních čoček:. Technická

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší http://webs.zcu.cz/fel/kee/st/st.pdf

telná technika Literatura: tlení,, vlastnosti oka, prostorový úhel Ing. Jana Lepší http://webs.zcu.cz/fel/kee/st/st.pdf Světeln telná technika Literatura: Habel +kol.: Světelná technika a osvětlování - FCC Public Praha 1995 Ing. Jana Lepší Sokanský + kol.: ČSO Ostrava: http://www.csorsostrava.cz/index_publikace.htm http://www.csorsostrava.cz/index_sborniky.htm

Více

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast:

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast: Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast: Optika Autor: Ing. Markéta Střelcová Anotace: Žák se seznámí

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

ZNÁTE Z TV. Jsou vaše ruce příliš krátké? JEDNY BRÝLE NA VŠECHNY VZDÁLENOSTI

ZNÁTE Z TV. Jsou vaše ruce příliš krátké? JEDNY BRÝLE NA VŠECHNY VZDÁLENOSTI ZNÁTE Z TV Jsou vaše ruce příliš krátké? JEDNY BRÝLE NA VŠECHNY VZDÁLENOSTI PO 45. ROCE VĚKU DOCHÁZÍ KE ZMĚNÁM VIDĚNÍ Máte problém přečíst malé novinové písmo? Nejste v tom sami. Jde o presbyopii. Jedná

Více

Oftalmologie atestační otázky

Oftalmologie atestační otázky Platnost: od 1.1.2015 Oftalmologie atestační otázky Okruh všeobecná oftalmologie 1. Akomodace, presbyopie a její korekce 2. Refrakce oka, způsoby korekce, komplikace (mimo kontaktní čočky) 3. Kontaktní

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA

OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA Stavbu lidského oka znáte z vyučování přírodopisu. Zopakujte si ji po dle obrázku. Komorová tekutina, oční čočka a sklivec tvoří

Více

Plusoptix A09 informace

Plusoptix A09 informace Plusoptix A09 informace Plusoptix A09 nenáročné měření vývoje zraku dětí již v útlém věku Přístroj Plusoptix je screeningový autorefraktometr, který umožňuje měřit oční vady u dětí již od 6-ti měsíců.

Více

Workshop: Nácvik zrakových dovedností pomocí zrakové terapie

Workshop: Nácvik zrakových dovedností pomocí zrakové terapie Workshop: Nácvik zrakových dovedností pomocí zrakové terapie Mgr. Petr Veselý, DiS., Ph.D. Katedra optometrie a ortoptiky Lékařská fakulta MU Brno Přednosta: Doc. MUDr. Svatopluk Synek, CSc. a Klinika

Více

Očekávaný výstup Žák rozvíjí čtenářskou gramotnost. Žák vyhledá informaci v přiměřeně náročném textu. Speciální vzdělávací Žádné

Očekávaný výstup Žák rozvíjí čtenářskou gramotnost. Žák vyhledá informaci v přiměřeně náročném textu. Speciální vzdělávací Žádné Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Hana Brázdilová Datum 5. 4. 2014 Ročník 7. Vzdělávací oblast Jazyk a jazyková komunikace Vzdělávací obor Český jazyk a

Více

Semestrální projekt z předmětu: Obrazové inženýrství jméno:

Semestrální projekt z předmětu: Obrazové inženýrství jméno: Semestrální projekt z předmětu: Obrazové inženýrství jméno: Téma: Optické vlastnosti lidského oka jméno: Lucie Wolfová datum: 19. 12. 2002 Úvod: Viděním se rozumí činnost dostatečně vyvinutého zraku. Vnější

Více

Získejte zpět ostré vidění do dálky i na střední vzdálenost spolu se schopností číst, bez ztráty ostrosti za špatných světelných podmínek.

Získejte zpět ostré vidění do dálky i na střední vzdálenost spolu se schopností číst, bez ztráty ostrosti za špatných světelných podmínek. SIMPLY NATURAL Získejte zpět ostré vidění do dálky i na střední vzdálenost spolu se schopností číst, bez ztráty ostrosti za špatných světelných podmínek. Nevidíte již jako dříve? Zdá se Vám vše zamlžené?

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

ZNÁTE Z TV. Jsou vaše ruce příliš krátké? JEDNY BRÝLE NA VŠECHNY VZDÁLENOSTI

ZNÁTE Z TV. Jsou vaše ruce příliš krátké? JEDNY BRÝLE NA VŠECHNY VZDÁLENOSTI ZNÁTE Z TV Jsou vaše ruce příliš krátké? JEDNY BRÝLE NA VŠECHNY VZDÁLENOSTI PO 45. ROCE DOCHÁZÍ KE ZMĚNÁM VIDĚNÍ Máte problém přečíst malé novinové písmo? Nejste v tom sami. Toto je presbyopie. Jedná se

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Novinky v očním lékařství. Doc.Mudr. Svatopluk Synek,CSc., Mudr. Monika Synková Klinika nemocí očních a optometrie FN u sv.

Novinky v očním lékařství. Doc.Mudr. Svatopluk Synek,CSc., Mudr. Monika Synková Klinika nemocí očních a optometrie FN u sv. Novinky v očním lékařství Doc.Mudr. Svatopluk Synek,CSc., Mudr. Monika Synková Klinika nemocí očních a optometrie FN u sv. Anny a LF MU Brno Výuka očního lékařství a optometrie má svá specifika. Konkrétní

Více

Specifika vzdělávání. dětí slabozrakých. dětí se zbytky zraku

Specifika vzdělávání. dětí slabozrakých. dětí se zbytky zraku Specifika vzdělávání dětí slabozrakých a dětí se zbytky zraku Které děti máme na mysli? Jde o děti, které ani s využitím běžné korekce (brýle) nedosáhnou normálního zrakového vnímání a potřebují tak další

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu. 1. ZÁKON ODRAZU SVĚTLA, ODRAZ SVĚTLA, ZOBRAZENÍ ZRCADLY, Dívejme se skleněnou deskou, za kterou je tmavší pozadí. Vidíme v ní vlastní obličej a současně vidíme předměty za deskou. Obojí však slaběji než

Více

Optika - AZ kvíz. Pravidla

Optika - AZ kvíz. Pravidla Optika - AZ kvíz Pravidla Ke hře připravíme karty s texty otázka tvoří jednu stranu, odpověď pak druhou stranu karty (pro opakované používání doporučuji zalaminovat), hrací kostku a figurky pro každého

Více

Rychlost světla a její souvislost s prostředím

Rychlost světla a její souvislost s prostředím Rychlost světla a její souvislost s prostředím Jak byla změřena rychlost světla? První, kdo přišel s myšlenkou konečné rychlosti světla, byl Francis Bacon. Ve své práci Novum Organum Scientiarum tvrdil,

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

F - Lom světla a optické přístroje

F - Lom světla a optické přístroje F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

OPTIKA VLASTNOSTI SVĚTLA ODRAZ SVĚTLA OPAKOVÁNÍ - 1

OPTIKA VLASTNOSTI SVĚTLA ODRAZ SVĚTLA OPAKOVÁNÍ - 1 OPTIKA VLASTNOSTI SVĚTLA ODRAZ SVĚTLA OPAKOVÁNÍ - 1 a) Vysvětli, co je zdroj světla? b) Co je přirozený zdroj světla a co umělý? c) Proč vidíme tělesa, která nevydávají světlo? d) Proč je lepší místnost

Více

František Pluháček Markéta Halbrštátová Katedra optiky PřF UP v Olomouci www.optometry.cz

František Pluháček Markéta Halbrštátová Katedra optiky PřF UP v Olomouci www.optometry.cz František Pluháček Markéta Halbrštátová Katedra optiky PřF UP v Olomouci www.optometry.cz F. Pluháče, M. Halbrštátová, Optometrie-optika 2013, Olomouc 1 Kompenzovaná/dekompenzovan /dekompenzovaná HTF Kompenzovaná

Více

Název školy: Základní škola a Mateřská škola Ţalany. Číslo projektu: CZ. 1.07/1.4.00/21.3210. Téma sady: Fyzika 6. 9.

Název školy: Základní škola a Mateřská škola Ţalany. Číslo projektu: CZ. 1.07/1.4.00/21.3210. Téma sady: Fyzika 6. 9. Název školy: Základní škola a Mateřská škola Ţalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Fyzika 6. 9. Název DUM: VY_32_INOVACE_4A_15_OPTICKÉ_VLASTNOSTI_OKA Vyučovací předmět: Fyzika Název

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Uložena v očnici (orbita) v tukové tkáni (ochrana oka před poškozením)

Uložena v očnici (orbita) v tukové tkáni (ochrana oka před poškozením) Otázka: Zrakové ustrojí Předmět: Biologie Přidal(a): Cllaire Je citlivé na elektromagnetické vlnění Umožňuje vnímání světla, barev, velikosti, tvaru a vzdálenosti předmětu Nejdůležitější čidlo pro orientaci

Více

T V O R B A 3 D V I D E A

T V O R B A 3 D V I D E A T V O R B A 3 D V I D E A CÍLE LABORTATORNÍ ÚLOHY 1. Seznámení se s metodami tvorby 3D videa 2. Složení snímků a použití 3D brýlí pro 3D vjem obrazu TEORETICKÝ ZÁKLAD Člověk přijímá informace ze svého

Více

2.1.18 Optické přístroje

2.1.18 Optické přístroje 2.1.18 Optické přístroje Předpoklad: 020117 Pomůck: kompletní optické souprav I kdž máme zdravé oči (správné brýle) a skvěle zaostřeno, neuvidíme všechno. Př. 1: Co děláš, kdž si chceš prohlédnout malé,

Více

7.ročník Optika Lom světla

7.ročník Optika Lom světla LOM SVĚTLA. ZOBRAZENÍ ČOČKAMI 1. LOM SVĚTLA NA ROVINNÉM ROZHRANÍ DVOU OPTICKÝCH PROSTŘEDÍ Sluneční světlo se od vodní hladiny částečně odráží a částečně proniká do vody. V čisté vodě jezera vidíme rostliny,

Více

Studium optiky a optometrie na Fakultě biomedicínského inženýrství ČVUT

Studium optiky a optometrie na Fakultě biomedicínského inženýrství ČVUT Studium optiky a optometrie na Fakultě biomedicínského inženýrství ČVUT Na Českém vysokém učení technickém v Praze studuje na osmi fakultách více než 24 000 studentů v bakalářských, magisterských a doktorských

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

O P T I C K É A N E O P T I C K É P O M Ů C K Y

O P T I C K É A N E O P T I C K É P O M Ů C K Y O P T I C K É A N E O P T I C K É P O M Ů C K Y Optické pomůcky do 4x zvětšení mŧže předepsat každý oční lékař na Poukaz na brýle a optické pomůcky. Zdravotní pojišťovna hradí 100,-Kč na 5 let. Název pomŧcky:

Více

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. ) Oko Oko je optická soustava, kterou tvoří: rohovka, komorová voda, čočka a sklivec.

Více

Normalizovaný optotyp. Landoltů. v prstenec: lků ů (5 ) s přp. 8 mož. ností orientace Vízus. = 1/př. ení kruhu v úhlových minutách (jak se enému oku)

Normalizovaný optotyp. Landoltů. v prstenec: lků ů (5 ) s přp. 8 mož. ností orientace Vízus. = 1/př. ení kruhu v úhlových minutách (jak se enému oku) ř ů ť ž LIDSKÉ OKO A VLNOVÁ OPTIKA Teorii doplnit o: Na využití principu minima separabile jsou založeny optotypy, přístroje na vyšetřování zrakové ostrosti. Obsahují znaky o velikosti 5ti úhlových minut

Více

Metody preventivního vyšetřování zraku

Metody preventivního vyšetřování zraku Metody preventivního vyšetřování zraku MUDr.Anna Zobanová Úvod Vidění, neboli zrakové vnímání, je komplexní funkcí zrakového analyzátoru na všech jeho stupních tj. oka, zrakové dráhy a mozkových zrakových

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Pracovní verze: 06_014 Určeno: odborná oponentura

Pracovní verze: 06_014 Určeno: odborná oponentura Katalog podpůrných opatření část pro žáky se zrakovým postižením a oslabením zrakového vnímání Pracovní verze: 06_014 Určeno: odborná oponentura Pedagogická fakulta Univerzity Palackého v Olomouci, 2014

Více

Četnost brýlové korekce v populaci

Četnost brýlové korekce v populaci Prezentace k přednášce, přednesené na kongresu Optometrie 2013 V Olomouci 21. 22.9 2013 Četnost brýlové korekce v populaci RNDr. Jaroslav Wagner, Ph.D. Katedra optiky PřF UP Olomouc Kontakt: wagnerj@prfnw.upol.cz

Více

SPECIÁLNÍ BRÝLOVÉ ČOČKY ESSILOR. Katalog speciálních brýlových čoček

SPECIÁLNÍ BRÝLOVÉ ČOČKY ESSILOR. Katalog speciálních brýlových čoček SPECIÁLNÍ BRÝLOVÉ ČOČKY ESSILOR Katalog speciálních brýlových čoček 1 2 SPECIÁLNÍ BRÝLOVÉ ČOČKY ESSILOR EXCEPTIO 6 EXCEPTIO STYLIS VYSOKÉ PLUSOVÉ A MINUSOVÉ DIOPTRIE 8 EXCEPTIO STYLIS LENTI VYSOKÉ MINUSOVÉ

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ. Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha

ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ. Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ Prof. Ing. Jiří Habel, DrSc. FEL ČVUT Praha prosinec 2014 1 ZRAKOVÝ ORGÁN A PROCES VIDĚNÍ PROCES VIDĚNÍ - 1. oko jako čidlo zraku zajistí nejen příjem informace přinášené

Více

Smyslová soustava. napojené na nervovou soustavu převádějí energii podnětů přicházejících z vnějšího světa v nervovou aktivitu

Smyslová soustava. napojené na nervovou soustavu převádějí energii podnětů přicházejících z vnějšího světa v nervovou aktivitu Otázka: Smyslová soustava Předmět: Biologie Přidal(a): zizkkl Smyslová soustava RECEPTORY (receptorové buňky, smyslové buňky) buňky smyslových orgánů = čidel buňky schopné podráždění, které přemění na

Více

Dům zdraví Hodonín > Lékárna > informace pro pacienty

Dům zdraví Hodonín > Lékárna > informace pro pacienty Diabetická retinopatie Základní informace Ohromně vítám tuto možnost oslovit Vás, pacienty, kteří trpíte cukrovkou. Cukrovka je nemoc, která nebolí a přivede pacienta k lékaři často až po dlouhé době trvání

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Metody refrakční chirurgie. Jakub Hlaváček

Metody refrakční chirurgie. Jakub Hlaváček Metody refrakční chirurgie Jakub Hlaváček Cíle Typy refrakčních zákroků Zajímavosti Novinky Obr: 1: http://t3.gstatic.com/images?q=tbn:and9gcrpog86lbyminhyetagsaq6yqt3cfohi6l7h89l-debfmca0zmmejhdegbg Refrakční

Více

Uživatelský Návod HUD 01

Uživatelský Návod HUD 01 Uživatelský Návod HUD 01 Úvod o produktu Děkujeme že jste si zakoupili náš automobilový "Head Up" displej, ve zkratce "HUD" displej vztyčená hlava, zařízení které umožňuje řidiči dívat vpřed na cestu a

Více

Název: Vlastnosti oka, porovnání s fotoaparátem

Název: Vlastnosti oka, porovnání s fotoaparátem Název: Vlastnosti oka, porovnání s fotoaparátem Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Optika

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Nervová soustava Společná pro celou sadu oblast

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY

ZÁKLADNÍ FOTOMETRICKÉ VELIČINY ZÁKLADNÍ FOTOMETRICKÉ VELIČINY Ing. Petr Žák VÝVOJ ČLOVĚKA vývoj člověka přizpůsobení okolnímu prostředí (adaptace) příjem informací o okolním prostředí smyslové orgány rozhraní pro příjem informací SMYSLOVÉ

Více

Využití zrcadel a čoček

Využití zrcadel a čoček Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Využití zrcadel a čoček V tomto článku uvádíme několik základních přístrojů, které vužívají spojných či rozptylných

Více

Lidské oko jako objektiv a senzor

Lidské oko jako objektiv a senzor Lidské oko jako objektiv a senzor Lidské oko anatomie 1/5 iris duhovka pupil zornice, zřítelnice (vstupní pupila) sclera -bělima Oko, pohled zvenku [1] Duhovka hladké svalstvo s kruhovým otvorem uprostřed,

Více

Zrak II. - Slepá skvrna, zrakové iluze a klamy

Zrak II. - Slepá skvrna, zrakové iluze a klamy I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 18 Zrak II. - Slepá skvrna, zrakové

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

I N F O R M a C e PRO PaCIeNTY šedý zákal

I N F O R M a C e PRO PaCIeNTY šedý zákal INFORMACE PRO PACIENTY šedý zákal www.nemocnicesumperk.cz Obsah Oční oddělení Nemocnice Šumperk a.s.... 4 Co je šedý zákal... 5 Příčiny vzniku šedého zákalu... 6-7 Léčba... 8-9 Kdy se rozhodnout k operaci...

Více