Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti"

Transkript

1 Evropská unie Evropský soiální fon Prh & EU: Investujeme o vší uounosti

2 ávrh čítče jko utomtu Osh ÁVRH ČÍAČE JAKO AUOMAU.... SYCHROÍ A ASYCHROÍ AUOMA..... Výstupy utomtu mohou ýt přímo ity pměti stvu..... Mezi vnitřními stvy výstupem může ýt nějký kominční ovo..... Prvivostní tulky klopnýh ovoů ÁVRH ČÍAČE JAKO AUOMAU POMOCÍ OBDODŮ D Krnughovy mpy Shém v prostřeí Qurtus Emule v prostřeí Qurtus ávrh pro J-K klopné ovoy PŘEKÓDOVÁÍ BIÁRÍHO VÝSUPU...

3 Kominční ovo (KO). Synhronní synhronní utomt Automt je zřízení, jehož výstup závisí n okmžitém vstupu 0 ž n přehozíh vstupeh. Jestliže výstup nezávisí n přehozíh vstupeh jená se o kominční síť. Pro uhování vnitřníh stvů potřeuje utomt pměť. Pměť může ýt relizován z klopnýh ovoů RS, D,, JK. Protože RS je synhronní klopný ovo, získáme relizí pměti z RS ovoů synhronní utomt. V osttníh přípeh se ue jent o synhronní utomt. Synhronní utomt má kromě vstupů ještě přiveen hoinový signál. Rozíl mezi synhronním synhronním utomtem je v tom, že u synhronního utomtu jsou změny vnitřního stvu synhronizovány s hoinmi. Výho synhronního utomtu je v tom, že je ryhlejsí. U synhronního utomtu zse neohází k ynmikým hzrům proto jsou všehny něšní mikroproesory synhronní utomty. Vstupy utomtu Výstupy utomtu A B it q it q ásleujíí stv Q n+ it q it q Q n Součsný stv Q n KO Y Výpočet nového stvu Pměť stvu externí hoinový signál Pměť stvu relizovná pomoí synhronníh ovoů RS má mximálně ryhlou oezvu, le žáá si funmentální režim činnosti KO (n orázku). Pměť stvu zložená n synhronníh klopnýh ovoeh JK či D vyžuje externí hoinový signál pro perioiké vzorkování výstupu KO, zprvil o vyšší frekveni (řáu khz ž MHz). Zpomlí se tím le reke utomtu n změnu vstupníh signálů. Proč?

4 Kominční ovo (KO).. Výstupy utomtu mohou ýt přímo ity pměti stvu Vstupy utomtu nhoru it q it q it q Výpočet nového stvu ásleujíí stv Q n+ it q it q it q Q n Pměť stvu Výstupy utomtu Součsný stv Q n y y y externí hoinový signál.. Mezi vnitřními stvy výstupem může ýt nějký kominční ovo (použijeme npříkl, kyž heme zorzovt výstup n isply ovoy mezi výstupem utomtu jenotlivými segmenty jsou vlstně výstupní kominční ovo) Binární čítč UP/D Clok it q it q it q Koér výstupu y y y Lze nvrhnout pomoí Krnughovýh mp, ty zvel Murie Krnugh z Bellovýh lortoří v roe 950), le překóování výstupu není vžy vhoné kvůli možným hzrům.

5 .. Prvivostní tulky klopnýh ovoů Asynhronní: R-S S R Q t 0 0 Q t x R - S (lze jej sestvit ze hrel AD) S R Q t 0 0 x Q t- Synhronní: J-K D J K Q t D Q t Q t 0 0 Q t Q t- 4

6 . ávrh čítče jko utomtu pomoí ooů D Čítč je speiální příp jenouhého synhronního nestilního utomtu, který s kžým hoinovým pulsem přehází o lšího stvu. Přehoový igrm - orientovný grf 6 y 6 y y 5 y y 4 y Přehoová tulk je jenom jiná form popisu. o, jk se změní stv utomtu, záleží n honotě vstupu v okmžiku příhou hoinového pulsu. Součsný stv ásleujíí stv: Generovný výstup kyž = kyž =0 Symol Honot 6 y y 4 y y y y 6 0 5

7 Vyjeme z přehoové tulky: Sloupe generovný výstup výstupní honoty přestvují kóování (reprezenti) výstupu. Součsný ásleujíí stv Generovný Výstupní stv Kyž je = Kyž je =0 výstup honoty 6 y 00 y 0 4 y 4 5 y y y Pořová čísl stvů nhríme jejih inárními kóy Sloupe Součsný stv kó přestvují kóování vnitřníh stvů. Součsný Kó ásleujíí stv q q q Honot stv q q q Kyž je = Kyž je =0 výstupu Pro zkóování šesti stvů potřeujeme tři pměťové proměnné klopné ovoy D. Rozepíšeme prvivostní tulky pro jejih vstupy. q q q = =0 q q q = =0 q q q = = vrhneme kominční síť pro, čili npíšeme Krnughovy mpy sestvíme rovnie. q q X 0 0 q q 0 X 0 0 q q 0 X 0 0 X X 0 X 0 X 0 0 X X 0 X 0 0 X X q q q q. q. q. q. q. q. 6

8 .. Opkování: Krnughovy mpy Prinip zápisu o mpy minimlize: Y Y Y X X 0 X 0 0 X X X X X X 0 lev á nuly lev á x.... x. x x x x ; x x prv á nuly prv á ; 0 efinie.... Různé možnosti minimálního pokrytí nývjí shonýh honot pro výstupy efinovné o 0. Mohou se le lišit v oeh X rovněž způsoem fyziké relize. eurčitý výstup X (možnost voly 0 neo ) se vzthuje výhrně k okmžiku návrhu po něm má fixní honotu 0 neo. 7

9 Krnughov mp pro 8 proměnnýh jeen prvek má 8 souseů h g f e Dělení mpy n menší mpy souseé jenoho prvku. 8

10 .. Shém v prostřeí Qurtus IPU VC C O inst 9 O 0 AD 7 AD 8 OR 4 D ins t VC C D PR Q CLR OUPU q AD 9 AD inst 0 OR 5 D inst 4 VC C D PR Q CLR OUPU q O AD inst AD inst OR 6 D inst 5 VC C D PR Q CLR OUPU q RESE Hoin y IPU VC IPU C VC C.. Emule v prostřeí Qurtus Simule není rozhoně smospsitelná! efunguje-li, pk zprvil nefunguje ni zpojený ovo, všk opčná implike rozhoně nepltí. Mnohé emulátory nepoznjí některé zálunosti. 9

11 Kominční ovo.. ávrh pro J-K klopné ovoy Přehozí rovnie pltily pouze pro D klopný ovo, který má jeiný tový vstup, le J-K neo S-R klopné ovoy se ovlájí věmi vstupy. V této úloze vytvoříme J-K vstupy negemi. Synhronize hoinovým signálem ostrňuje tké vliv možnýh hzrů (řekněte proč!), tkže není potře rát je v úvhu při návrhu logikýh funkí. D = J q. q. K J D = J q. q. K J D = J q. q. K J Vstup utomtu it q it q J K J K J CLK K J CLK K Q Q Výstupy utomtu q q it q it q it q it q ásleujíí stv Q n+ J K J CLK K Q q externí hoinový signál Existuje i jiný způso, návrh pomoí pokrytí tlustýh 0, který ává (něky) úspornější řešení, je všk již o složitější řešení, které má v moerníh PGA ovoeh minoritní postvení, jelikož tm se používjí ovoy typu D.. 0

12 . Překóování inárního výstupu Přepokláejme, že máme externí inární signál, ity,,, uávjíí polohu nějkého přepínče, heme jeho výstup překóovt n y y y pole tulky: Stv y y y q q q y q q q y q q q y y y y X X 0 0 X X 0 0 X X 0 y. y. y.. Shém zpojení pro průmyslový utomt LOGO řešíme jko pouhý kominční ovo

1 Logické řízení (prof. Ing. Jiří Tůma, CSc.)

1 Logické řízení (prof. Ing. Jiří Tůma, CSc.) Logiké řízení Logiké řízení (prof. Ing. Jiří Tům, CS.) Tento způso řízení je zložen n vou stveh ovláného prvku voustvové informi o řízené soustvě. Prktiké oznčení těhto stvů je násleujíí: zpnuto / vpnuto,

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

ŘEŠENÍ OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI POMOCÍ GRAFŮ SIGNÁLOVÝCH TOKŮ

ŘEŠENÍ OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI POMOCÍ GRAFŮ SIGNÁLOVÝCH TOKŮ ŘEŠENÍ OBVODŮ S ANSMPEDANČNÍM OPEAČNÍM ESLOVAČ POMOÍ AFŮ SNÁLOVÝH OŮ ÚVOD Dlior Biolek, VA Brno rnsimpenční operční zesilovče (O) jsou perspektivní tegrovné ovoy, které jsou svými přenosovými vlstnostmi

Více

PT 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník

PT 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník PT 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník 1. OSV Osonostní rozvoj ČJ,HV,MA,TV,PRV,VV,AJ, PČ, Soiální rozvoj ČJ, MA, TV, PRV, AJ, PČ, Morální rozvoj MA, TV, PRV, AJ, PČ, 2. VDO Očnská společnost

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA 1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Rozpis výuky ISŠ-COP Valašské Meziříčí (Miroslav Chumchal) - 8 vyučovacích hodin Aplikování základních pojmů a vztahů v elektrotechnice

Rozpis výuky ISŠ-COP Valašské Meziříčí (Miroslav Chumchal) - 8 vyučovacích hodin Aplikování základních pojmů a vztahů v elektrotechnice PROFESNÍ KVALIFIKACE Montér lktrikýh rozvěčů (kó: 26-019-H), 30 hoin tori (ISŠ-COP) + 96 hoin prx (BBC) + 12 hoin zkoušk (ISŠ-COP) Zčátk profsního vzělávání 1. 12. 2014; Dtum ukonční 31. 1. 2015 Rozpis

Více

Nadměrné daňové břemeno

Nadměrné daňové břemeno Nměrné ňové břemeno Nměrné ňové břemeno je efinováno jko ztrát přebytku spotřebitele přebytku výrobe, ke kterému ohází v ůsleku znění. Něky se tož nzývá jko ztrát mrtvé váhy. Připomenutí: Přebytek spotřebitele:

Více

e Stavby pro reklamu podle 3 odst. 2. f

e Stavby pro reklamu podle 3 odst. 2. f Jenouhé stvy, terénní úprvy uržoví práe vyžujíí ohlášení 104 ost. 1 stveního zákon Stvení záměr Formulář Umístění Stvy pro ylení pro roinnou rekrei o 150 m 2 elkové zstvěné plohy, s jením pozemním polžím

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek mikroekonomie

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek mikroekonomie Přijímí řízení kemiký rok 2013/2014 NvMg. stuium Kompletní znění testovýh otázek mikroekonomie Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 1 Která z násleujííh situí může způsoit

Více

Otázka č. 4 (PRA): Za subjekty trestního řízení jsou považováni také:

Otázka č. 4 (PRA): Za subjekty trestního řízení jsou považováni také: F63 - Diktiký test - II. tém Otázk č. 1 (PRA): Sujektem trestního řízení rozumíme: ty činitele, kteří mjí vykonávjí vlstní vliv n průěh trestního řízení kterým zákon k uskutečnění tohoto vlivu ává určitá

Více

ověření Písemné ověření a ústní zdůvodnění

ověření Písemné ověření a ústní zdůvodnění PROFESNÍ KVALIFIKACE Montér lktrikýh rozvěčů (kó: 26-019-H), 42 hoin (z PK1 60 hoin) + zkoušk (8hoin) Zčátk profsního vzělávání 26. 4. 2014; Dtum ukonční 15. 6. 2014 Rozpis výuky Miroslv Chumhl, soot 3.

Více

Teorie jazyků a automatů I

Teorie jazyků a automatů I Šárk Vvrečková Teorie jzyků utomtů I Sírk úloh pro cvičení Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv, poslední ktulizce 5. květn 205 Anotce: Tto skript jsou určen

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III

Slovní úlohy na sjednocení dvou množin s neprázdným průnikem. II b III Slovní úlohy n sjenoení vou množin s neprázným průnikem Vennův igrm ( John Venn 1834 (Hull, Anglie) 1923 (Cmrige, Anglie) ) A V Životopis John Venn: http://www-groups.s.st-n..uk/ history/mthemtiins/venn.html

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním koulí PAVEL TLUSTÝ IRENEUSZ KRECH Ekonomiká fakulta JU, České Budějovie Uniwersytet Pedagogizny, Kraków Matematika popisuje a zkoumá různé situae reálného světa.

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Hygiena dutiny ústní u dospělých. aneb Čistěte si pouze ty zuby, které si chcete zachovat!!

Hygiena dutiny ústní u dospělých. aneb Čistěte si pouze ty zuby, které si chcete zachovat!! Hygien utiny ústní u ospělýh ne Čistěte si pouze ty zuy, které si hete zhovt!! Prevene ve stomtologii znmená přeevším přeházení vzniku lšímu rozvoji zuního kzu, hronikého zánětu ásní, tím tké vzniku proontitiy,

Více

Kam jezdí formani AGENTURA OCHRANY PŘÍRODY A KRAJINY

Kam jezdí formani AGENTURA OCHRANY PŘÍRODY A KRAJINY Km jezdí formni S otv jsme vyšli, už potkáváme formn Šknderu. Jede s povozem plně nloženým dlouhými kmeny, který táhnou dv silní koně, o grošái. Zstvil u nás, prý jestli neheme svézt. Dnes jedu jenom do

Více

Manuál kouče. www.mindset.cz

Manuál kouče. www.mindset.cz Mnuál kouč www.minst.z Osh: A Li Cohing D Sorgniz Vstupní otzník strn 4 Dotzník péč o s strn 65 Co o koučinku očkávát? strn 7 Dnní návyky strn 69 Mti nléhvé & ůlžité strn 73 Mti priority činností strn

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0 Úloha 4 - Koupě DVD reoréru SPOTŘEBITELSKÝ ÚVĚR Mlaá roina si chce poříit DVD reorér v honotě 9 900,-Kč. Má možnost se rozhonout mezi třemi splátovými společnosti, teré mají násleující pomíny: a) První

Více

PRŮZKUM NÁZORŮ ŢÁKŮ, UČITELŮ A RODIČŮ NA HODNOCENÍ VE ŠKOLE

PRŮZKUM NÁZORŮ ŢÁKŮ, UČITELŮ A RODIČŮ NA HODNOCENÍ VE ŠKOLE Pegogiká fkult OU v Ostrvě Kter pegogiky nrgogiky PRŮZKUM NÁZORŮ ŢÁKŮ, UČITELŮ A RODIČŮ NA HODNOCENÍ VE ŠKOLE NÁMĚTY NA ÚPRAVY VNITŘNÍCH NOREM PRO KLASIFIKACI ŢÁKŮ seminární práe Pegogiká ignostik KPD/3PEDI

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek makroekonomie

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek makroekonomie řijímí řízení kemiký rok 2013/2014 NvMg. stuium Kompletní znění testovýh otázek mkroekonomie Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 1 Ekonomiké veličiny, které jsou měřeny

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí 3 Automty grmtiky Romn Brták, KTIML rtk@ktimlmffcunicz http://ktimlmffcunicz/~rtk Pro připomenutí 2 Njít ekvivlentní stvy w X* δ*(p,w) F δ*(q,w) F Vyřdit nedosžitelné stvy 3 Sestrojit podílový utomt Automty

Více

Á é Ú Í é é é ř ř ř ů é ř ř ř ů ú é é ú ú ř Ú é ú ů ř ů ř ů é Š ů ú ů ú ó ů é Ú Í Š ř é Ó éš š ř Ú šř š Š ú ř š ů Ž šů š ř š é ř ň é ř ž é é ř Ž řš Ý ř ž ř ř ůé é ó é š Ž Í é ř é é é ř Š ů ř ř ř ů š Ž

Více

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek ekonomie

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek ekonomie řijímí řízení kemiký rok 2014/2015 B. stuium Kompletní znění testovýh otázek ekonomie Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 1 Která olst ekonomie zkoumá mikroekonomie mkroekonomie

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Ekonomický přehled. Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď

Ekonomický přehled. Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď Ekonomiký přehle Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. Kolik členskýh států má v součsné oě Evropská unie? 2. Kolik členskýh zemí má v součsné oě Evropská měnová unie? 3. Které

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 12

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 12 Fkult strojního inženýrství VUT v Brně Ústv konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přenášk Spojky brzy Tim ws so lerne tht he coul nme horse in nine lnguges; so ignornt tht he bought cow to

Více

UC485 UC 485 15 kv ESD IEC-1000-4-2 Protected 2 42 485/ S

UC485 UC 485 15 kv ESD IEC-1000-4-2 Protected 2 42 485/ S PPouch elektronik UC 85 PŘEVODNÍK LINKY n neo RS22 S GALVANICKÝM ODDĚLENÍM 15 kv ESD Protected IEC-1000--2 Převodník CANNON 9 CANNON 9 zásuvk vidlice K1 PPouch elektronik - 8-12V + /22 Z přepínče RS22

Více

Posuvná měřítka s noniem

Posuvná měřítka s noniem Posuvná měřítk s noniem Série 530 Stnrní proveení posuvnýh měřítek s noniem, které nízí násleujíí výhoy: Voií rážk posuvná část z klené nerez oeli. Hlvní stupnie nonius mtně hromovány, čímž je osženo vyšší

Více

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod...

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod... Vol typu ložisk Prostorové nároky... 35 Ztížení... 37 Velikost ztížení... 37 Směr ztížení... 37 Nesouosost... 40 Přesnost... 40 Otáčky... 42 Tichý chod... 42 Tuhost... 42 Axiální posuvnost... 43 Montáž

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

AUTOMATY VE VYHLEDÁVÁNI cvičeni

AUTOMATY VE VYHLEDÁVÁNI cvičeni Czech Technicl University in Prgue Fculty of Informtion Technology Deprtment of Theoreticl Computer Science AUTOMATY VE VYHLEDÁVÁNI cvičeni Bořivoj Melichr Evropský sociální fond. Prh & EU: Investujeme

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Přijímací řízení akademický rok 2015/2016 Bc. studium Kompletní znění testových otázek ekonomie

Přijímací řízení akademický rok 2015/2016 Bc. studium Kompletní znění testových otázek ekonomie řijímí řízení kemiký rok 2015/2016 B. stuium Kompletní znění testovýh otázek ekonomie Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 1 Která olst ekonomie zkoumá mikroekonomie mkroekonomie

Více

150 mm 150 mm. 150 mm

150 mm 150 mm. 150 mm Stručný návo k osluze Zčínáme HL-3140CW / HL-3150CDN HL-3150CDW / HL-3170CDW Nejprve si prosím přečtěte Příručk ezpečnosti výroku. Násleně můžete njít informe o nstvení instli v tomto Stručném návou k

Více

Obr. 67 Soustavy vysekávání a - plocha na plochu, b - válec na plochu, c - válec na válec

Obr. 67 Soustavy vysekávání a - plocha na plochu, b - válec na plochu, c - válec na válec VYSEKÁVÁNÍ 89 4. VYSEKÁVÁNÍ Vysekávání ppíru lepenek se liší o øezání tím, že link oìlení není pøímoèrá, nýrž rùznì prvielnì i neprvielnì tvrovná v útvreh vìtšinou n ovou uzvøenýh. Vysekáváním se zhotovují

Více

BLázny pro tebe. Zpěvník

BLázny pro tebe. Zpěvník BLázny pro tebe Zpěvník OBSH Ty jsi ten cíl Mluv ke mně Učíš mě dýchat Nebe je tam Králem mého srdce Perla Tvoje vítězství znám Žít v tvých věcech Nikdo a nic ědicové Ty vidíš dál Nadechnout se smím 1

Více

ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15 9 - Zpětná vz Michel Šeek Atomtické řízení 2015 16-3-15 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při

Více

B. Vybavení laboratoře. B.1. Chemické sklo

B. Vybavení laboratoře. B.1. Chemické sklo B. Vyavení laoratoře Záklaním pracovním prostorem při laoratorních cvičeních je pracovní stůl. Osahuje všechny záklaní pomůcky potřené pro zpracování jenotlivých úkolů. Pracovní stoly jsou očíslované a

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

Snímače průtoku principy, vlastnosti a použití (část 2)

Snímače průtoku principy, vlastnosti a použití (část 2) snímče převoníky nímče průtoku prinipy, vlstnosti použití (část ) Krel Kle (pokrčování z čísl 0/006) 3.3 Rotmetry průtokoměry s proměnným průřezem Rotmetry tvoří skupinu průřezovýh měřiel, u nihž se s

Více

evodníky Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Přednáška č. 14 Milan Adámek adamek@fai.utb.cz U5 A711 +420576035251

evodníky Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Přednáška č. 14 Milan Adámek adamek@fai.utb.cz U5 A711 +420576035251 Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření A/D a D/A převodnp evodníky Přednáška č. 14 Milan Adámek adamek@fai.utb.cz U5 A711 +420576035251 A/D a D/A převodníky 1 Důvody převodu signálů

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Začínáme. Stručný návod k obsluze HL-4570CDW HL-4570CDWT VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ. Poznámka. Poznámka

Začínáme. Stručný návod k obsluze HL-4570CDW HL-4570CDWT VAROVÁNÍ UPOZORNĚNÍ VAROVÁNÍ. Poznámka. Poznámka Stručný návo k osluze Zčínáme (pouze EU) HL-4570CDW HL-4570CDWT Pře prvním použitím tohoto zřízení si přečtěte tento Stručný návo k osluze poté můžete zčít s nstvením instlí zřízení. V jinýh jzyíh si můžete

Více

Série 500 Podrobné informace na straně 104. Výškoměry a orýsovací přístroje. Série 192 Podrobné informace na straně 150 a 151.

Série 500 Podrobné informace na straně 104. Výškoměry a orýsovací přístroje. Série 192 Podrobné informace na straně 150 a 151. NOVÉ VÝROBKY DIGIMATIC Posuvné měřítko s ohrnou IP-67 Série 500 Poroné informe n strně 104. DIGIMATIC Zvláštní posuvné měřítko s ohrnou IP-67 Série 573 Poroné informe o strny 112. Dílenské posuvné měřítko

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

26 l Základní informace. 27 l RDLTS. 28 l DRUE. 29 l DRUF. 30 l DRUL. 31 l RDST

26 l Základní informace. 27 l RDLTS. 28 l DRUE. 29 l DRUF. 30 l DRUL. 31 l RDST 26 l Záklní informc 27 l RDLTS 28 l DRUE 29 l DRUF 30 l DRUL 31 l RDST Záklní informc 26 Ztížitlnost uzlového ou: Pro ztížitlnost uzlového (nulového) ou zpojní o hvězy j tř vzít o úvhy náslující skutčnosti,

Více

Úvod do Teoretické Informatiky (456-511 UTI)

Úvod do Teoretické Informatiky (456-511 UTI) Úvod do Teoretické Informtiky (456-511 UTI) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vs.cz 25. ledn 2006 Verze 1.02. Copyright c 2004 2006 Petr Hliněný. (S využitím části mteriálů c Petr Jnčr.) Osh

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/0 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázky Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které

Více

MATEMATIKA. Základní poznatky z matematiky. Olomouc 2010

MATEMATIKA. Základní poznatky z matematiky. Olomouc 2010 MATEMATIKA Záklní pozntky z mtemtiky Cvičenie s klíčem Olomou 00 Autor Mgr. Dn Kprálová Zprováno v rámi projektu Digitální škol ICT ve výue tehnikýh přemětů registrční číslo projektu CZ..0/..0/0.0 Projekt

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

Promat. Kabelové kanály. Požární ochrana. elektroinstalací. pomocí kabelových. kanálů PROMATECT

Promat. Kabelové kanály. Požární ochrana. elektroinstalací. pomocí kabelových. kanálů PROMATECT Promt Kelové knály Požární ochrn elektroinstlcí pomocí kelových knálů PROMATECT Kelové knály Požární ochrn elektroinstlcí pomocí kelových knálů PROMATECT. Kely elektrická veení z hořlvých hmot umístěná

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Č É Á Ů š Ě ý š š ě ě é ů ř ě š ý š ř ě é ěř ů ř ě ž žů óř é é ů š é ěš š Š š š ě š ž é š ú ý ý ů ě é ý ů ž ě ě ě š ě ž řš é š ě ě ř ě ž ž ě ž é ř Ž ž ý š ř š ě ř řš ž ř š ě ě ř é ř é ě é é é ě é ř š š

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Instalační návod. Záložní ohřívač nízkoteplotního monobloku Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Instalační návod. čeština

Instalační návod. Záložní ohřívač nízkoteplotního monobloku Daikin Altherma EKMBUHCA3V3 EKMBUHCA9W1. Instalační návod. čeština Záložní ohřívč nízkoteplotního monoloku Dikin Altherm EKMBUHCAV EKMBUHCA9W Záložní ohřívč nízkoteplotního monoloku Dikin Altherm češtin Osh Osh O této dokumentci. O tomto dokumentu... Informce o skříni.

Více

Obsah. Převody ozubenými řemeny s metrickou roztečí AT 5, AT 10 Ozubené řemeny... 117 Řemenice... 121 Ozubené tyče...124 Příruby pro řemenice...

Obsah. Převody ozubenými řemeny s metrickou roztečí AT 5, AT 10 Ozubené řemeny... 117 Řemenice... 121 Ozubené tyče...124 Příruby pro řemenice... Obsah Převoy válečkovými řetězy Válečkové řetězy... 4 Válečkové řetězy nerezové... 10 Řetězová kola SPECIÁ... 11 Řetězová kola... 18 Řetězová kola litinová...55 Řetězová kola napínací a pro opravní pásy...59

Více

ť Š Ý Í š Í Í É ů ú Š Í É ř ú ř ř é ř é ř ř š ř é ž š é š é Ť é Ž ď ř š é ř š ů ř ů ď ď ž é š é é ť š ž é ž ř é é é é ž ř š ž ř é ř é ž ř é é é Ť é é ť Ě Ý Š š É Ň Í ž ž ž é é é š ň é ž š é š é Ť é Ž ř

Více

12 l RSTN. 13 l RSTN UL-CSA. 14 l RSTS. 15 l RSTS UL-CSA. 16 l RSTL. 17 l REIA. 18 l URST. 19 l RUE. 20 l REST. 21 l RLTS.

12 l RSTN. 13 l RSTN UL-CSA. 14 l RSTS. 15 l RSTS UL-CSA. 16 l RSTL. 17 l REIA. 18 l URST. 19 l RUE. 20 l REST. 21 l RLTS. 12 l RSTN 13 l RSTN UL-CSA 14 l RSTS 15 l RSTS UL-CSA 16 l RSTL 17 l REIA 18 l URST 19 l RUE 20 l REST 21 l RLTS 22 l RGTT RSTN 12 Jnofázové rgulční trnsformátory pol VDE 0570 část 2-2, EN 61558-2-2 Jnofázové

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Úvod - vymezení základních pojmů v zákoně o DPH ve vazbě na účetnictví

Úvod - vymezení základních pojmů v zákoně o DPH ve vazbě na účetnictví v účetnictví příspěvkové organizace (včetně vazby na aňové přiznání) Program semináře Úvo - vymezení záklaních pojmů v zákoně o ve vazbě na účetnictví I. Blok uskutečněná plnění Plnění poléhající ani a

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu

... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu Předmět Ústav Úloha č. 10 BDIO - Digitální obvody Ústav mikroelektroniky Komplexní příklad - návrh řídicí logiky pro jednoduchý nápojový automat, kombinační + sekvenční logika (stavové automaty) Student

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu Studijní informční systém Elektronický zápis předmětů rozvrhu V odoí elektronického zápisu předmětů proíhá tzv. předěžný zápis. Student má předměty zpsné ztím pouze předěžně může je po celé odoí elektronického

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výk tehnikýh oorů Klíčová ktivit IV Inove kvlitnění výk směřjíí k rovoji mtemtiké grmotnosti žáků středníh škol Tém IV Algeriké výr výr s moninmi odmoninmi Kpitol Vhodný společný násoek

Více

ě ý ú é é ě ř ý ž ý ě ú ý ěř ž Ř é ý ú é ý ě ú ř ě ř é ř ě ř é ú ě é ý š ě ů ř ýš ú ě ó ř ú ě ě ěř ž é Í ěš ř ř ř ě é ěž ř ěř é ů ěž éž Ý ř ž É ě úř é é ř é ž é é é řš ý Ě ď éž ý ěř ř é ý ě ú ř é é ř ý

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

3M Komerční Grafika. Příručka. Záruka 3M MCS

3M Komerční Grafika. Příručka. Záruka 3M MCS 3M Komerční Grfik Příručk Záruk 3M MCS Osh Osh 1 Registre Autorizováného výroe 2 3M Svět inove 3 Násleky nekvlitního proveení grfiky 4 Záruk 3M MCS 5 Výroky tehnologie 3M tehnologie pro výrou fólií 3M

Více

Ž ř ú ř ř ř Šř ř ř ú ň Ž Ž ů ú ů šř ů ú ů ř ř Ž ř ř Č ř ř ř Č šř ů Ú Ř Ú ů ř ú ů š šř ř š ú š ř ř š š ř ř ú Ž Š ů š ř š ř Ž ů ú ů Ú Ž ř ú ř Ú ú šř ů š ů Ž Ž ř ů Ž Ú ů Ž ř ř ř ť ů ň ř ů Á ř ň ř ů Ř ú ó

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

ETL-Ekotherm a.s. Sekaninova 48, 128 00, Praha 2 tel: + 420 224 936 307 fax: + 420 261 224 520

ETL-Ekotherm a.s. Sekaninova 48, 128 00, Praha 2 tel: + 420 224 936 307 fax: + 420 261 224 520 KVĚTEN 2011 ETL-Ekotherm a.s., Sekaninova 48, 128 00, P-2 KONTKTY CENÍK S PLTNOSTÍ O 1.5.2011 VŠECHNY CENY JSOU UVEENY BEZ PH IČO: 45794120 ISO 9001 a ISO 14001 IČ: CZ45794120 sídlo společnosti: ETL-Ekotherm

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

ETL-Ekotherm a.s. Sekaninova 48, 128 00, Praha 2 tel: + 420 224 936 307

ETL-Ekotherm a.s. Sekaninova 48, 128 00, Praha 2 tel: + 420 224 936 307 BŘEZEN 2014 ETL-Ekotherm a.s., Sekaninova 48, 128 00, P-2 KONTKTY CENÍK S PLTNOSTÍ O 1.3.2014 VŠECHNY CENY JSOU UVEENY BEZ PH IČO: 45794120 ISO 9001 a ISO 14001 IČ: CZ45794120 sídlo společnosti: ETL-Ekotherm

Více

Dílčí kvalifikace Strážný Soubor otázek pro písemnou část zkoušky

Dílčí kvalifikace Strážný Soubor otázek pro písemnou část zkoušky Dílčí kvlifike Strážný Souor otázek pro písemnou část zkoušky J.2.1.99 Právní zákldy ezpečnostní činnosti Ústvní právo zákon č. 1/1993 S., Ústv České repuliky, č. 2/1999 S., Listin zákldníh práv svood

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Test PO - otázky pro ročník 2014/2015

Test PO - otázky pro ročník 2014/2015 Okruh 1 represe Č. Otázk Odp. 1. Signál VPŘED VODU rukou neo svítilnou provádíme: ) ntženou pží několikrát půlkruh nd hlvou ) skrčenou pží několikrát vzpžit vzhůru do výše hlvy ) kmitání prvou pží nhoru

Více