Přejeme Vám mnoho úspěchů nejen v hodinách matematiky a těšíme se na shledanou v 2. ročníku této soutěže.

Rozměr: px
Začít zobrazení ze stránky:

Download "Přejeme Vám mnoho úspěchů nejen v hodinách matematiky a těšíme se na shledanou v 2. ročníku této soutěže."

Transkript

1

2 Drazí matematičtí přátelé, v úvodu tohoto sborníku Vás chceme pozdravit a v ucelené podobě předat řešené příklady 1. ročníku Malého matematického šampionátu pro žáky 5. tříd. K uspořádání této soutěže nás vedla dobrá zkušenost z opakované účasti našich žáků 9. tříd na Moravskoslezském matematickém šampionátu organizovaném Wichterlovým gymnáziem v Ostravě-Porubě. Stejně jako oni sdílíme i my potřebu žáky soutěživou formou vést k rozvoji logického myšlení. m zadaných úloh jste nuceni uplatnit rozbor příkladů, hledat souvislosti a vyvozovat závěry. Možná si při tom uvědomíte, že v matematice nejde jen o vzorce a definice, ale i o zábavu a že v samotném důsledku je matematika krásná vědní disciplína. Pevně věříme, že matematické schopnosti a dovednosti budete i nadále uplatňovat v běžném životě. Matematika by nás měla vést k tomu, že určitý problém nemívá jen jedno řešení a že bychom se měli snažit najít to nejlepší. Přejeme Vám mnoho úspěchů nejen v hodinách matematiky a těšíme se na shledanou v 2. ročníku této soutěže. Organizátoři: Mgr. Daniel Matyášek Mgr. Eva Klubalová

3

4 Zajímavá úloha Petře, povídá tatínek, dám ti zajímavý početní příklad. Pak vzal tužku a na papír napsal tohle: Jsem zvědav, jak dlouho to budeš počítat. Co myslíte, jak dlouho mohlo Petrovi trvat, než ten příklad vypočítal? Tak dlouho, než si uvědomí, že jedním z činitelů je nula. Jakékoliv číslo vynásobené nulou je opět nula. Nula je tedy i výsledkem zadaného příkladu. Malý matematický šampionát 3

5 Šest artistů Šest přátel artistů se sešlo v maringotce. Jirka s Toníkem hráli šachy do té doby, než požádal Honza Jirku, aby mu pomohl odnést basu do orchestru. Zatímco probíhala šachová partie, díval se iluzionista přes Vaškovo rameno do novin a Rudolf něco barvil. Když se blížil čas připravovat program, zastavil se v maringotce kapelník orchestru, aby si pohovořil s Mirkem. Když odcházeli, přidal se k nim i Vašek, který někam nesl těžký kufr. Víte, jak se jmenoval iluzionista? můžeme nalézt vylučovací metodou. Jirka a Toník hráli šachy a iluzionista se v tu dobu díval Vaškovi přes rameno, tedy Jirka a Toník to nejsou, Vašek také ne. Honzu také vyloučíme, protože žádal Jirku o pomoc a opět: iluzionista se díval přes Vaškovo rameno. Rudolf něco barvil, takže se nemohl dívat Vaškovi přes rameno. Kapelník není artista. Jediným, kdo zůstává, aby se díval Vaškovi přes rameno, je Mirek. Iluzionista se tedy jmenuje Mirek. 4 Malý matematický šampionát

6 Šest litrů vody a dvě konve Pomocí dvou konví (osmilitrové a desetilitrové) máte naměřit šest litrů vody. Vody máte dostatek můžete ji libovolně nabírat i vylévat, naměřené množství však musí být přesné. Jak to uděláte? Existují nejméně dva možné postupy: Postup 1 1. Nalijte z 10 litrové konve do 8 litrové 8 litrů, v 10 litrové tak zbydou 2 litry. 2. Zbylé 2 litry nalejete do 8 litrové, kterou předtím vyprázdníte 3. Znovu naplníte 10 litrovou konev. 4. Když 8 litrovou doplníte, zbydou v 10 litrové 4 litry vody 5. Zbylé 4 litry vody nalejete do vyprázdněné 8 litrové konve. 6. Pak znovu naplníte 10 litrovou konev a po přilití 4 litrů do 8 litrové zbyde v 10 litrové rovných 6 litrů. Postup 2 1. Naplníte 8 litrovou konev a přelijete její obsah do 10 litrové. 2. Naplníte podruhé 8 litrovou konev a do 10 litrové dolejete chybějící 2 litry doplníte tak 10 litrovou konev doplna. V 8 litrové nám tedy zbyde 6 litrů vody. Malý matematický šampionát 5

7 Klokan a blecha na závodech Klokan a blecha závodili na vzdálenost 50 metrů tam a 50 metrů zpět. Klokan měl delší skok, skočil každým skokem tři metry, blecha jen dva metry. Blecha však skákala rychleji než klokan: než klokan udělal dva skoky, udělala blecha tři. Kdo v tomto závodě zvítězil? Zvítězila blecha. Udělala tam i zpět přesně 50 skoků. Klokan skočil sedmnáctým skokem zbytečně jeden metr za obrátku, a tím si prodloužil vzdálenost celého závodu. 6 Malý matematický šampionát

8 Šnek a zeď Šnek přelézal deset a půl metru vysokou a metr širokou zeď, aby se dostal k hlávkovému salátu, který rostl za zahradní zdí. Lezl, lezl, každý den ulezl po zdi 3 a půl metru, ale v noci sklouzl vždycky zase o dva metry dolů. Kolikátý den se dostal na zem v sousední zahradě a pochutnal si na salátu? Šnek musí překonat celkem 22 metrů (10,5 m nahoru, 1 metr nahoře a 10,5 m dolů). Za prvních pět dnů uleze šnek 7 a půl metru, šestý den zůstane na zdi, sedmý den leze dolů a sklouzne ještě o 2 m, osmý den také a devátý den je na zemi. K salátu se tak dostane devátý den ráno. Postup šneka si můžete zaznamenat i do tabulky: Postup šneka za den a noc Celkem 1. den 3,5 2 1,5 m 2. den 1,5 + 3,5 2 3 m 3. den 3,5 + 3,5 2 4,5 m 4. den 4,5 + 3,5 2 6 m 5. den 6 + 3,5 2 7,5 m 6. den 7,5 + 3,5 11 m 7. den , ,5 m 8. den 16,5 + 3, m 9. den přes noc sklouzl na zem Malý matematický šampionát 7

9 Ovocná hádanka Jablko a ořech váží tolik jako hruška. Jablko váží tolik jako ořech a dvě třešně. Dvě hrušky váží tolik, jako šest třešní. Kolik ořechů váží jablko? Jablko + Ořech váží stejně jako Hruška Jablko váží jako Ořech a dvě Třešně dvě Hrušky váží jako šest Třešní J + O = H J = O + 2 T 2 H = 6 T Z poslední věty můžeme odvodit, že jedna Hruška váží jako tři Třešně. Dále tedy ve výpočtech každou Hrušku nahradíme zápisem H = 3 T. Protože třešně musí vážit stejně, můžeme napsat: Pět Ořechů tedy váží stejně jako jedno Jablko. 8 Malý matematický šampionát

10

Autobus urazí... větší vzdálenost než studenti.

Autobus urazí... větší vzdálenost než studenti. MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

MATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m

MATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m MATEMATIKA 5. třída 1. Jaké číslo je o 12 stovek, 4 desítky a 9 jednotek menší než 2000? (A) 751 (B) 861 (C) 1249 (D) 1831 2. Které z následujících tvrzení o pravoúhlém trojúhelníku je správné? (A) Dvě

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU

Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry

Více

Příprava na vyučování oboru Člověk a jeho svět s cíli v oblasti OSV

Příprava na vyučování oboru Člověk a jeho svět s cíli v oblasti OSV Pánem svého času Příprava na vyučování oboru Člověk a jeho svět s cíli v oblasti OSV Název učební jednotky (téma) Pánem svého času Stručná anotace učební jednotky Učební jednotka nabízí žákům možnost samostatně

Více

PŘIJÍMACÍ ZKOUŠKY 2011

PŘIJÍMACÍ ZKOUŠKY 2011 MATEMATIKA Součet bodů: Obor: 79-41-K/401 Opravil: 1. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým

Více

,,Radost z uvažování a z chápání je nejkrásnějším darem přírody."

,,Radost z uvažování a z chápání je nejkrásnějším darem přírody. Anotace: Jazyk Autor Očekávaný výstup: Klíčová slova Organizace řízení učební činnosti: Nutné pomůcky: Najdi ukryté jméno Procvičování učiva 7. ročníku zábavnou formou, při které operuje s obecně užívanými

Více

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.10 Povrchy a objemy těles II Pracovní list je zaměřen především na výpočty povrchů a

Více

PŘIJÍMACÍ ZKOUŠKY 2007

PŘIJÍMACÍ ZKOUŠKY 2007 MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání výpočty uvádějte s celým postupem

Více

Základní škola, Příbram II, Jiráskovy sady Příbram II

Základní škola, Příbram II, Jiráskovy sady Příbram II Výběr tematicky zaměřených matematických úloh pro posouzení dovedností žáků 5. ročníku při jejich zařazování do tříd se skupinami s rozšířenou výukou matematiky a informatiky 1) Pokračuj v řadách čísel:

Více

1. otázka. 2. otázka = Ve které z následujících možností je výsledek uvedeného výpočtu? 3. otázka

1. otázka. 2. otázka = Ve které z následujících možností je výsledek uvedeného výpočtu? 3. otázka 1. otázka Paní Irena měla černé, bílé a černobílé kočky. elkově jich měla dvanáct. Z toho bylo šest černých a čtyři bílé. Jakou část z celkového počtu představují černobílé kočky? 2. otázka 24 + 12 3 5

Více

Do výtvarné výchovy se nakupují čtvrtky za cenu 5 Kč za kus. Kolik čtvrtek se nakoupí za 95 korun?

Do výtvarné výchovy se nakupují čtvrtky za cenu 5 Kč za kus. Kolik čtvrtek se nakoupí za 95 korun? MATEMATIKA Součet bodů: Obor: 79-41-K/81 Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.

Více

Příprava na vyučování Matematiky a jejích aplikací s cíli v oblasti čtenářství

Příprava na vyučování Matematiky a jejích aplikací s cíli v oblasti čtenářství Příprava na vyučování Matematiky a jejích aplikací s cíli v oblasti čtenářství Název učební jednotky (téma) Inzerát lyžování v Itálii výpočty nákladů Stručná anotace učební jednotky Učební jednotka je

Více

62.ročník Matematické olympiády. I.kolo kategorie Z6

62.ročník Matematické olympiády. I.kolo kategorie Z6 62.ročník Matematické olympiády I.kolo kategorie Z6 Z6 I 1 Libor si myslí trojmístné přirozené číslo, které má všechny své číslice liché. Pokud kněmupřičte421,dostanetrojmístnéčíslo,kterénemáanijednusvoučíslicilichou.najděte

Více

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Procenta. Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Procenta Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Procenta U příkladů, kde se vyskytují procenta,

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Matematický KLOKAN 2005 (A) 2 005 002 005 (B) 20 052 005 (C) 2 007 005 (D) 202 555 (E) 202 505 (A) 8 (B) 6 (C) 4 (D) 2 (E) 1

Matematický KLOKAN 2005 (A) 2 005 002 005 (B) 20 052 005 (C) 2 007 005 (D) 202 555 (E) 202 505 (A) 8 (B) 6 (C) 4 (D) 2 (E) 1 Matematický KLOKAN 2005 kategorie Benjamín Úlohy za 3 body 1. Vypočítej 2 005. 100 + 2 005. (A) 2 005 002 005 (B) 20 052 005 (C) 2 007 005 (D) 202 555 (E) 202 505 2. Anička a Bětka mají dohromady 10 bonbonů.

Více

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Neotvírej, dokud nedostaneš pokyn od zadávajícího! 6. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní 4, 186 Praha 8 tel.: 24 75 555 fax: 24 75 55 e-mail: scio@scio.cz

Více

1,2,3,6,9,18, 1,2,3,5,6,10,15,30.

1,2,3,6,9,18, 1,2,3,5,6,10,15,30. ARNP 1 2015 Př. 9 Společný dělitel a společný násobek Společný dělitel Příklad 1: Najděte množinu všech dělitelů čísla 18 a množinu všech dělitelů čísla 30. Řešení: Množina všech dělitelů čísla 18 je množina

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA42 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry IV. měřítko mapy Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více

Slovní úlohy: Pohyb. a) Stejným směrem

Slovní úlohy: Pohyb. a) Stejným směrem Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil

Více

Matematika 5. ročník

Matematika 5. ročník Matematika 5. ročník Pátá třída (Testovací klíč: EFPNGSXL) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Slovní úlohy / Geometrie / Počítání s čísly / 0/10 0/7 0/9 Obecná

Více

Extremální úlohy v geometrii

Extremální úlohy v geometrii Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí, žádná židle nezbyla prázdná. Kolik dětí sedělo u každého stolu?

V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí, žádná židle nezbyla prázdná. Kolik dětí sedělo u každého stolu? Úloha 1 Ke každé z jednoduchých úloh přiřaď, jaký výpočet určuje správný výsledek úlohy. 18 : 3 = 18 + 3 = 18. 3 = 18-3 = V jídelně jsou tři stoly se stejným počtem židlí. Celkem si k nim posedalo 18 dětí,

Více

Příklady na 13. týden

Příklady na 13. týden Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.

Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho

Více

Matematika 5. ročník

Matematika 5. ročník Matematika 5. ročník Pátá třída (Testovací klíč: GSZGTH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Slovní úlohy / Geometrie / 0/9 0/10 0/7 Obecná škola

Více

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114 STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez

Více

Příprava na vyučování Matematiky a jejích aplikací s cíli v oblastech OSV a čtenářství

Příprava na vyučování Matematiky a jejích aplikací s cíli v oblastech OSV a čtenářství Příprava na vyučování Matematiky a jejích aplikací s cíli v oblastech OSV a čtenářství Název (téma) Kolik vlastně nasněžilo? Stručná anotace V této hodině se žáci zabývají tvořením slovní úlohy. Z vět,

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

PŘIJÍMACÍ ZKOUŠKY 2008

PŘIJÍMACÍ ZKOUŠKY 2008 MATEMATIKA Obor: 79-41-K/401 Součet bodů: Opravil: 1. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

Písemná zkouška z českého jazyka

Písemná zkouška z českého jazyka Písemná zkouška z českého jazyka Diktát. Do světa. Po vyučení se dříve řemeslníci vydávali do světa na zkušenou. Chtěli se ve svém řemesle zdokonalit, ale lákaly je i cizí kraje. Vytrvalí Češi a Slováci

Více

Asertivita a povinnosti, existují nějaké? Metodický list

Asertivita a povinnosti, existují nějaké? Metodický list Asertivita a povinnosti, existují nějaké? Metodický list práce s interaktivní tabulí - asertivní práva, asertivní povinnosti samostatná práce do sešitů s prezentací - souvislost práv a povinností v rámci

Více

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010 Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1 2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.

Více

Přepočet přes jednotku - podruhé I

Přepočet přes jednotku - podruhé I 1.2.25 Přepočet přes jednotku - podruhé I Předpoklady: 010224 Pedagogická poznámka: Tato a následující hodina navazují na poslední hodinu úvodní kapitoly. Jde v podstatě o stejné problémy, ale s desetinnými

Více

ANOTACE K VÝUKOVÉ SADĚ

ANOTACE K VÝUKOVÉ SADĚ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast (předmět) Autor ANOTACE K VÝUKOVÉ SADĚ CZ.1.07/1.5.00/34.0705 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT ROVNICE A NEROVNICE

Více

ů ů Č ů ů Š ž ů žď ž ž ž žď ů ů ž ů ó Č Ý Š ú Ý Á Š ž ů ž ž ž ů Š ú Ž ů ú ž Ř ó ž ú ž ň ž Á Š ň ď ž ú Ý ť Č Ř ň Š Á Š ž Š Š ž ú Ý ť Ř žď Š ž Á ž Š ů ť ť ů ú Ý Č Ř Ň ť Á ž Š ú Ý ž ž ó ž Ř žď Ň ž ž ň Ť ó

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,

Více

1BMATEMATIKA. 0B9. třída

1BMATEMATIKA. 0B9. třída BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za

Více

Téma hodiny: CESTA ZA POKLADEM

Téma hodiny: CESTA ZA POKLADEM Téma hodiny: CESTA ZA POKLADEM Zpracovala Magdalena Malá, Martina Žaludová Pomůcky: 24 kartiček s příklady, 8 velkých čísel=výsledků, 8 obálek, barevné proužky papíru, 8 látkových pytlíčků + 3 větší pytlíky

Více

ZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková

ZLOMKY A DESETINNÁ ČÍSLA. Růžena Blažková ZLOMKY A DESETINNÁ ČÍSLA Růžena Blažková Úvod Se zlomky a s desetinnými čísly se setkává každý člověk, jak v běžném životě, tak v pracovních či zájmových činnostech. Z matematického hlediska není rozdíl

Více

MATEMATICKÁ OLYMPIÁDA

MATEMATICKÁ OLYMPIÁDA MATEMATICKÁ OLYMPIÁDA pro žáky základních škol a nižších ročníků víceletých gymnázií 65. ROČNÍK, 2015/2016 http://math.muni.cz/mo Milí mladí přátelé, máte rádi zajímavé matematické úlohy a chtěli byste

Více

Hry v matematice aneb Jak procvičovat probrané učivo

Hry v matematice aneb Jak procvičovat probrané učivo Hry v matematice aneb Jak procvičovat probrané učivo Mgr. Hana Tesařová, ZŠ Lysice Opakování a procvičování učiva v matematice je jednoznačně nutností. Už naši předkové tvrdili, že opakování je matkou

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Úloha 1A (5 bodů): vyhovuje Úloha 2A (6 bodů): Obrázek 1 Přelévání mléka

Úloha 1A (5 bodů): vyhovuje Úloha 2A (6 bodů): Obrázek 1 Přelévání mléka Kategorie mladší Úloha 1A (5 bodů): Jako první využijeme Žofinčin postřeh. Díky němu se nám totiž celá úloha podstatně zjednoduší. Žofinka říká, ať nehledáme 6 nezávislých cifer, ale pouze 3. Poznávací

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Maminka má v peněžence 4 stokoruny,

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

OPRAVDU VYPNUTO? ANEB STAND-BY U NÁS DOMA

OPRAVDU VYPNUTO? ANEB STAND-BY U NÁS DOMA OPRAVDU VYPNUTO? ANEB STAND-BY U NÁS DOMA Cíl(e): Žáci vědí, že elektrické spotřebiče vypnuté v režimu stand-by také spotřebovávají elektrickou energii. Proto se naučí vypínat je úplně, když je to vhodné.

Více

7.2.1 Vektory. Předpoklady: 7104

7.2.1 Vektory. Předpoklady: 7104 71 Vektory Předpoklady: 7104 Některé fyzikální veličiny (například rychlost, síla) mají dvě charakteristiky: velikost směr Jak je znázornit, jedno číslo (jako například pro hmotnost m = 55kg ) nestačí?

Více

jsou všechna reálná čísla, pro která platí: E: x ( ; 2) (2; )

jsou všechna reálná čísla, pro která platí: E: x ( ; 2) (2; ) Příklad 1. Kolik sudých přirozených čísel lze vytvořit z číslic 0, 3, 6, 9, jestliže se žádná číslice neopakuje? A: 14 B: 18 C: 26 D: 30 E: 22 Příklad 2. Definičním oborem funkce y = 1 x x 2 4 jsou všechna

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Početní operace s přirozenými čísly

Početní operace s přirozenými čísly Početní operace s přirozenými čísly Autor: Jana Krchová Sčítání přirozených čísel Sčítej zpaměti: a) 35 + 15 + 60 12 + 18 + 20 + 14 b) 16 + 8 + 11 + 17 23 + 14 + 17 + 16 c) 45 + 12 + 5 + 18 107 + 23 +

Více

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7.

Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Seznam šablon Autor: Bc. Daniela Prosmanová Vzdělávací oblast: Matematika a její aplikace Tematický celek: Celá čísla Ročník: 7. Číslo Označení Název Využití Očekávané výstupy Klíčové kompetence 1 CČ1

Více

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč.

Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Na odměny ve školní soutěži bylo koupeno 25 tužek. Dražší tužky byly za 20 Kč, lacinější za 15 Kč. Celá zaplacená částka byla 455 Kč. Kolik kusů tužek od každého druhu bylo koupeno? 16 ks dražších a 9

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Zpracovala: RNDr. Eva Sedláková ZŠ Lysice M Z ( 5-12 ročník), Př.f.

Zpracovala: RNDr. Eva Sedláková ZŠ Lysice M Z ( 5-12 ročník), Př.f. Zpracovala: RNDr. Eva Sedláková ZŠ Lysice M Z ( 5-12 ročník), Př.f. 1) Anotace: - aplikační úkol v hodině matematiky - jde o matematizaci reálných situací s využitím dovedností učiva o přirozených a desetinných

Více

www.projektsako.cz Matematika Pracovní list č. 2 žákovská verze Téma: Objem a povrch anuloidu Mgr. Libor Lepík Student a konkurenceschopnost

www.projektsako.cz Matematika Pracovní list č. 2 žákovská verze Téma: Objem a povrch anuloidu Mgr. Libor Lepík Student a konkurenceschopnost www.projektsako.cz Matematika Pracovní list č. 2 žákovská verze Téma: Objem a povrch anuloidu Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075 Teorie Anuloid

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE STUDIU 8LETÉHO GYMNÁZIA ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE STUDIU 8LETÉHO GYMNÁZIA ROK 2014 MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE STUDIU 8LETÉHO GYMNÁZIA ROK 204 ILUSTRAČNÍ POČET TESTOVÝCH POLOŽEK: 7 MAXIMÁLNÍ POČET BODŮ: 50 (00%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční

Více

Osobnost - dědičné a vrozené Metodický list

Osobnost - dědičné a vrozené Metodický list Osobnost dědičné a vrozené Metodický list práce s interaktivní tabulí rozdělení vlastností na vrozené a získané, rozhodnutí o dědičnosti práce se sešitem mé dobré a špatné vlastnosti, shoda se spolužáky,

Více

Kde všude najdeš hodiny?

Kde všude najdeš hodiny? Dagmar Košková malá ručička ukazuje hodinu Jak je dlouhý den? Den má 24 hodin. Jak se dělí čas? 1 hodina má 60 minut. 1 minuta má 60 vteřin. velká ručička ukazuje minuty a část hodiny Den se dělí na: ráno

Více

Slovní úlohy v učivu matematiky 1. stupně základní školy

Slovní úlohy v učivu matematiky 1. stupně základní školy Slovní úlohy v učivu matematiky 1. stupně základní školy V každé matematické úloze jde o to, abychom dokázali platnost (pravdivost) nějakého výroku. Podle toho, o jaký výrok jde, máme různé druhy úloh.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí

Více

Odhady úměrností

Odhady úměrností .. y úměrností Předpoklady: 000 Pedagogická poznámka: V hodině nejdříve nechám žáky zapsat do sešitu odhady (cca minut jeden odhad za minuty), pak si je kontrolujeme. Hodnotíme body pokud je chyba odhadu

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Manželství z pohledu práva Metodický list

Manželství z pohledu práva Metodický list Manželství z pohledu práva Metodický list aktivační technika - cvičný test (rodina) práce s interaktivní tabulí - manželství, co, jak, kdo samostatná práce do sešitů - registrované partnerství Obecné informace

Více

100 50 : [20 + 25 : (101 96)] = 100 50 : [20 + 25 : 5] = 100 50 : [20 + 5] = = 100 50 : 25 = 100 2 = 98

100 50 : [20 + 25 : (101 96)] = 100 50 : [20 + 25 : 5] = 100 50 : [20 + 5] = = 100 50 : 25 = 100 2 = 98 Test z matematiky základní školy úroveň 1 řešení Každá otázka je za 1 bod, celkový počet bodů je 20. 1. Výsledek výpočtu 100 50 : [20 + 25 : (101 96)] 100 50 : [20 + 25 : (101 96)] = 100 50 : [20 + 25

Více

pracovní listy Výrazy a mnohočleny

pracovní listy Výrazy a mnohočleny A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 8. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení vybírat a využívat pro efektivní

Více

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm

1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm 1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 132 Jméno autora Mgr. Michaela Vejšická Datum, ve kterém byl DUM vytvořen 26.3.2012 Ročník, pro který je DUM určen 2. Vzdělávací oblast (klíčová slova) Matematika

Více

Příprava na 3. čtvrtletní práci. Matematika

Příprava na 3. čtvrtletní práci. Matematika Příprava na 3. čtvrtletní práci Matematika Procenta doplň tabulku Základ 100 Kč 150 Kč 450 Kč 20 Kč 2500 Kč Počet procent 15 % 20 % 75 % Část základu zlomkem 2 5 1 4 Část základu desetinným číslem 0,9

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3 Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: III/2 Inovace

Více

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte

Více

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!! . Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul

Více

Habermaaß-hra 4280. Nešikovná čarodějnice

Habermaaß-hra 4280. Nešikovná čarodějnice CZ Habermaaß-hra 4280 Nešikovná čarodějnice Nešikovná čarodějnice Okouzlující sledovací hra podporující rychlé rozhodování, pro 2 až 4 hráče ve věku od 5 do 99 let. Hra má FEX efekt pro zvýšení stupně

Více

Rovnoměrný pohyb V

Rovnoměrný pohyb V 1.1.11 Rovnoměrný pohyb V ředpoklady: 11 edagogická poznámka: Následující příklad je dokončení z minulé hodiny. Studenti by měli mít graf polohy nakreslený z minulé hodiny nebo z domova. ř. 1: etr vyjede

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA04Z9 MATEMATICKÉ DOVEDNOSTI B Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída MATEMATIKA 7. třída 1. Pavel musí vypracovat slohovou práci o rozsahu 4000 slov. Za půl hodiny napíše v průměru 100 slov. Kolik hodin Pavel potřebuje pro vytvoření slohové práce, pokud se chce po dopsání

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 7 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš

Více

Zadání projektu Páka, kladka

Zadání projektu Páka, kladka Zadání projektu Páka, kladka Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 29. 11. Vlastní práce 2 vyučovací hodiny 1. a 6. 12. Prezentace 8.12. Test a odevzdání portfólií ke kontrole

Více

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

ČTENÍ S POROZUMĚNÍM VENDULKA A SKŘÍTEK LUKÁŠ VAŘÍ VEČEŘI

ČTENÍ S POROZUMĚNÍM VENDULKA A SKŘÍTEK LUKÁŠ VAŘÍ VEČEŘI ČTENÍ S POROZUMĚNÍM VENDULKA A SKŘÍTEK LUKÁŠ VAŘÍ VEČEŘI Anotace Autor Jazyk Očekávaný výstup Speciální vzdělávací potřeby Klíčová slova Druh učebního materiálu Druh interaktivity Cílová skupina Stupeň

Více

10. Soustava lineárních rovnic - substituční metoda

10. Soustava lineárních rovnic - substituční metoda @112 10. Soustava lineárních rovnic - substituční metoda Jedna z metod, která se používá při řešení soustavy lineárních rovnic, se nazývá substituční. Nejlépe si metodu ukážeme na příkladech. Příklad:

Více