Zateplování panelových domů - technologické limity

Rozměr: px
Začít zobrazení ze stránky:

Download "Zateplování panelových domů - technologické limity"

Transkript

1 1 z :37 Zateplování panelových domů - technologické limity Datum: Autor: Lucie Šancová, František Macholda, Jan Antonín, Petr Vogel, Petr Kotek, Gabriela Krajcarová, Hana Gattermayerová Recenzent: Doc. Dr. Ing. Zbyněk Svoboda Tepelnětechnické vlastnosti obvodových konstrukcí významně ovlivňují energetickou náročnost panelových domů. V současné praxi často dochází k podceňování dimenzování zateplovacích systémů. Článek se zabývá návrhem optimální tloušťky tepelné izolace z hlediska ekonomiky a energetické náročnosti. Zateplovací systémy jsou v současnosti navrhovány z pohledu ekonomické návratnosti vzhledem k minulým cenám energií. Během několika let tak může být tento způsob rekonstrukce zastaralý. V rámci tohoto článku bude posouzena ekonomická efektivita zateplení objektu - jeho návratnost se zohledněním růstu cen energie. Zvláštní pozornost je třeba věnovat způsobu kotvení zateplovacího systému, protože optimální tloušťky tepelné izolace z hlediska ekonomiky nejsou v České republice doposud běžně navrhovány. Typy izolačních materiálů a jejich použití Jako izolační materiál v kontaktních zateplovacích systémech se v současnosti nejběžněji používá expandovaný polystyren a minerální vlna. Nově stanovené požadavky požární normy ČSN Požární bezpečnost staveb [2] na šíři požárně odolných zón mezi jednotlivými okny prakticky vylučují použití klasických fasádních polystyrenů u zateplování stěn se souvislou řadou oken, jak je tomu u panelových domů. Zateplování průčelních stěn minerální vlnou se pak odráží v navýšení ceny. Pro štítové a boční stěny lze volit izolační materiál zateplovacího systému mezi expandovaným polystyrenem a minerálními vlákny. Volnost je zde umožněna díky nepoměrně menšímu či žádnému podílu zasklení těchto fasád oproti průčelním stěnám panelového domu. Z hlediska ekonomického lze předpokládat preferenci podstatně investičně levnějšího expandovaného polystyrenu proti minerálním vláknům. Zateplení z ekonomického hlediska Tloušťka tepelné izolace musí být navržena tak, aby splnila požadavky současně platné normy ČSN [3], [4]. Aby bylo po zateplení panelového domu dosaženo doporučených hodnot součinitele prostupu tepla [3], je zapotřebí na obvodové zdivo přidat tepelnou izolaci o tloušťce 9-14 cm v závislosti na typu konstrukce dané panelové soustavy. Při rekonstrukcích budov do pasivního standardu se používají tloušťky izolantu kolem 30 i více cm. Tyto postupy ovšem vedou ke zvyšování investičních nákladů. Běžné fasádní tepelné izolace se vyrábějí v tloušťkách do 20 cm, což je také limit pro jednovrstvou izolaci. Tato hranice nepřináší žádné významné zvýšení nákladů, protože i kotvení vrstev probíhá standardními metodami. U větších tlouštěk je nutno použít dvě vrstvy izolantu. Z tepelně-technického hlediska je to výhodné, neboť dojde k potlačení tepelných mostů mezi deskami izolantu, nicméně investiční náklady stoupají. Nakolik je vhodné použít vícevrstvou izolaci z ekonomického hlediska, závisí na několika faktorech, a to zejména na původním součiniteli prostupu tepla dané konstrukce, aktuální ceně energie, ceně kompletní skladby zateplovacího systému a izolantu, na tloušťce, při které je nutné použít další vrstvu a na aditivních nákladech pro aplikaci další vrstvy. Pro konkrétní podmínky lze použít optimalizační výpočet tloušťky izolace, do kterého vstupuje cena zateplení, cena ušetřené energie, klimatické podmínky, i vývoj cen energie a cena investovaných peněz vyjádřená diskontem. Výpočet je zde ukázán pro dvě varianty původní konstrukce (varianta 1a, b) a tři varianty aktuálních cen energie (varianta 2a, b, c). Pro zateplení se zde počítá s konstantní investiční částkou na m 2 aplikovaného zateplovacího systému. Ceny standardních tloušťek systémů byly stanoveny dle podkladů firem zabývajících se zateplováním, dle zrealizovaných rozpočtů a dle statistických stavebních rozpočtových tabulek. Pro nadstandardní zateplení byl proveden odborný odhad ve spolupráci se společnostmi provádějícími zateplení. V ceně těchto systémů se odráží vyšší pracnost, riziko nové technologie a nárůst ceny materiálu.

2 2 z :37 V první variantě je proveden výpočet optimální tloušťky tepelné izolace pro různé tepelně-technické vlastnosti původní konstrukce - sendvičového štítového panelu VVÚ ETA - při ceně energie 650 Kč/GJ. Ve variantě 1a je uvažována tloušťka vnitřní tepelné izolace tohoto panelu 40 mm a 80 mm ve variantě 1b, viz Tabulka 2. V druhé variantě je provedeno porovnání optimální tloušťky izolace při různých cenách tepla (varianta 2a, 2b, 2c). Tabulka 1: Vstupní parametry pro výpočet limitní tloušťky zateplení z hlediska ekonomické efektivity pro dvě varianty původní nezateplené konstrukce a tři varianty cen tepla Efektivní tloušťka tepelné izolace je zde hodnocena pomocí dvou ekonomických ukazatelů - prosté návratnosti a NPV (net present value - čistá současná hodnota). Vhodnějším ukazatelem je NPV, který zohledňuje hodnotu peněz v čase. Časová řada let, po kterou hodnotíme investice typu zateplení, je totiž natolik dlouhá, že je krajně nevhodné časovou hodnotu peněz zanedbat. Z výpočtu vyplývá, že z ekonomického hlediska je pro obě varianty původní konstrukce (varianta 1a, b) nejvýhodnější tloušťka izolantu mezi 12 a 20 cm, viz Obrázek 1. Po překročení hranice 20 cm dochází ke skokovému nárůstu ceny. Křivka prosté návratnosti má velmi plochý tvar, což svádí k tvrzení, že je prakticky stejně výhodné použít jakoukoliv tloušťku mezi 12 a 20 cm, což podává zkreslený obraz o ekonomické efektivnosti. Dle vhodnějšího ukazatele NPV je optimální tloušťka izolace 20 cm pro obě varianty původní konstrukce, po skokovém navýšení ceny zisk mírně klesá, Obrázek 2. Křivka NPV stoupá strmě až po tloušťku zateplení 12 cm, poté její nárůst není tak významný. Ekonomická efektivita zateplení mezi 12 a 20 cm se příliš neliší, proto je vhodné použít k zateplení tloušťku izolace v tomto rozmezí, Obrázek 3.

3 3 z :37 Obrázek 1: Ekonomická optimalizace zateplení méně kvalitní konstrukce (varianta 1a) a kvalitnější konstrukce (varianta 1b). V případě zateplení méně kvalitní původní konstrukce (varianta 1a) je NPV kladná i při menších tloušťkách tepelné izolace a investice má tedy smysl. U kvalitnější původní konstrukce (varianta 1b) je NPV investice záporná pro jakoukoliv tloušťku izolace menší než 4 cm, viz Obrázek 2. Výsledný součinitel prostupu tepla při tloušťce zateplení 20 cm je 0,18 W.K -1.m -2 pro případ méně kvalitní původní konstrukce (s tloušťkou vnitřní izolace panelu 40 mm) a 0,15 W.K -1.m -2 pro případ původní konstrukce (s tloušťkou vnitřní izolace 80 mm). Obrázek 2: Realizace kontaktního zateplovacího systému o tloušťce 18 cm. Ve druhé variantě je proveden výpočet optimální tloušťky tepelné izolace při třech různých současných cenách tepla (450 Kč/GJ, 650 Kč/GJ a 1000 Kč/GJ) pro součinitel prostupu tepla původní konstrukce 0,89 W.K -1.m -2. Vyhodnocení bylo provedeno stejně jako ve variantě 1 podle ukazatele NPV. Pro variantu s předpokládanou nejnižší cenou tepla (varianta 2a) vychází opět nejvýhodnější tloušťka izolace v rozmezí 12 a 20 cm, viz Obrázek 3. Při aplikaci druhé vrstvy zateplení dochází ke skokovému nárůstu ceny. Cena ušetřené tepelné energie při použití větší tloušťky izolantu nemůže v tomto případě pokrýt zvýšené náklady do větší tloušťky izolace, protože je cena energie příliš nízká. Pro variantu s nejvyšší cenou tepla (varianta 2c) není skokový nárůst ceny při aplikaci druhé vrstvy tak významný v porovnání s cenou za ušetřenou energii, a proto je optimální tloušťka izolace co největší, tedy v tomto případě 30 cm. Křivka NPV je strmější v rozmezí tloušťky izolantu 12 až 20 cm při vyšších cenách energie (2c), a proto je ekonomicky výhodnější aplikovat vyšší tloušťku zateplení (20 cm) především v oblastech, kde je cena energie vyšší.

4 4 z :37 Obrázek 3: Ekonomická optimalizace zateplení při uvažované ceně tepla 450 Kč/GJ (varianta 2a), 650 Kč/GJ (varianta 2b) a 1000 Kč/GJ (varianta 2c). Zateplení z environmentálního hlediska Aplikací zateplovacího systému na panelové domy dochází k redukci tepelné ztráty prostupem domu a tím ke snížení potřeby tepla na vytápění objektu, tedy ke snížení provozní energie budovy. Při těžbě a zpracování surovin na výrobu zateplovacích systémů a při jejich výrobě, dopravě a realizaci je ovšem spotřebováváno velké množství energie označované jako svázaná spotřeba energie. Tyto energie jsou spojeny s produkcí CO 2, která negativně ovlivňuje životní prostředí. Z pohledu snížení dopadu na životní prostředí má smysl zateplovací systém aplikovat, pokud množství ušetřených provozních emisí CO 2 v průběhu životního cyklu stavby je vyšší než hodnota svázaných emisí CO 2. Potom lze vypočítat návratnost tohoto opatření dle vztahu: kde N - je návratnost svázaných emisí CO 2 v materiálu tepelných izolací (let) m CO2,sváz - je hmotnost svázaných emisí CO 2 zateplovacího systému na 1 m 2 fasády za 1 rok (kg/m 2 /rok) m CO2,pů - je hmotnost provozních emisí CO 2 pro původní nezateplenou konstrukci na 1 m 2 fasády za 1 rok (kg/m 2 /rok) m CO2,zat - je hmotnost provozních emisí CO 2 pro zateplenou konstrukci na 1 m 2 fasády za 1 rok (kg/m 2 /rok) Množství ušetřených provozních emisí CO 2 se liší podle druhu paliva použitého k vytápění panelového domu. Teplo pro vytápění je do panelových domů dodáváno většinou systémy CZT a je vyráběno v teplárně nebo jako odpadní produkt v elektrárně. Jako palivo je tedy běžně používáno uhlí, mazut a zemní plyn. Návratnost svázaných emisí CO 2 v zateplovacím systému, kdy je jako palivo použito hnědé uhlí a zemní plyn, je porovnána na Obrázku 4. Rozdílný nárůst křivky je způsoben tím, že při spalování hnědého uhlí se na jednotku získané energie vyprodukuje větší množství emisí CO 2 (0,357 kg/kwh) než při spalování zemního plynu (0,198 kg/kwh). Množství svázaných emisí CO 2 je závislé na druhu tepelně-izolačního materiálu. V zateplovacích systémech je nejčastěji používán expandovaný polystyren a minerální vlna, jejichž návratnost pro různé tloušťky izolace je porovnána na Obrázku 4. Výroba minerální vlny je výrazně energeticky náročnější, a proto je množství vyprodukovaných emisí CO 2 na 1 m 3 materiálu (241,08 kg/m 3 ) čtyřikrát vyšší než svázané emise CO 2 expandovaného polystyrenu (60,30 kg/m 3 ).

5 5 z :37 Obrázek 4: Návratnost svázaných emisí CO 2 v materiálu tepelných izolací při použití zemního plynu a hnědého uhlí jako paliva pro vytápění. Návratnost svázaných emisí CO 2 stoupá lineárně se vzrůstající tloušťkou izolačního materiálu v zateplovacím systému. V porovnání s ekonomickou prostou návratností nabývá návratnost svázaných emisí CO 2 nižších hodnot, protože množství emisí CO 2 uvolňovaných při výrobě energie z hnědého uhlí nebo zemního plynu je vysoké. Pokud předpokládáme, že použité palivo na výrobu tepla je zemní plyn, pak pro tloušťku dodatečné izolace 20 cm je návratnost emisí CO 2 1 rok při použití expandovaného polystyrenu a 4 roky při použití minerální vlny jako izolantu. Při spalování hnědého uhlí dochází k produkci většího množství emisí CO 2, a proto je výsledná návratnost rychlejší. Zateplení z technologického hlediska Při úvahách o nadstandardních tloušťkách izolantu při zateplování budov je často diskutována otázka statiky a způsobu kotvení. Kotvení nadstandardních tlouštěk tepelného izolantu musí zajistit mechanickou stabilitu kotveného izolantu. Svislé zatížení (vlastní váha izolantu, omítky) je přenášeno lepením izolačních desek na podklad. Součástí dodávky systému musí být provedení odtrhových zkoušek, kdy přídržnost lepící hmoty k podkladu musí být min. 80 kpa. Ověřuje se na stavbě odtrhovou zkouškou podle ČSN EN Vodorovné zatížení - sání větru - musí přenést mechanické kotvy. Certifikované výrobky umožňují klasické kotvení izolantu až do tl. 260 mm (např. talířová zatloukací hmoždinka s předmontovaným ocelovým trnem, kterou lze kotvit jak tepelně izolační materiály na bázi expandovaného polystyrénu, tak minerální vlnu s podélnou orientací vláken). V poslední době se na trhu objevily nové kotevní systémy využívající kombinace mechanického kotvení a lepení zajišťující stabilitu izolantu při sání větru. Lepící kotvy se mechanicky přikotví přímo na upravený podklad v rastru doporučeném výrobcem a ověřeném statickým výpočtem. Před přilepením izolační desky, která je opatřena lepidlem podle technologického předpisu, se nanese na hlavy kotev příslušné lepidlo, které zajistí soudržnost kotvy s podkladem. Tento systém umožňuje použití tloušťky tepelného izolantu až 400 mm. Kotvy se podle většiny systémových řešení navrhují na 100% sání větru a nepřispívají k přenesení ostatních zatížení. Z dosud publikovaných a dostupných firemních pomůcek pro navrhování počtu kotev pro tyto systémy vyplývají pouze doporučená řešení vycházející při stanovení zatížení větrem pravděpodobně z ČSN nebo z převzatých zahraničních předpisů (DIN, ONORM a pod.). Jednotliví producenti systémů ETICS se přitom liší i při základním stanovení počtu kotev na m2, ve stanovení velmi důležitého parametru okrajové oblasti v nárožích pro zvýšené hodnoty počtů kotev a v neposlední řadě i v udávaných výškových pásmech. Zároveň však velmi správně udávají, že stanovení počtu kotev musí být součástí statického výpočtu pro konkrétní případ. Výpočet namáhání zateplovacích systémů sáním větru byl proveden pro několik základních geometrií panelových budov. Namáhání větrem bylo vypočteno pro jednotlivá pásma v půdoryse a po výšce budovy. Pro jednotlivé oblasti fasády byl stanoven počet kotev potřebný k přenesení zatížení. Na následujícím schématu jsou uvedeny návrhové hodnoty zatížení větrem v jednotlivých oblastech fasády budovy s návrhem počtu kotvících prvků. Minimální počet kotev pro tento případ je 6 kotev na 1 m 2 fasády v její střední části, na nárožích se tento počet zvýší na více než dvojnásobek kotvících prvků

6 6 z :37 potřebných k přenesení zatížení od sání větru (14 kotev/m 2 ), viz Obrázek 5. V oblastech s vyšší větrnou expozicí a u vyšších budov budou proto zvýšeny investiční náklady na zateplovací systém o náklady na další kotvící prvky. Při předpokladu použití hmoždinek s kovovým trnem pro kotvení izolantu o tloušťce 200 mm bude navýšení ceny přibližně o 25 Kč na 1 kotvící prvek. Obrázek 5: Návrhové hodnoty tlaku větru (N/m 2 ) na jednotlivé oblasti fasády s počtem kotev na m 2 na příkladu panelového domu, pohled na fasádu. Zateplení z hlediska denního osvětlení Panelové domy byly navrhovány s poměrně velkými odstupovými vzdálenostmi jednotlivých bloků domů. V době výstavby se neposuzovaly jednotlivé byty z hlediska úrovně denního osvětlení, ale byly použity unifikované panelové soustavy včetně standardních odstupových vzdáleností, které byly navrženy v závislosti na výšce okolních objektů. Okna většiny panelových domů byla poměrně velká a stínící konstrukce lodžií nebyla větší než 1,2 m. Současná úroveň denního osvětlení místností panelových domů je zpravidla vyšší, než jsou normové požadavky. Z hlediska úrovně denního osvětlení se místnosti posuzují podle ČSN Denní osvětlení budov - Základní požadavky [6] a ČSN Denní osvětlení obytných budov [7]. V těchto normových postupech je pro hodnocení kvantity denního osvětlení budov zjišťována veličina činitele denní osvětlenosti D (%), který musí nabývat minimální hodnoty D min = 0,7 % ve dvou kontrolních bodech umístěných v polovině hloubky místnosti, ale nejdále 3 m od okna, vzdálených 1 m od vnitřních povrchů bočních stěn [7]. Zároveň má být splněn požadavek průměrné hodnoty činitele denní osvětlenosti z obou těchto bodů D m1/2 = 0,9 %. Za účelem ověření dodržení požadavků na činitel denní osvětlenosti byl vytvořen model kritické místnosti obývacího pokoje v 1. NP panelového domu se 7 NP orientované na sever. Odstupová vzdálenost protilehlého domu je 30 m. Základní model stínění tvoří boční hrana sousedního pokoje, která je zároveň boční stěnou lodžie, a horní stropní deska lodžie ve 2. NP. Tato modelová místnost byla posouzena bez stínění a se stíněním protilehlou souvislou zástavbou panelových domů o výšce 7 NP. Tyto dvě varianty byly následně posouzeny bez zateplovacího systému a se zateplovacím systémem o tloušťce 100 a 200 mm. Hodnocená modelová místnost má hloubku 4,6 m a šířku 3,7 m. Osvětlovací otvory tvoří sestava lodžiových dveří s oknem velikosti 0,9 x 2,3 m + 1,6 x 1,5 m. Světlá výška místnosti je 2,6 m. Na následujícím obrázku jsou porovnány výsledky výpočtu pro variantu s protilehlým stíněním bez zateplovacího systému a se zateplovacím systémem o tloušťce 200 mm, viz Obrázek 6. Dá se předpokládat, že tloušťka zateplovacího systému 200 mm na stěnách lodžií nebude běžně používána, aby nebyla příliš snížena užitná plocha lodžie. Vyhovující stav denního osvětlení je zachován i pro případ této extrémní tloušťky zateplovacího systému, a proto bude vyhovující i pro jakoukoliv menší tloušťku izolace. Snížení úrovně denního osvětlení vlivem zateplovacího systému je cca 7-20 % v případě bez okolního stínění a 7-26 % v případě uvažování protilehlé stínící zástavby.

7 7 z :37 Obrázek 6: Hodnoty činitele denní osvětlenosti varianty bez zateplení a se zateplením tl. 200 mm se stíněním protilehlým objektem Závěr V kontaktních zateplovacích systémech panelových domů se jako tepelně-izolační materiál nejčastěji používá minerální vata a expandovaný polystyren. Aby bylo dosaženo současných doporučených hodnot na součinitel prostupu tepla obvodovou konstrukcí, je nutné použít minimální tloušťku izolačního materiálu v rozmezí 9-14 cm v závislosti na typu konstrukce a panelové soustavě. Optimální tloušťka tepelné izolace z ekonomického hlediska byla hodnocena dle ukazatele NPV a je závislá na tepelnětechnickém stavu původní konstrukce, ceně energie, ceně kompletního zateplovacího systému a aditivních nákladech při použití druhé vrstvy izolantu. Jako nejvýhodnější se z ekonomického hlediska jeví tloušťka zateplovacího systému v rozmezí cm. Investice do zateplení u objektů vytápěných levnějším teplem a při lepších vlastnostech původní zateplované konstrukce mají horší výsledky ekonomického hodnocení. V oblastech, kde je vyšší cena energie (1000 Kč/GJ), je výhodnější používat zateplovací systémy o větší tloušťce, než v oblastech s nižší cenou energie. Jelikož ceny energií stále stoupají, je vhodné myslet na budoucnost a investovat do větších tlouštěk zateplovacích systémů již nyní. Ukazatelem pro hodnocení dopadu aplikace zateplovacího systému na životní prostředí je návratnost svázaných emisí CO 2 v materiálu tepelných izolací, která se liší podle druhu izolačního materiálu a druhu paliva použitého k vytápění panelového domu. Z hlediska dopadu na životní prostředí je na panelové domy výhodné aplikovat jakoukoliv tloušťku izolačního materiálu, protože návratnost svázaných emisí CO 2 v materiálu tepelných izolací je ve všech posuzovaných případech nižší než životnost izolačního materiálu. Pro případ místnosti umístěné v 1. NP sedmipodlažního panelového domu orientované na sever a stíněné protilehlým objektem byla provedena studie denního osvětlení při uvažované tloušťce zateplovacího systému 20 cm. Jelikož výsledky studie prokázaly, že požadavky na denní osvětlení jsou splněny pro tento případ extrémně stíněné místnosti, lze konstatovat, že při této tloušťce izolantu budou v naprosté většině případů zachovány požadavky na denní osvětlení. Článek vznikl jako výstup výzkumného projektu VAV-SP-3g Komplexní rekonstrukce panelových domů v nízkoenergetickém standardu.

8 8 z :37 [1] Základní přehled tepelně izolačních materiálů, dostupné z [2] ČSN Požární bezpečnost staveb - Nevýrobní objekty. Praha: Úřad pro technickou normalizaci, meteorologii a státní zkušebnictví, [3] ČSN :2007. Tepelná ochrana budov - Část 2: Požadavky. Praha: Úřad pro technickou normalizaci, meteorologii a státní zkušebnictví, [4] ČSN Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin. Praha: Úřad pro technickou normalizaci, meteorologii a státní zkušebnictví, [5] ČSN EN (720035). Zatížení větrem. Praha: Český normalizační institut, [6] ČSN :2007. Denní osvětlení budov - Část 1: Základní požadavky. Praha: Úřad pro technickou normalizaci, meteorologii a státní zkušebnictví, [7] ČSN :2007. Denní osvětlení budov - Část 2: Denní osvětlení obytných budov. Praha: Úřad pro technickou normalizaci, meteorologii a státní zkušebnictví, [8] Doc. Ing. J. Řehánek, DrSc., Ing. V. Valenta, kolektiv: 4xE o tepelné izolaci budov. 1.vyd. Praha: CKAIT-CEA, s. ISBN Thermal insulation of panel buildings - limits of the technology English Synopsis Thermal properties of enclosure walls have considerable impact on energy consumption of block of flats. Nowadays the proposal of insulation thickness in thermal insulation composite systems is often underestimated. This article is focused on proposal of optimal thermal insulation thickness in light of economy and energy performance.

TECHNICKÁ ZPRÁVA NÁVRH KOTVENÍ ETICS

TECHNICKÁ ZPRÁVA NÁVRH KOTVENÍ ETICS Zlepšení tepelně technických vlastností ZŠ a školní družiny V Bytovkách 803, Uhříněves, okres Praha D.1.2.b TECHNICKÁ ZPRÁVA NÁVRH KOTVENÍ ETICS V Praze 09.2014 Ing. Miroslav Zimmer Obsah A PODKLADY...

Více

F 1.2 STATICKÉ POSOUZENÍ

F 1.2 STATICKÉ POSOUZENÍ zak. č.47/4/2012 ZNALECTVÍ, PORADENSTVÍ, PROJEKČNÍ STUDIO F 1.2 STATICKÉ POSOUZENÍ Název stavby: Dům č.p. 72 ulice Jiřího Trnky Výměna oken, zateplení fasády Místo stavby: ulice Jiřího Trnky č.p. 72 738

Více

Zlepšení tepelněizolační funkce ETICS. Ing. Vladimír Vymětalík

Zlepšení tepelněizolační funkce ETICS. Ing. Vladimír Vymětalík Zlepšení tepelněizolační funkce ETICS Ing. Vladimír Vymětalík Způsoby řešení Provedení nového ETICS na původní podkladní konstrukci po předchozí demontáži kompletního stávajícího ETICS Provedení nového

Více

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o.

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o. Jak správně navrhovat ETICS Ing. Vladimír Vymětalík, VISCO s.r.o. Obsah přednášky! Výrobek vnější tepelně izolační kompozitní systém (ETICS)! Tepelně technický návrh ETICS! Požárně bezpečnostní řešení

Více

VÝSTUP Z ENERGETICKÉHO AUDITU

VÝSTUP Z ENERGETICKÉHO AUDITU CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba 212; Notifikovaná osoba 1390; 102 21 Praha 10 Hostivař, Pražská 16 / 810 Certifikační orgán 3048 VÝSTUP Z ENERGETICKÉHO AUDITU Auditovaný objekt:

Více

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově

Více

šíření hluku mezi jednotlivýmí prostory uvnitř budovy, např mezi sousedními byty, mezi jednotlivými hotelovými pokoji apod.

šíření hluku mezi jednotlivýmí prostory uvnitř budovy, např mezi sousedními byty, mezi jednotlivými hotelovými pokoji apod. 1 Akustika 1.1 Úvod VÝBORNÉ AKUSTICKÉ VLASTNOSTI Vnitřní pohoda při bydlení a při práci, bez vnějšího hluku, nebo bez hluku ze sousedních domů nebo místností se dnes již stává standardem. Proto je však

Více

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci

Více

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o.

Jak správně navrhovat ETICS. Ing. Vladimír Vymětalík, VISCO s.r.o. Jak správně navrhovat ETICS Ing. Vladimír Vymětalík, VISCO s.r.o. Obsah přednášky! Výrobek vnější tepelně izolační kompozitní systém (ETICS)! Tepelně technický návrh ETICS! Požárně bezpečnostní řešení

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 13. ZATEPLENÍ OBVODOVÝCH STĚN Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Obr. 3: Řez rodinným domem

Obr. 3: Řez rodinným domem Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.

Více

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových

Více

F. 1.3 Požárně bezpečnostní řešení stavby

F. 1.3 Požárně bezpečnostní řešení stavby Zakázka číslo: 2010-10888-ZU F. 1.3 Požárně bezpečnostní řešení stavby PROJEKT SNÍŽENÍ ENERGETICKÉ NÁROČNOSTI OBJEKTU Bytový dům Breitcetlova 880/9, Praha 10 Zpracováno v období: září 2010 Zpracoval: Ing.

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

EJOT upevnění pro zvláštní použití. Upevnění pro zvláštní případy

EJOT upevnění pro zvláštní použití. Upevnění pro zvláštní případy EJOT upevnění pro zvláštní použití Energetická sanace budov vyžaduje stále více pro zpracování tepelně izolačních systémů nestandartní řešení. Zvláště u starých fasád nebo podkladů se zásadními vadami

Více

Obr. 3: Pohled na rodinný dům

Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena

Více

ejotherm talířové hmoždinky snadný výběr

ejotherm talířové hmoždinky snadný výběr ejotherm talířové hmoždinky ejotherm talířové hmoždinky snadný výběr Při upevňování ETICS jsou izolační desky na fasádu nalepeny a následně mechanicky upevněny. Vlastní hmotnost je přenášena příčnými silami

Více

Fasáda bez kompromisů! Zateplení fasády izolací z kamenné vlny Frontrock MAX E. www.rockwool.cz PROVĚŘENO NA PROJEKTECH

Fasáda bez kompromisů! Zateplení fasády izolací z kamenné vlny Frontrock MAX E. www.rockwool.cz PROVĚŘENO NA PROJEKTECH Fasáda bez kompromisů! Zateplení fasády izolací z kamenné vlny Frontrock MAX E www.rockwool.cz Jediný výrobce a prodejce izolace se specializací pouze na kamennou vlnu v České republice. PROVĚŘENO NA PROJEKTECH

Více

Baumit Zateplovací systémy

Baumit Zateplovací systémy Baumit Zateplovací systémy Technologický předpis Kapitola A Úvodní a všeobecná ustanovení Květen 2019 www.baumit.cz Obsah... 3 A.1 Zkratky, názvosloví a definice...3 A.1.1 Použité zkratky a názvosloví...

Více

Nízkoenergetické domy versus energetické úspory (pomocný doprovodný materiál k zamyšlení) k předmětu CZ51 Environmentalistika a stavitelství

Nízkoenergetické domy versus energetické úspory (pomocný doprovodný materiál k zamyšlení) k předmětu CZ51 Environmentalistika a stavitelství TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Nízkoenergetické domy versus energetické úspory (pomocný doprovodný materiál k zamyšlení) k předmětu CZ51

Více

Tepelná izolace soklu

Tepelná izolace soklu Tepelná izolace soklu univerzální řešení pro jednovrstvé i vícevrstvé stěny Při návrhu i vlastním provádění detailu soklu dochází často k závažným chybám a to jak u jednovrstvých, tak u vícevrstvých zateplených

Více

Základy Zateplením stávajícího objektu dojde k minimálnímu (zanedbatelnému) přitížení stávajících základů.

Základy Zateplením stávajícího objektu dojde k minimálnímu (zanedbatelnému) přitížení stávajících základů. PROJEKT PRO STAVEBNÍ POVOLENÍ ST 01 TECHNICKÁ ZPRÁVA Obsah a) popis navrženého konstrukčního systému stavby, výsledek průzkumu stávajícího stavu nosného systému stavby při návrhu její změny... 3 Úvod...

Více

Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6

Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6 Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6 Rezidence AURUM Na pláni, Praha 5 - Smíchov STUDIE PROSLUNĚNÍ A DENNÍHO OSVĚTLENÍ Vypracovala: Ing. Daniela Bošová, Ph.D. Spolupráce:

Více

DEKPANEL SPRÁVNÁ VOLBA PRO VAŠI DŘEVOSTAVBU MASIVNÍ DŘEVĚNÉ PANELY

DEKPANEL SPRÁVNÁ VOLBA PRO VAŠI DŘEVOSTAVBU MASIVNÍ DŘEVĚNÉ PANELY DEKPANEL SPRÁVNÁ VOLBA PRO VAŠI DŘEVOSTAVBU MASIVNÍ DŘEVĚNÉ PANELY 1 PRINCIP SYSTÉMU DEKPANEL D Vnější tepelněizolační vrstva brání prostupu tepla stěnou a zajišťuje příjemné vnitřní prostředí v interiéru.

Více

Revize normy požární bezpečnosti zateplených fasád

Revize normy požární bezpečnosti zateplených fasád Revize normy požární bezpečnosti zateplených fasád Každá stavba musí být navržena a provedena tak, aby v případě požáru byla po určitou dobu zachována nosnost konstrukce, byl uvnitř stavby omezen vznik

Více

Vnější kontaktně zateplovací systémy Termo + s.r.o. se člení na: Obvyklé složení vnějších kontaktních zateplovacích systémů (ETICS) Oblast použití

Vnější kontaktně zateplovací systémy Termo + s.r.o. se člení na: Obvyklé složení vnějších kontaktních zateplovacích systémů (ETICS) Oblast použití Firma se také zabývá zateplovacími systémy Termo+ se sídlem v Ústí nad Labem která je součástí společnosti TERMO + holding a.s., na stavebním trhu působí od roku 1993 a orientuje se výhradně na dodávky

Více

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím

Více

Vliv materiálové skladby ETICS

Vliv materiálové skladby ETICS Vliv materiálové skladby ETICS na požární odolnost budov a na tvarovou s statickou stabilitu ETICS Ing. Ladislav Valeš soudní znalec v oboru stavebnictví, ČR Rozbory konkrétních požárů zateplených i nezateplených

Více

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy Ing. arch. Tereza Vojancová Technický poradce tech.poradce@uralita.com 602 439 813 www.ursa.cz OBSAH 1 ÚVOD 2 ENERGETICKY

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

MONTÁŽNÍ NÁVOD ZATEPLENÍ NA ZATEPLENÍ EXCEL MIX CHYTRÁ STAVEBNÍ CHEMIE

MONTÁŽNÍ NÁVOD ZATEPLENÍ NA ZATEPLENÍ EXCEL MIX CHYTRÁ STAVEBNÍ CHEMIE Thin - Set MONTÁŽNÍ NÁVOD ZATEPLENÍ NA ZATEPLENÍ EXCEL MIX CHYTRÁ STAVEBNÍ CHEMIE Zdvojování zateplovacích systémů Parametry zateplovacích systémů z devadesátých let minulého století jsou již podle současné

Více

VNĚJŠÍ KONTATKNÍ ZATEPLOVACÍ SYSTÉMY Z HLEDISKA POŽÁRNÍ BEZPEŘNOSTI STAVEB

VNĚJŠÍ KONTATKNÍ ZATEPLOVACÍ SYSTÉMY Z HLEDISKA POŽÁRNÍ BEZPEŘNOSTI STAVEB VNĚJŠÍ KONTATKNÍ ZATEPLOVACÍ SYSTÉMY Z HLEDISKA POŽÁRNÍ BEZPEŘNOSTI STAVEB ANALÝZA POŽÁRNÍCH RIZIK ZATEPLOVACÍCH SYSTÉMŮ Hrozící požární rizika mohou ohrozit nejen majetek, ale i lidské životy. Základní

Více

PŘÍLOHA TECHNICKÉ DOKUMENTACE K ZATEPLENÍ

PŘÍLOHA TECHNICKÉ DOKUMENTACE K ZATEPLENÍ PŘÍLOHA TECHNICKÉ DOKUMENTACE K ZATEPLENÍ PROTOKOL ČÍSLO: 34 ZPRACOVÁN DNE: 22.08.2012 ZADAVATEL Jméno a příjmení: Stanislav Kolář Telefon: 724 456 789 E-mail: kolar@seznam.cz Ulice: Průběžná, 123 Město,

Více

Počet držáků izolace DH na 1 desku Airrock LD (Airrock SL)

Počet držáků izolace DH na 1 desku Airrock LD (Airrock SL) IZOLACE Běžné izolační materiály doporučené pro odvětrávané fasády s požadovanou tepelnou vodivostí a tloušťkou. (doplnit) Provětravané zateplovací systémy Provětrávané zateplovací systémy patří k jedné

Více

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH:

STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: 1 ZADÁNÍ A ŘEŠENÁ PROBLEMATIKA, GEOMETRIE... 2 2 POLOHA NA MAPĚ A STANOVENÍ KLIMATICKÝCH ZATÍŽENÍ... 2 2.1 SKLADBY STŘECH... 3 2.1.1 R1 Skladba střechy na objektu

Více

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2

Více

Výpočet potřeby tepla na vytápění

Výpočet potřeby tepla na vytápění Výpočet potřeby tepla na vytápění Výpočty a posouzení byly provedeny při respektování zásad CSN 73 05 40-2:2011, CSN EN ISO 13789, CSN EN ISO 13790 a okrajových podmínek dle TNI 73 029, TNI 73 030. Vytvořeno

Více

Kontaktní zateplovací systémy z požárního hlediska. Ing. Marek Pokorný ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb

Kontaktní zateplovací systémy z požárního hlediska. Ing. Marek Pokorný ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Kontaktní zateplovací systémy z požárního hlediska Ing. Marek Pokorný ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Úvod KZS Kontaktní Zateplovací Systém ETICS External Thermally Insulating

Více

ZATEPLENÍ DOMU Hrdlovská č.651 Osek Okres Teplice

ZATEPLENÍ DOMU Hrdlovská č.651 Osek Okres Teplice PROJEKTOVÁ DOKUMENTACE PRO STAVEBNÍHO POVOLENÍ ZATEPLENÍ DOMU Hrdlovská č.651 Osek Okres Teplice Město Osek Zahradní č. 246Radniční 1 417 05 Osek Požárně bezpečnostní řešení 04/2010 Ing.Zábojník... Počet

Více

NOVÉ PARAMETRY PRO NAVRHOVÁNÍ ETICS

NOVÉ PARAMETRY PRO NAVRHOVÁNÍ ETICS NOVÉ PARAMETRY PRO NAVRHOVÁNÍ ETICS Ing. Milan Machatka,CSc. Cech pro zateplování budov ČR Úvod Stavební výrobek musí plnit svoji funkci ve stavbě tak, aby byly zajištěny základní požadavky na stavby.

Více

Deklarované vlastnosti Platné pouze pro skladby systému dle tabulky 1 Základní charakteristika. Notifikovaná osoba Reakce na oheň

Deklarované vlastnosti Platné pouze pro skladby systému dle tabulky 1 Základní charakteristika. Notifikovaná osoba Reakce na oheň 070153 Prohlášení o vlastnostech č. 2014091807/0153 název výrobku: MAMUTTHERM P jedinečný identifikační kód: 070153 Zamýšlené použití Vnější tepelná izolace stěn z betonu nebo zdiva Výrobce MAMUTTHERM

Více

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd.

Podklad musí být hladký, čistý a bez nerovností. Izolaci nelze aplikovat, pokud jsou na ploše výstupky, otřepy, hřebíky, šrouby, kamínky atd. λ Izolace vakuová má využití v místech, kde není dostatek prostoru pro vložení klasické tepelné izolace. Je vhodná i do skladeb podlah s podlahovým vytápěním. Používá se ve stavebnictví (v nezatížených

Více

WEBER therm elastik San SA zateplovací systém ETICS na bázi EPS s využitím technologií Spiral Anksys

WEBER therm elastik San SA zateplovací systém ETICS na bázi EPS s využitím technologií Spiral Anksys Vydáno: 8.3. 2016 Strana 1 Tento kontrolní list slouží jako podklad k navrhování a statickému posouzení nových zateplovacích systémů WEBER therm klasik San SA na bázi EPS, včetně základní a/nebo komplexní

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.23 Zateplování budov pěnovým polystyrenem

Více

HELUZ Family 2in1 důležitá součást obálky budovy

HELUZ Family 2in1 důležitá součást obálky budovy 25.10.2013 Ing. Pavel Heinrich 1 HELUZ Family 2in1 důležitá součást obálky budovy Ing. Pavel Heinrich Technický rozvoj heinrich@heluz.cz 25.10.2013 Ing. Pavel Heinrich 2 HELUZ Family 2in1 Výroba cihel

Více

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie Téma vývoje energetiky budov je v současné době velmi aktuální a stává se společenskou záležitostí, neboť šetřit

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Statické posouzení SP_SANA_SA_D_02_2016 příloha projektové dokumentace pro řešení nosné způsobilosti injektovaného kotvení

Statické posouzení SP_SANA_SA_D_02_2016 příloha projektové dokumentace pro řešení nosné způsobilosti injektovaného kotvení Vydáno: 29.2. 2016 Strana 1 Statické posouzení SP_SANA_SA_D_02_2016 příloha projektové dokumentace pro řešení nosné způsobilosti injektovaného kotvení Identifikační kód posouzení: Název zateplovacího systému:

Více

Zateplení severního štítu budovy C v areálu sídla ÚP Brno

Zateplení severního štítu budovy C v areálu sídla ÚP Brno ING. JITKA NERUDOVÁ IČ: 47955660 Projektová činnost ve výstavbě Dykova 16, Brno Židenice, 636 00 Požární bezpečnost staveb Kancelář: 612 00 Brno Královo Pole, Křižíkova 70, VÚCHZ, budova laboratoří, 1.

Více

MISTRAL TECTOTHERM EPS 2015

MISTRAL TECTOTHERM EPS 2015 Technický list pro vnější tepelně izolační kompozitní systém ( ETICS ) s omítkou a s izolantem z expandovaného polystyrenu (EPS) MISTRAL TECTOTHERM EPS 2015 1) Základní údaje Vnější tepelně izolační kompozitní

Více

1. ZATEPLOVÁNÍ BUDOV 1.1 ROZDĚLENÍ. kontaktní zateplení fasád odvětrávané zateplení fasád. ostatní zateplení

1. ZATEPLOVÁNÍ BUDOV 1.1 ROZDĚLENÍ. kontaktní zateplení fasád odvětrávané zateplení fasád. ostatní zateplení Strana 1 (celkem 11) 1. ZATEPLOVÁNÍ BUDOV 1.1 ROZDĚLENÍ kontaktní zateplení fasád odvětrávané zateplení fasád ostatní zateplení 1.1.1 KONTAKTNÍ ZATEPLOVACÍ SYSTÉMY (ETICS) Požární bezpečnost Pro návrh

Více

ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK

ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH. Ing. Ondřej Hec ATELIER DEK 1 ZAKLÁDÁNÍ PASIVNÍCH DOMŮ V ENERGETICKÝCH A EKONOMICKÝCH SOUVISLOSTECH Ing. Ondřej Hec ATELIER DEK 2 ÚVOD PASIVNÍ DOMY JSOU OBJEKTY S VELMI NÍZKOU POTŘEBOU ENERGIE NA VYTÁPĚNÍ PRO DOSAŽENÍ TOHOTO STAVU

Více

D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ

D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ Zak. č. 75/05/2014 DPU REVIT s.r.o. D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ Název stavby: Energetické úspory Městského úřadu ve Ždánicích Místo stavby: Městečko 787 696 32, Ždánice Investor: Město Ždánice Městečko

Více

ENERGETICKÝ AUDIT A PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

ENERGETICKÝ AUDIT A PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Centrum stavebního inženýrství a.s. Praha 102 21 Praha 10, Pražská 16 ENERGETICKÝ AUDIT A PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Zadavatel : Společenství vlastníků jednotek Pujmanové 1755 Říčany 251 01 Auditovaný

Více

LIST VÝROBKU. Autorizovaná osoba. A2 s1, d0 (pro všechny skladby)

LIST VÝROBKU. Autorizovaná osoba. A2 s1, d0 (pro všechny skladby) LIST VÝROBKU název výrobku: MultiTherm Ceramic M Zamýšlené použití Vnější tepelná izolace stěn z betonu nebo zdiva Výrobce BASF Stavební hmoty Česká republika s.r.o. K Májovu 1244 CZ 537 01 Chrudim č.

Více

ENERGY FUTURE ENERGETICKÁ EFEKTIVITA STAVEB A SANACÍ

ENERGY FUTURE ENERGETICKÁ EFEKTIVITA STAVEB A SANACÍ CECH PRO ZATEPLOVÁNÍ BUDOV ČR ING. PAVEL SVOBODA, ČLEN SKUPINY EXPERTŮ CZB ENERGY FUTURE ENERGETICKÁ EFEKTIVITA STAVEB A SANACÍ DO S A DON TS PŘI ZATEPLOVÁNÍ Jihlava 19.10.2010 VRÁMCI PROJEKTU ENERGY-FUTURE

Více

Zateplovací systémy Baumit. Požární bezpečnost staveb PKO č. 10-024 PKO č. 11-003

Zateplovací systémy Baumit. Požární bezpečnost staveb PKO č. 10-024 PKO č. 11-003 Zateplovací systémy Baumit Požární bezpečnost staveb PKO č. 10-024 PKO č. 11-003 www.baumit.cz duben 2011 Při provádění zateplovacích systémů je nutno dodržovat požadavky požárních norem, mimo jiné ČSN

Více

fasády a stropy Fasády a stropy Řešení pro izolaci obvodových stěn a stropních konstrukcí kamennou vlnou PROVĚŘENO NA PROJEKTECH

fasády a stropy Fasády a stropy Řešení pro izolaci obvodových stěn a stropních konstrukcí kamennou vlnou PROVĚŘENO NA PROJEKTECH fasády a stropy Fasády a stropy Řešení pro izolaci obvodových stěn a stropních konstrukcí kamennou vlnou Jediný výrobce a prodejce izolace se specializací pouze na kamennou vlnu v České republice. PROVĚŘENO

Více

Technický list ETICS. STAVO-THERM a STAVO-THERM mineral

Technický list ETICS. STAVO-THERM a STAVO-THERM mineral Technický list ETICS STAVO-THERM a STAVO-THERM mineral 1) Základní údaje Vnější tepelně izolační kompozitní systémy (ETICS) firmy STAVOPROJEKTA a.s. slouží jako vnější tepelná izolace obvodových konstrukcí

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Technický list ETICS weber therm standard

Technický list ETICS weber therm standard Technický list ETICS weber therm standard 1. Popis výrobku a vymezení způsobu jeho použití ve stavbě: weber therm standard je vnější tepelně izolační kompozitní systém s omítkou s izolantem pěnového polystyrenu

Více

HELUZ FAMILY. Cihla bez kompromisů

HELUZ FAMILY. Cihla bez kompromisů Cihla bez kompromisů 2in1 Stačí jedna vrstva a máte pasivní dům. Cihla FAMILY 2in1 má nejlepší tepelně izolační vlastnosti na trhu. NORMÁLNÍ JE NEZATEPLOVAT 2 PROČ JEDNOVRSTVÉ ZDIVO BEZ ZATEPLENÍ? Doporučujeme

Více

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky

Více

S l eznam ana ý yzovan ch t opa ř í en a j ji e ch l ik og a výbě ýb ru Petr Vogel Kolektiv výzkumného úkolu V AV- VAV SP- SP 3g5-3g5 221-221 07

S l eznam ana ý yzovan ch t opa ř í en a j ji e ch l ik og a výbě ýb ru Petr Vogel Kolektiv výzkumného úkolu V AV- VAV SP- SP 3g5-3g5 221-221 07 Seznam analyzovaných opatření a jejich ji logika výběru Petr Vogel Kolektiv výzkumného úkolu VAV-SP-3g5-221-07 Oblasti analýz výzkumu Energetika původních PD ve zkratce Problémy dnešních rekonstrukcí panelových

Více

Více životního prostoru

Více životního prostoru Baumit Resolution Zateplovací systém Více životního prostoru Jedinečné tepelněizolační vlastnosti Maximální úspora podlahové plochy Minimální tloušťka obvodové konstrukce Baumit Resolution Extra štíhlá

Více

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ B. SOUHRNNÁ TECHNICKÁ ZPRÁVA POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY ZATEPLENÍ POLYFUNKČNÍ BUDOVY S HASIČSKOU ZBROJNICÍ V OBCI CHLUMEK 1 NÁZEV STAVBY : ZATEPLENÍ POLYFUNKČNÍ BUDOVY S HASIČSKOU ZBROJNICÍ V OBCI

Více

Diagnostický list pro návrh a realizaci DL_EPS_2017

Diagnostický list pro návrh a realizaci DL_EPS_2017 Tento diagnostický list DL_EPS_2017 slouží jako podklad k navrhování a statickému posouzení nových zateplovacích systémů Baumit EPS Combi a Baumit EPS Spiral na bázi EPS, včetně základní a/nebo komplexní

Více

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb

Ctislav Fiala: Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb 16 Optimální hodnoty svázaných energií stropních konstrukcí (Graf. 6) zde je rozdíl materiálových konstant, tedy svázaných energií v 1 kg materiálu vložek nejmarkantnější, u polystyrénu je téměř 40krát

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

ARCHITEKTONICKÁ A ENERGETICKÁ KONCEPCE NÍZKOENERGETICKÝCH OBJEKTŮ. Ing. arch. Kristina Macurová Doc. Ing. Antonín Pokorný, Csc.

ARCHITEKTONICKÁ A ENERGETICKÁ KONCEPCE NÍZKOENERGETICKÝCH OBJEKTŮ. Ing. arch. Kristina Macurová Doc. Ing. Antonín Pokorný, Csc. ARCHITEKTONICKÁ A ENERGETICKÁ KONCEPCE NÍZKOENERGETICKÝCH OBJEKTŮ Ing. arch. Kristina Macurová macurkri@fa.cvut.cz Doc. Ing. Antonín Pokorný, Csc. ENERGETICKÁ NÁROČNOST BUDOV PODLE NOVÉHO ZÁKONA O HOSPODAŘENÍ

Více

Baumit Zateplovací systémy

Baumit Zateplovací systémy Baumit Zateplovací systémy Technologický předpis Kapitola A Úvodní a všeobecná ustanovení Duben 2017 www.baumit.cz Obsah A. Úvodní a všeobecná ustanovení... 03 A.1 Zkratky, názvosloví a definice... 03

Více

Deklarované vlastnosti Platné pouze pro skladby systému dle tabulky 1 Základní charakteristika

Deklarované vlastnosti Platné pouze pro skladby systému dle tabulky 1 Základní charakteristika Prohlášení o vlastnostech č. 105/2013 VIII název výrobku: weber therm klasik E mineral jedinečný identifikační kód: VTIKSWTKEM Zamýšlené použití Vnější tepelná izolace stěn z betonu nebo zdiva Výrobce

Více

P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009

P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009 P01 ZKRÁCENÝ DOKUMENT NÁRODNÍ KVALITY ADMD ZJEDNODUŠENÁ VERZE DNK PRO SOUTĚŢ DŘEVĚNÝ DŮM 2009 Asociace dodavatelů montovaných domů CENTRUM VZOROVÝCH DOMŮ EDEN 3000 BRNO - VÝSTAVIŠTĚ 603 00 BRNO 1 Výzkumný

Více

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce

Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Energetická efektivita budov ČNOPK 5-2014 Zateplení budov, tepelné izolace, stavební koncepce Ing. Jiří Šála, CSc. tel. +420 224 257 066 mobil +420 602 657 212 e-mail: salamodi@volny.cz Přehled budov podle

Více

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy) [PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy) Objekt: Bytový dům Adresa: Lešenská 535/7 a 536/5 181 00 Praha 8 Troja kraj Hlavní město Praha Majitel:

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: MARIE KRAUSOVÁ Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: MARIE KRAUSOVÁ Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09, Karlovy Vary Autor: MARIE KRAUSOVÁ Název materiálu: VY_32_INOVACE_20_REVITALIZACE PANELOVÝCH DOMŮ_S4 Číslo projektu:

Více

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO Zakládání staveb Legislativní požadavky Martin Doležal, TÜV SÜD Czech Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím

Více

ZÁSADY ŘEŠENÍ VNĚJŠÍHO ZATEPLENÍ VE SMYSLU ČSN :2016. Ekvivalentní řešení zateplení v oblasti založení a stavebních otvorů

ZÁSADY ŘEŠENÍ VNĚJŠÍHO ZATEPLENÍ VE SMYSLU ČSN :2016. Ekvivalentní řešení zateplení v oblasti založení a stavebních otvorů ZÁSADY ŘEŠENÍ VNĚJŠÍHO ZATEPLENÍ VE SMYSLU ČSN 73 0810:2016 Ekvivalentní řešení zateplení v oblasti založení a stavebních otvorů S D R U Î E N Í E P S â R ZAJIŠTĚNÍ POŽÁRNÍ BEZPEČNOSTI EKVIVALENTNÍ ŘEŠENÍ

Více

Stacionární vedení tepla bodové tepelné mosty

Stacionární vedení tepla bodové tepelné mosty Nestacionární vedení tepla a velikost tepelného mostu hmoždinkami ETICS Pavlína Charvátová 1, Roman Šubrt 2 1 Vysoká škola technická a ekonomická v Českých Budějovicích 2 sdružení Energy Consulting, Vysoká

Více

Technologický postup montáže alternativního řešení požárních pruhů podle PKO

Technologický postup montáže alternativního řešení požárních pruhů podle PKO Technologický postup montáže alternativního řešení požárních pruhů podle PKO-17-004 Toto řešení podle PKO-17-004 je možno uplatňovat podle ČSN 73 0810:2016 u budov s požární výškou (h p ) 12< h p 22,5

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ STAVBY Josef Novák, Na vyhlídce 135, Zábřeh, 78901

TEPELNĚ TECHNICKÉ POSOUZENÍ STAVBY Josef Novák, Na vyhlídce 135, Zábřeh, 78901 TEPELNĚ TECHNICKÉ POSOUZENÍ STAVBY Josef Novák, Na vyhlídce 135, Zábřeh, 78901 TEPELNĚ TECHNICKÉ POSOUZENÍ Zákazník: Josef Novák Adresa stavby: Na vyhlídce 135, Zábřeh, 78901 Typ stavby: Samostatně stojící

Více

10 důvodů proč zateplit

10 důvodů proč zateplit 10 důvodů proč zateplit dům Sdružení EPS ČR Ing. Pavel Zemene, Ph.D. předseda Sdružení 10 důvodů proč zateplit dům 1. Snížení nákladů na vytápění 2. Bezpečná a návratná investice 3. Snížení nákladů na

Více

Baumit Zateplení na zateplení

Baumit Zateplení na zateplení Baumit Zateplení na zateplení Zahřeje dvakrát více zdvojené zateplení systémem Baumit! Další zlepšení tepelné pohody interiéru Vysoká úspora energií v souladu s nejnovějšími předpisy Spolehlivé a trvanlivé

Více

WEBER therm elastik San SAW mineral zateplovací systém ETICS na bázi MW s využitím technologií Spiral Anksys Wool

WEBER therm elastik San SAW mineral zateplovací systém ETICS na bázi MW s využitím technologií Spiral Anksys Wool Vydáno: 8.3. 2016 Strana 1 Tento kontrolní list slouží jako podklad k navrhování a statickému posouzení nových zateplovacích systémů WEBER therm klasik San SAW mineral na bázi MW, včetně základní a/nebo

Více

ZATEPLENÍ ŠIKMÉ STŘECHY DVOUPLÁŠŤOVÉ S IZOLACÍ MEZI A POD KROKVEMI, NAPOJENÍ NA OBVODOVÝ PLÁŠŤ

ZATEPLENÍ ŠIKMÉ STŘECHY DVOUPLÁŠŤOVÉ S IZOLACÍ MEZI A POD KROKVEMI, NAPOJENÍ NA OBVODOVÝ PLÁŠŤ min. 50mm min.100 ZATEPLENÍ ŠIKMÉ STŘECHY DVOUPLÁŠŤOVÉ S IZOLACÍ MEZI A POD MI, NAPOJENÍ NA OBVODOVÝ PLÁŠŤ KONTRA 1. VRSTVA IZOLACE ROCKWOOL MEZI MI : 160 mm 40mm 160 50 POZEDNICE 180140mm OKAPNIČKA HYDROIZOLACE

Více

Prohlášení o vlastnostech

Prohlášení o vlastnostech Není relevantní Jedinečný identifikační kód: Název výrobku: Zamýšlené použití Výrobce Technická specifikace Prohlášení o vlastnostech č. PCC_560_03 PUREN 13165T2DS(70,90)4CS(10/Y)150TR150WL(T)3WL(P)0,5WS(P)0,5

Více

Energetická rozvaha. bytových domů. HANA LONDINOVÁ energetický auditor. Zpracovatel:

Energetická rozvaha. bytových domů. HANA LONDINOVÁ energetický auditor. Zpracovatel: bytových domů Zpracovatel: HANA LONDINOVÁ energetický auditor leden 2010 Obsah Obsah... 2 1 Úvod... 3 1.1 Cíl energetické rozvahy... 3 1.2 Datum vyhotovení rozvahy... 3 1.3 Zpracovatel rozvahy... 3 2 Popsání

Více

Vodotěsnost Vyhověl ETAG 004:

Vodotěsnost Vyhověl ETAG 004: Zamýšlené použití Výrobce Technická specifikace Číslo certifikátu Základní charakteristika Prohlášení o vlastnostech č. 005/2014 VII název výrobku:dektherm ELASTIK E mineral jedinečný identifikační kód:

Více

TWINNER - zateplení, které předběhlo svoji dobu. Pavel Rydlo*

TWINNER - zateplení, které předběhlo svoji dobu. Pavel Rydlo* TWINNER - zateplení, které předběhlo svoji dobu. Pavel Rydlo* 1. Úvod Vývoj tepelných izolací pro zateplovací systémy neustále pokračuje. Jen málokdy se však stane, že nové materiály posunou hranice v

Více

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu

Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Porovnání energetické náročnosti pasivního domu, nízkoenergetického domu a energeticky úsporného domu Aby bylo možno provést porovnání energetické náročnosti pasivního domu (PD), nízkoenergetického domu

Více

SEZNAM PŘÍLOH Seznam tabulek

SEZNAM PŘÍLOH Seznam tabulek SEZNAM PŘÍLOH Seznam tabulek Tabulka č. 1. Identifikační údaje budovy Tabulka č. 2. Typ budovy Tabulka č. 3. - Druhy energie užívané v budově Tabulka č. 4. - Stručný popis energetického a technického zařízení

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.24 Zateplování budov minerálními deskami

Více

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY

POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY D.1.3 POŽÁRNĚ BEZPEČNOSTNÍ ŘEŠENÍ STAVBY ZPRACOVAL : PROJEKTANT : Ing. Iveta Charousková, Počerny 124, 360 17 Karlovy Vary osvědčení o autorizaci v oboru požární bezpečnost staveb č. 8488 Projektová kancelář

Více

TECHNICKÝ LIST. na výrobek: vnější tepelně izolační kompozitní systém s omítkou. weber therm TWINNER. s izolantem z desek Isover TWINNER

TECHNICKÝ LIST. na výrobek: vnější tepelně izolační kompozitní systém s omítkou. weber therm TWINNER. s izolantem z desek Isover TWINNER TECHNICKÝ LIST na výrobek: vnější tepelně izolační kompozitní systém s omítkou weber therm TWINNER s izolantem z desek Isover TWINNER Divize Weber, Saint-Gobain Construction Products CZ a.s. Divize WEBER

Více

VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov

VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov Strana 738 Sbírka zákonů č. 78 / 2013 78 VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov Ministerstvo průmyslu a obchodu stanoví podle 14 odst. 4 zákona č. 406/2000 Sb., o hospodaření energií,

Více

Vnější kontaktní zateplovací systémy ETICS. External Thermal Insulation Composite Systems (ETICS) Aussenwärmedämm Verbundsysteme (WDVS)

Vnější kontaktní zateplovací systémy ETICS. External Thermal Insulation Composite Systems (ETICS) Aussenwärmedämm Verbundsysteme (WDVS) TP CZB Vnější kontaktní zateplovací systémy ETICS External Thermal Insulation Composite Systems (ETICS) Aussenwärmedämm Verbundsysteme (WDVS) 01-2014 TECHNICKÁ PRAVIDLA CECHU PRO ZATEPLOVÁNÍ BUDOV ČR,

Více

www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE

www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE Influence Perforations thermal Insulation Composite System onto Humidity behavior of Structures Ing. Petr Jaroš, Ph.D.,

Více

Ing. Zbyněk Valdmann &

Ing. Zbyněk Valdmann & Ing. Zbyněk Valdmann & NERGIE ÝŠKOVÝCH UDOV ENERGIE ÚVOD - CENY ENERGIE: včera, dnes a zítra, vývoj - NÁKLADY vs. NORMA pro tepelnou ochranu budov na pozadí konstrukcí s požární odolností a bez požární

Více

NOVÁ ÉRA V OPLÁŠTĚNÍ BUDOV

NOVÁ ÉRA V OPLÁŠTĚNÍ BUDOV NOVÁ ÉRA V OPLÁŠTĚNÍ BUDOV THERMAL ENVIRONMENT FIRE GUARANTEE 40-LET SPOLEHLIVÁ IZOLACE 20% ZLEPŠENÍ TEPELNĚ-IZOLAČNÍCH VLASTNOSTÍ Vydejte se na cestu s IPN-QuadCore: ipn-quadcore.cz NOVÁ ÚROVEŇ POŽÁRNÍCH

Více