Procesory s jádrem ARM

Rozměr: px
Začít zobrazení ze stránky:

Download "Procesory s jádrem ARM"

Transkript

1 Procesory s jádrem ARM Materiál je určen jako pomocný materiál pouze pro studenty zapsané v předmětu: A4M38AVS A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 1

2 ARM - historie ARM - RISC procesory původ britská firma Acorn, procesory - stolní počítače později vývoj vlastního procesoru ARM1 v r. 1985, ARM tranzistorů, 3 um technologie 4 MHz hod. sig. ARM2 ARM 3 Založena nová firma - Advaced RISC Machines Ltd. (majet. účast Apple, Acorn a VLSI) změna názvu architektury z Acorn RISC Machine na Advaced RISC Machine ARM 6, procesor ARM610 pro PDA (Personal Digital Assistent) firmy Apple ARM7 v r. 1993, používán v PDA PSION firmy Acorn ARM7 TDMI doplnění ladicí rozhraní (D,I debug. interface) rozšířené možnosti násobičky (M) Thumb instrukční sada (T) - navíc 16- bitové instrukce ARM7 TDMI nejlépe prodávaný procesor (jádro) u ARM ARM9 TDMI následovník ARM7, úpravy pipeline, ARM orientace na přenosná zařízení, mobilní telefony, rozvoj A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 2

3 l. materiál firmy ARM 3

4 ARM historie ARMV4, Cortex M ARM7 TDMI - architektura ARM v 4T ( pozor, trochu se plete) ARM7TDMI používán i ve formě microcontroller jednočipový mikropočítač firma Philips (nyní navazující NXP) LPC 2105 procesor ARM7TDI, paměti Flash, RAM, periferie, řadič přerušení vlastní varianta další firmy využívající ARM7TDMI: ATMEL, STMicroelectronics, Texas Instruments, Analog Devices,,. u ARM7TDMI v jádře - pouze dvě přerušení, firmy- vlastní implementace řadiče přerušení chybí dobrá podpora a spolupráce - řadič přerušení - jádro Firma ARM úprava architektury pro potřeby embedded microcontrolérů Architektura ARM v7m Cortex, (M značí microcontroller) Doplněn NVIC Nested Vectored Interrupt Controller ARM - Cortex M3 - architektura ARM v7m, náš procesor na cvičeních Architektura ARM v4t ovlivnila ARM v7m,, Heslo ISA instruction set architecture architektura mající danou sadu instrukcí - obecnější pojem - poněkud širší rozsah míněných procesorů A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 4

5 ARM, typ, ISA,- architektura ARM - RISC procesory (pojem RISC) ARM7TDMI 32- bitový procesor, data 32 bitová, (tedy registry 32 bitů) adresa 32 bitů, adresní prostor 2 32 = 4 GByte ARM instrukční kód konstantní délky 32 bitů v těchto 32 bitech uložen: kód vlastní instrukce, případně - registr, přímá data, adresa architektura typu Load, Store v instrukci jeden přenos dat mezi CPU a pamětí není operace typu read, modify, write? jak řešit do 32 bitů kód i adresu přímé adresování relativně s omezeným rozsahem adresování registrem v jedné instrukci pouze jedna operace s pamětí aritmetické a logické operace pouze s registrem A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 5

6 Pojem Word u ISA ARM The ARM je 32-bit architectura. V pojmy word, halfword použité v souvislosti s ARM: Word míní se 32 bitů (čtyři bajty) Halfword míní se 16 bitů (dva bajty) Byte míní se 8 bits ( jeden bajt) Většina ARM implementuje dvě instrukční sady 32-bit ARM Instruction Set 16-bit Thumb Instruction Set ARM CORTEX M3 instrukční sada Thumb 2 (jedna společná sada dohromady 16- i 32- bitové instrukce) (obsahuje Thumb a některé ARM) A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 6

7 Procesory s jádrem ARM, kódování instrukce Architektura ARM, postupný vývoj ARMv x Architektura ARM instrukce kódování 32 bitové Kódování instrukcí ve strojovém kódu ARM je pouze v jednom slovu 32 bitů, procesor načte kompletní kód instrukce naráz Za kódem instrukce ARM nenásledují další informace o datech či adrese skoku (jako to je např. u procesoru 8051 jedno, dvou, tří bajtové instrukce,signálových procesorů ADSP Blackfin a dalších) Všechny informace jsou součástí instrukčního kódu Instrukce operuje s jedním nebo více registry, V jedné instrukci je pouze jediný přístup k datům v paměti (není instrukce, kde by se dva operandy načítaly z paměti, nebo kde by se operand četl z paměti a do paměti by se ukládal) A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 7

8 Instrukční sady ARM a THUMB Kódování instr. ve stroj. kódu - ARM pouze v jednom slovu (word) 32 bitů nebo THUMB jednom polovičním slovu 16 bitů (halfword) (za kódem instrukce nenásledují další informace o datech či adrese skoku jako to je např. u 8051, jedno, dvou, tří bajtové instrukce) Pokud je potřeba v instrukci zadat adresu 32 bitů, není to součástí instrukce,ale použití pseudoinstrukce. Instrukce se odkazuje na další slovo v paměti vygenerované a uložené překladačem. A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 8

9 ARM7 TDMI, instrukce ARM a THUMB ARM7TDMI instrukční sada ARM - 32 bitů instrukční sada THUMB 16 bitů (úsporný kód, větší omezení na přímá data či adresy) procesory ARM: 16 bitové instrukce Thumb 32 bitové instrukce ARM (Přepínání v programu, jaká sada instrukcí se používá, procesor běží: v módu ARM (vykonává instrukce ARM 32 - bitové) v módu THUMB (vykonává instrukce THUMB 16 - bitové) Instrukce ARM a THUMB není možno míchat, Přechod do THUMB - skok na adresu, kde nejnižší bit adresy je A 0 = 1 (kód instrukce je 16- bitový, tak reálná adresa má A 0 =0, ale právě požadavek skoku na adresu s A 0 =1 signalizuje požadavek na skok s přepnutím do režimu THUMB používají se instrukce BX Rn, kde registr Rn obsahuje požadovanou adresu s příslušně nastaveným bitem D 0 = 0, nebo D 0 =1 odpovídajícímu adresovému bitu A 0 A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 9

10 Instrukční sada THUMB-2 v návaznosti na inst. ARM ARM Cortex-M3 - instrukční sada Thumb -2 Instrukce Thumb (16- bitové) jsou doplněny 32- bitovými instrukcemi sada označená jako Thumb - 2, ARM Cortex M3 používá sadu Thumb 2 bez přepínání, je tedy stále v režimu Thumb- 2 a případný pokus o přepnutí do režimu instrukcí ARM (32 bitových) vyvolá chybu, proto musí být při požadavku skoku vždy nejnižší bit adresy A 0 = 1 16 bitové instrukce Thumb omezené možnosti např. ve vzdálenosti adresy pro skok,. možnost Unified Assembler Language (UAL) společná syntaxe pro ARM a Thumb instrukce. Kód psaný s použitím UAL může být přeložen do ARM nebo Thumb instrukcí. A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 10

11 Instrukční sada THUMB-2 ARM CORTEX- M3, instrukční sada pouze Thumb- 2 obsahuje původní Thumb 16 bitové, doplněné 32 bitovými inst. nepodporuje sadu ARM Thumb efektivnější využití pam. programu, (také zrychlení při čtení z FLASH, čtení 32 bitů dvě instrukce, vysvětlení později) A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 11

12 Architektura ARM v6m, ARM v7m Architektura ARM V7 obecně, V7M- úprava M značí Microcontroller instrukční sada THUMB -2 materiál firmy ARM 12

13 l. materiál firmy ARM 13

14 l. materiál firmy ARM 14

15 l. A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 15

16 l. materiál firmy ARM 16

17 Jádro ARM Cortex M3 Firma ARM - nevyrábí vlastní procesory, pouze návrh jádra, Jádro v rámci licencí využívá mnoho výrobců (ST, NXP, TI, Atmel,..) ARM Cortex- M3 - definováno: vlastní jádro CPU řadič přerušení rozložení v adresním prostoru (kde- SRAM interní, externí, kde vnitřní sběrnice spolupráce s rozhraním pro ladění (debug) JTAG, SWD Výrobci individuálně doplňují paměti a různé periferie přístupné v daném adresním prostoru více na Dle materiálu firmy ARM 17

18 Srovnání ARM7TDMI a ARM Cortex-M3. Materiál firmy ARM 18

19 Srovnání jader architektury ARM Cortex v7a, v7r a v7m A- Aplikační, R Real time, M - Microcontroller Cortex-A8 Architecture v7a MMU AXI VFP & NEON support Cortex-R4 Architecture v7r MPU (optional) AXI Dual Issue Cortex-M3 Architecture v7m MPU (optional) AHB Lite & APB materiál firmy ARM 19

20 Cortex family Cortex-A8 Architecture v7a MMU AXI VFP & NEON support Cortex-R4 Architecture v7r MPU (optional) AXI Dual Issue Cortex-M3 Architecture v7m MPU (optional) AHB Lite & APB Materiály firmy ARM 20

21 ARM Cortex Processors (v7) ARM Cortex-A family (v7-a): Applications processors for full OS and 3 rd party applications ARM Cortex-R family (v7-r): Embedded processors for real-time signal processing, control applications ARM Cortex-M family (v7-m): Microcontroller-oriented processors for MCU and SoC applications (MCU Microcontroller unit- mikrořadič) (SoC System on a Chip) Pozn. ARM Cortex M0 - je architektura ARM V6M Cortex-A8 Cortex-R4 Cortex -M3 x1-4 Cortex-M GHz x1-4 Cortex-A9 Cortex-A15 x1-4 Cortex-A5 1-2 R Heron Cortex-M4 SC300 Cortex-M0 12k gates... materiál firmy ARM 21

22 The ARM Cortex Family ARM Cortex Family Intelligent Computing Family of products from ARM based on the ARMv7 Architecture & Thumb -2 ISA Step up from ARM7 (v4) and ARM9 (v5) Performance Cortex-A8 Cortex-R4F Cortex-R4 Cortex-M3 Cortex-M1 (FPGA) ARM Cortex A Series - Applications CPUs focused on the execution of complex OS and user applications First Product: Cortex-A8 Executes ARM, Thumb-2 instructions ARM Cortex R Series - Deeply embedded processors focused on real-time environments First Product: Cortex-R4(F) Executes ARM, Thumb-2 instructions ARM Cortex M Series - Microcontroller cores focused on very cost sensitive, deterministic, interrupt driven environments First Product: ARM Cortex-M3 Executes Thumb-2 instructions materiál firmy ARM 22

23 Cortex-M3 ARMv7-M Architecture Thumb-2 only Fully programmable in C 3-stage pipeline von Neumann architecture Optional MPU AHB-Lite bus interface Fixed memory map interrupts Configurable priority levels Non-Maskable Interrupt support Debug and Sleep control Serial wire or JTAG debug Optional ETM Cortex M3 Total 60k* Gates materiál firmy ARM 23

24 Registry ARM Cortex M3 - R0 R12 obecné registry Dolní registry (low reg.) R0 R7 přístupné všemi instrucemi s přístupem k registrům. Horní registry (high reg.) R8 R12 přístup pouze 32 bitovými instrukcemi s přístupem k registrům A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 24

25 Registry R13 až R15 u ARM Cortex-M3 Stack pointer Registr R13 -Stack Pointer (SP) ukazatel zásobníku. R13 dvě formy: hlavní SP (SP main) procesní SR (SP_process) Link register Registr R14 je užíván při volání podprogramů (subroutine Link Register - LR). Do LR se uloží návratová adresa z PC při instrukci při vykonání instrukcí Branch an Link (BL) or Branch and Link with Exchange (BLX). LR je využit také při návratu z obsluhy výjimky (exception return). R14 možno obsluhovat jako obecný registr Programový čítač (Program counter - PC) registr R15 Bit [0] je vždy, takže instrukce jsou zarovnány na hranice slova (4 Byte) nebo poloviční slova (2 Byte). Stavový reg. programu (Program Status Registers xpsr) stavových registr příznaků (Flags) A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 25

26 Adresní prostor ARM- CORTEX M3. A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 26

27 Procesory s jádrem ARM, instrukce skoku Dotaz? jak se řeší skoky, když adresní prostor je 32- bitový a současně se má celá instrukce kompletně zakódovat do 32 bitů? Skoky (kde je informace o cíli skoku součástí instrukčního kódu) jsou relativní (skok o danou vzdálenost dopředu, či dozadu tato vzdálenost je součástí instruk. kódu) vzhledem k aktuální adrese právě čteného instrukčního kódu Relativní skoky omezený rozsah skoku ( omezená vzdálenost ) Dotaz? jak se řeší delší skoky, když adresní prostor je 32- bitový a současně se má celá instrukce kompletně zakódovat do 32 bitů? Skok s větším rozsahem adresy (na větší vzdálenost ) s využitím adresy předem uložené v registru (32 bitů) (Pozn.: u ARM Cortex M3 musí být nejnižší bit adr. skoku uložené v registru = 1) Důvod nejnižší bit adresy A0 = 1 signalizuje činnost v režimu Thumb) A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 27

28 Příklad systému sběrnic - AMBA AHB High performance Bus- rychlá sběrnice, přenos paměť- procesor APB Heripheral Bus pomalejší sběrnice pro přenos- procesor periferie (pomalejší, ale nižší odběr, možnost dalšího zpomalení použitím nižší frekvence hod. signálu pro APB High Performance ARM processor APB UART High Bandwidth External Memory Interface AHB APB Bridge Timer Keypad High-bandwidth on-chip RAM DMA Bus Master PIO High Performance Pipelined Burst Support Multiple Bus Masters Low Power Non-pipelined Simple Interface materiál firmy ARM 28

29 STM32F10x s jádrem ARM Cortex-M3, vnitřní sběrnice I- bus čtení instrukční kód D - bus čtení Data Harwardská architektura - načítání kódu instrukce I (FLASH) a dat D (SRAM) Možnost čtení dat z pam FLASHH- můstek D- bus- Flash Bus Matrix - přepínání sběrnic, možnost několika současně běžících přenosů ( analogie mimoúrovňová křižovaka víceůrovńová Např. čtení instrukce z FLASH do proc., současně přenos z GPIO přes APB na AHP s pomocí řadiče DMA do SRAM) Řadič DMA (Direct Memory Access) pro rychlé přenosy dat bez účasti procesoru A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 29

30 Cortex-M3 Pipeline Cortex-M3 has 3-stage fetch-decode-execute pipeline Similar to ARM7 Cortex-M3 does more in each stage to increase overall performance Třístupňový pipeline - zpracování a vykonání instrukce Optimální program přímý bez skoků ( viz dále problém omezené rychlosti FLASH) 1 st Stage - Fetch 2 nd Stage - Decode 3 rd Stage - Execute Fetch Fetch (Prefetch) (Prefetch) AGU AGU Instruction Instruction Decode Decode & Register Register Read Read Address Address Phase & Phase & Write Back Write Back Data Phase Data Phase Load/Store & Load/Store & Branch Branch Multiply Multiply & Divide Divide Write Write Branch forwarding & speculation Branch Branch Shift Shift ALU & Branch ALU & Branch Execute stage branch (ALU branch & Load Store Branch) Materiály firmy ARM 30

31 Cortex-M3 Datapath- čtení kódu Instrukce a Dat I_HRDATA Instruction Decode D_HADDR Address Register Address Incrementer Write Data Register Read Data Register D_HWDATA D_HRDATA B I_HADDR Address Incrementer Address Register Register Bank A Writeback Mul/Div Barrel Shifter ALU ALU INTADDR Materiály firmy ARM 31

32 Paměť FLASH v mikrořadičích s jádrem ARM Paměti FLASH omezená rychlost přístupu (např. doba v STM32F10x - 35 ns) Běh procesorového jádra STM32F10x až na 72 MHz (perioda cca 14 ns) Doba přístupu k FLASH delší, než perioda hod. signálu procesoru (Vyšší typy STM32F207 (viz SCKit- cv. A4M38AVS), STM32F407 až 168 MHz) Jádro - rychlejší než paměť FLASH Jak řešit rozpor? Řešení - zařazení wait cyklů počkat ječte jeden cyklus hod. sig. - zpomalení běhu Zvýšení toku paralelní čtení inst. kódu a konstant z FLASH Načtení 2x 64 bitů = 128 bitů (obdobně např. i implementace jádra ARM7TDMI v LPC2148 firma NXP) - akcelerace prefetch,). Důsledek program běží nejrychleji bez skokův přímé linii. Skoky zpomalují běh programu. 64 bit Použití par.načítání z pam. FLASH (Analogie nestačím podávat kostky (po jedné kostce) z jedné palety Řešení naberu najednou a podávám po dvou? Ale- požadavek podávat nejednou z jiné palety ( skok ) to nachystané zahodím - časová ztráta než naberu první nové dvě z jiné palety) čtení 32 bit čtení 32 bit 32 bit A4M38AVS, 2014, J. Fischer, kat. měření, ČVUT - FEL, Praha 32

33 Akcelerátor pro čtení paměti FLASH, STM32F10x Jádro - rychlejší než paměť FLASH Akcelerace prefetch, načítání z FLASH paralelně). (Inst. kód Thumb - 2 je 32 bitů, Thumb je 16 bitů), obdobné řešení i ostatní výrobci implementace jádra ARM7, ARM. Cortex-M3 Skokem- ztrácí se výhoda tohoto řešení, Dle materiálu firmy STMicroelectronics 33

Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1

Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1 Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1 ARM - historie ARM - RISC procesory (původ britská firma Acorn, procesory - stolní počítače později

Více

Přednáška 2 A4B38NVS - Návrh vestavěných systémů 2014, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT - FEL 1

Přednáška 2 A4B38NVS - Návrh vestavěných systémů 2014, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT - FEL 1 Přednáška 2 A4B38NVS - Návrh vestavěných systémů 2014, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT - FEL 1 Modifikace bitů slova v SRAM nebo výstupní brány Funkce

Více

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Přednáška 1. 2011, kat. měření, ČVUT - FEL, Praha J. Fischer

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Přednáška 1. 2011, kat. měření, ČVUT - FEL, Praha J. Fischer Přednáška 1 2011, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Náplň HW návrh vestavěných systémů, komponenty a jejich využití, procesor jako součástka Logické obvody a jejich vlastnosti z hlediska spolupráce

Více

Náplň přednášky 1. Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma

Náplň přednášky 1. Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma 4 Přednáška 1 Náplň přednášky 1 Vestavěný systém Výrobci technických řešení Mikrokontroléry ARM NXP Kinetis KL25Z Rapid prototyping Laboratorní vývojová platforma 5 www.vsb.cz Vestavěný řídicí systém Anglicky:

Více

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů). Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis

Více

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná

Více

RISC a CISC architektura

RISC a CISC architektura RISC a CISC architektura = dva rozdílné přístupy ke konstrukci CPU CISC (Complex Instruction Set Computer) vývojově starší přístup: pomoci konstrukci překladače z VPP co nejpodobnějšími instrukcemi s příkazy

Více

Struktura a architektura počítačů (BI-SAP) 7

Struktura a architektura počítačů (BI-SAP) 7 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru

Více

Miroslav Tichý, tic136

Miroslav Tichý, tic136 Miroslav Tichý, tic136 32bitová mikroprocesorová architektura typu RISC(Reduced Instruction Set Computer) mobilním odvětví - smartphony, PDA, přenosné herní konzole, kalkulačky apod. Důvod: nízké vyzařované

Více

MSP 430F1611. Jiří Kašpar. Charakteristika

MSP 430F1611. Jiří Kašpar. Charakteristika MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže

Více

Architektura procesoru ARM

Architektura procesoru ARM Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6

Více

PROCESOR. Typy procesorů

PROCESOR. Typy procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně

Více

Procesor z pohledu programátora

Procesor z pohledu programátora Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér

Více

Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru

Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru Počítačové systémy Procesor Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Víceúrovňová organizace počítače Digital logic level Microarchitecture level Processor Instruction

Více

Procesor. Procesor FPU ALU. Řadič mikrokód

Procesor. Procesor FPU ALU. Řadič mikrokód Procesor Procesor Integrovaný obvod zajišťující funkce CPU Tvoří srdce a mozek celého počítače a do značné míry ovlivňuje výkon celého počítače (čím rychlejší procesor, tím rychlejší počítač) Provádí jednotlivé

Více

Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1

Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1 Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována

Více

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2

Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2 Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy

Více

Rozhraní mikrořadiče, SPI, IIC bus,..

Rozhraní mikrořadiče, SPI, IIC bus,.. Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška A3B38MMP 2013 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2013, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Rozhraní SPI Rozhraní SPI ( Serial Peripheral

Více

Přednáška 1 A4B38NVS - Návrh vestavěných systémů. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer

Přednáška 1 A4B38NVS - Návrh vestavěných systémů. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2015, kat. měření, ČVUT - FEL, Praha J. Fischer Grafický podkladový materiál k přednášce A4B38NVS Studium tohoto materiálu nenahrazuje účast na přednášce,

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1

Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1 Procesory, mikroprocesory, procesory na FPGA 30.1.2013 O. Novák, CIE 11 1 Od sekvenčních automatů k mikroprocesorům 30.1.2013 O. Novák, CIE 11 2 30.1.2013 O. Novák, CIE 11 3 Architektura počítačů Von Neumannovská,

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha. J.

A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha. J. Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Náplň přednášky Druhá část. přednášky 12 Sériové rozhraní SPI, Sériové rozhraní IIC A4B38NVS, 2011, kat. měření,

Více

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12)

Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) A438NVS, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2012, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň přednášky Sériová rozhraní rozhraní

Více

FREESCALE KOMUNIKAČNÍ PROCESORY

FREESCALE KOMUNIKAČNÍ PROCESORY FREESCALE KOMUNIKAČNÍ PROCESORY 1 Trocha historie: Freescale Semiconductor, Inc. byla založena v roce 2004 v Austinu v Texasu jako samostatná společnost, jelikož po více jak 50 byla součástí Motoroly.

Více

Architektury CISC a RISC, uplatnění v personálních počítačích

Architektury CISC a RISC, uplatnění v personálních počítačích Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur

Více

Základní uspořádání pamětí MCU

Základní uspořádání pamětí MCU Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2015, kat. měření, ČVUT - FEL, Praha. J. Fischer. Grafický podkladový materiál k přednášce A4B38NVS

Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2015, kat. měření, ČVUT - FEL, Praha. J. Fischer. Grafický podkladový materiál k přednášce A4B38NVS Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2015, kat. měření, ČVUT - FEL, Praha J. Fischer Grafický podkladový materiál k přednášce A4B38NVS Studium tohoto materiálu nenahrazuje účast na přednášce,

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Struktura počítače - pokračování České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Systémová struktura počítače pokrač. Systém přerušení A8B14ADP

Více

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Semestrální práce z předmětu Speciální číslicové systémy X31SCS Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší

Více

Mikrokontroléry I. Mikrokontroléry od Atmel (Attiny, Atmega, AVR)

Mikrokontroléry I. Mikrokontroléry od Atmel (Attiny, Atmega, AVR) Mikrokontroléry I. Mikrokontroléry od Atmel (Attiny, Atmega, AVR) Mikrokontroléry ATMEL Vývojové prostředí AVR Studio Vývojové prostředí Win. AVR Vývojové prostředí BASCOM AVR Universalne vývojové prostředí

Více

2 Hardware a operační systémy

2 Hardware a operační systémy Operační systémy 2 Hardware a operační systémy Obsah: 2.1 Procesor CPU, 2.1.1 Zpracování instrukcí, 2.1.2 Zvyšování výkonu CPU, 2.1.3 Režimy CPU, 2.2 Paměť, 2.2.1 Cache, 2.3 Vstupně výstupní zařízení,

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

Profilová část maturitní zkoušky 2014/2015

Profilová část maturitní zkoušky 2014/2015 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktura a architektura počítačů Alfanumerické kódy Řadič procesoru CISC, RISC Pipelining České vysoké učení technické Fakulta elektrotechnická Ver 1.20 J. Zděnek 2014 Alfanumerické kódy Kódování zobrazitelných

Více

Výkonnostní srovnání DSP Jak optimalizovat výběr procesoru. Analog Devices, Texas Instruments Freescale

Výkonnostní srovnání DSP Jak optimalizovat výběr procesoru. Analog Devices, Texas Instruments Freescale A0M38SPP - Singálová procesory v praxi - přednáška 1 2 Digitální signálový procesor (DSP) význam tohoto pojmu Základní architektura procesorů, hlavní rysy Základní rozdělení/třídění DSP Typické aplikace

Více

A3B38MMP Mikroprocesory v přístrojové technice

A3B38MMP Mikroprocesory v přístrojové technice A3B38MMP Mikroprocesory v přístrojové technice Předmět místo, termíny A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky: doc. Ing. Jan Fischer, CSc., úterý 16.15 hod. míst. 205 cvičení: Ing. Ján

Více

Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:

Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor: Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:

Více

Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )

Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Führer Ondřej, FUH002 1. AVR procesory obecně

Více

MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Systémová struktura počítače

MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Systémová struktura počítače MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Systémová struktura počítače Řízení běhu programu České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 05 Ver.1.20 J. Zděnek,

Více

Kubatova 19.4.2007 Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR. 2007-Kubátová Y36SAP-strojový kód 1

Kubatova 19.4.2007 Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR. 2007-Kubátová Y36SAP-strojový kód 1 Y36SAP 8 Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR 2007-Kubátová Y36SAP-strojový kód 1 Architektura souboru instrukcí, ISA - Instruction Set Architecture Vysoká Architektura

Více

Pedstavení procesor s architekturou ARM

Pedstavení procesor s architekturou ARM Pedstavení procesor s architekturou ARM Referát Pokroilé architektury poíta Jan Bartošek bar712 Úvodem AT91SAM (tj. AT91 Smart ARM-based Microcontrollers) od spolenosti Atmel je 32bitová ada RISC mikroprocesor

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2013, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2013, J.Fischer, kat. měření, ČVUT - FEL 1

Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2013, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2013, J.Fischer, kat. měření, ČVUT - FEL 1 Přednáška 1 A4B38NVS - Návrh vestavěných systémů 2013, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2013, J.Fischer, kat. měření, ČVUT - FEL 1 Představení, kontakty Jan Fischer, kat. měření, míst.

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 11. října 2007 1 Definice Historie Charakteristiky 2 MCU (microcontroller unit) ATmega8 Programování Blikání LEDkou 3 Kdo s kým Seriový port (UART)

Více

Assembler RISC RISC MIPS. T.Mainzer, kiv.zcu.cz

Assembler RISC RISC MIPS. T.Mainzer, kiv.zcu.cz Assembler RISC T.Mainzer, kiv.zcu.cz RISC RISC, neboli Reduced Instruction Set Computer - koncepce procesorů s redukovaným souborem instrukcí (vs. CISC, neboli Complex Instruction Set Computer, "bohatý"

Více

Provádění instrukcí. procesorem. Základní model

Provádění instrukcí. procesorem. Základní model procesorem 1 Základní model Kód programu (instrukce) a data jsou uloženy ve vnější paměti. Procesor musí nejprve z paměti přečíst instrukci. Při provedení instrukce podle potřeby čte nebo zapisuje data

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

HelenOS ARM port. Pavel Jančík Michal Kebrt Petr Štěpán

HelenOS ARM port. Pavel Jančík Michal Kebrt Petr Štěpán HelenOS ARM port Pavel Jančík Michal Kebrt Petr Štěpán HelenOS experimentální operační systém (MFF) multiplatformní microkernel amd64, ia32, ia32xen, ia64, mips32, ppc32, ppc64, sparc64 plánování správa

Více

Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer. A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1

Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer. A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1 Přednáška 10 2012, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1 Náplň přednášky Čítače v MCU forma, principy činnosti A4B38NVS, 2012, J.Fischer, kat.

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 9 SYSTÉMOVÝ NÁVRH, IP-CORES doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Technické prostředky počítačové techniky

Technické prostředky počítačové techniky Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Zjednodušené schéma systému z základ hardware pro mainframe tvoří: operační pamět - MAIN / REAL STORAGE jeden

Více

Přednáška - Čítače. 2013, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1

Přednáška - Čítače. 2013, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1 Přednáška - Čítače 2013, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1 Náplň přednášky Čítače v MCU forma, principy činnosti A3B38MMP, 2013, J.Fischer,

Více

Rozhraní mikrořadiče, SPI, IIC bus,..

Rozhraní mikrořadiče, SPI, IIC bus,.. Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 14 - X38MIP -2009, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Rozhraní SPI Rozhraní SPI ( Serial Peripheral Interface) - původ firma Motorola SPI není typ

Více

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010

Přednášky o výpočetní technice. Hardware teoreticky. Adam Dominec 2010 Přednášky o výpočetní technice Hardware teoreticky Adam Dominec 2010 Rozvržení Historie Procesor Paměť Základní deska přednášky o výpočetní technice Počítací stroje Mechanické počítačky se rozvíjely už

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: 3 CZ.1.07/1.5.00/34.0410 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Jednočipové mikropočítače (mikrokontroléry)

Jednočipové mikropočítače (mikrokontroléry) Počítačové systémy Jednočipové mikropočítače (mikrokontroléry) Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Co je mikrokontrolér integrovaný obvod, který je často součástí

Více

Koncepce DMA POT POT. Při vstupu nebo výstupu dat se opakují jednoduché činnosti. Jednotlivé kroky lze realizovat pomocí speciálního HW.

Koncepce DMA POT POT. Při vstupu nebo výstupu dat se opakují jednoduché činnosti. Jednotlivé kroky lze realizovat pomocí speciálního HW. p 1 Koncepce DMA Při vstupu nebo výstupu dat se opakují jednoduché činnosti. Jednotlivé kroky lze realizovat pomocí speciálního HW. Čekání na připravenost V/V Přenos paměť V/V nebo V/V paměť Posun pointeru

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 6. října 2008 1 2 Kdo s kým Seriový port (UART) I2C CAN BUS Podpora jednočipu Jednočip... prostě jenom dráty, čti byte/bit, piš byte/bit moduly : podpora

Více

Metody připojování periferií

Metody připojování periferií Metody připojování periferií BI-MPP Přednáška 3 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011

Více

TEMPO průmyslový panelový počítač

TEMPO průmyslový panelový počítač TEMPO průmyslový panelový počítač ELSACO, Jaselská 177, 280 00 Kolín, CZ http://www.elsaco.cz mail: elsaco@elsaco.cz stručné představení struktura toku informací v technologických sítích prezentace dat

Více

Systém přerušení. Algoritmizace a programování. Struktura počítače - pokračování. Systémová struktura počítače pokrač.

Systém přerušení. Algoritmizace a programování. Struktura počítače - pokračování. Systémová struktura počítače pokrač. Algoritmizace a programování Struktura počítače - pokračování České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Systémová struktura počítače pokrač. Systém přerušení A8B14ADP

Více

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry.

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Systémov mová sběrnice 1 Sběrnicová architektura Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Single master jeden procesor na sběrnici, Multi master více

Více

Přednáška 1,2. A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha

Přednáška 1,2. A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha Přednáška 1,2 A4B38NVS Návrh vestavěných systémů,2012, J. Fischer, katedra měření, ČVUT - FEL, Praha A4B38NVS, 2012, J.Fischer, kat. měření, ČVUT - FEL 1 Informace Toto je grafický a heslovitý podkladový

Více

Struktura a architektura počítačů (BI-SAP) 9

Struktura a architektura počítačů (BI-SAP) 9 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 9 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Strojový kód. Instrukce počítače

Strojový kód. Instrukce počítače Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Struktura počítače České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Struktura předmětu Systémová struktura počítače, procesor, paměti, periferní

Více

ŘÍZENÍ ELEKTRICKÝCH POHONŮ. Systémová struktura počítače Řízení běhu programu. České vysoké učení technické Fakulta elektrotechnická

ŘÍZENÍ ELEKTRICKÝCH POHONŮ. Systémová struktura počítače Řízení běhu programu. České vysoké učení technické Fakulta elektrotechnická ŘÍZENÍ ELEKTRICKÝCH POHONŮ Systémová struktura počítače Řízení běhu programu České vysoké učení technické Fakulta elektrotechnická A1M14RPO Řízení elektrických pohonů 01 Ver.1.20 J. Zděnek, 20151 Požadované

Více

Úvod do architektur personálních počítačů

Úvod do architektur personálních počítačů Úvod do architektur personálních počítačů 1 Cíl přednášky Popsat principy proudového zpracování informace. Popsat principy zřetězeného zpracování instrukcí. Zabývat se způsoby uplatnění tohoto principu

Více

Mikrořadiče společnosti Atmel

Mikrořadiče společnosti Atmel Mikrořadiče společnosti Atmel Společnost Atmel je významným výrobcem mikrořadičů (MCU) na trhu. Svou produkci v této oblasti člení do čtyř větších skupin: mikrořadiče pro bezdrátové technologie, architekturu

Více

Paměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3)

Paměti EEPROM (1) Paměti EEPROM (2) Paměti Flash (1) Paměti EEPROM (3) Paměti Flash (2) Paměti Flash (3) Paměti EEPROM (1) EEPROM Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat

Více

NSWI /2011 ZS. Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA

NSWI /2011 ZS. Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA Principy cpypočítačůčů aoperačních systémů ARCHITEKTURA Literatura W.Stallings: Computer Organization & Architecture J.L.Hennessy, P.A.Patterson: Patterson: Computer Architecture: a Quantitative Approach

Více

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz 4-4. Přednáška 4. Přednáška ISA J. Buček, R. Lórencz 24-27 J. Buček, R. Lórencz 4-2 4. Přednáška Obsah přednášky Násobení a dělení v počítači Základní cyklus počítače Charakteristika třech základní typů

Více

FPGA + mikroprocesorové jádro:

FPGA + mikroprocesorové jádro: Úvod: V tomto dokumentu je stručný popis programovatelných obvodů od firmy ALTERA www.altera.com, které umožňují realizovat číslicové systémy s procesorem v jenom programovatelném integrovaném obvodu (SOPC

Více

Architektura procesoru ARM Cortex-A9 MPCore

Architektura procesoru ARM Cortex-A9 MPCore VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA Architektura procesoru ARM Cortex-A9 MPCore Pokročilé architektury počítačů Marek Wija, WIJ003 23.11.2009 Obsah 1. Procesory ARM (Advanced RISC machine)...

Více

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí: Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)

Více

Procesory pro vestavné aplikace přehled

Procesory pro vestavné aplikace přehled Procesory pro vestavné aplikace přehled v. 2013 A4M38AVS ČVUT- FEL, katedra měření, A4M38AVS, 2013, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Mikroprocesory pro vestavné aplikace rysy Široké spektrum

Více

V PRAZE Fakulta elektrotechnická Katedra teorie obvodů. Úvod do mikrokontrolérů ATMEL AVR Konkrétn. ATmega. Martin Pokorný 31SCS 2004

V PRAZE Fakulta elektrotechnická Katedra teorie obvodů. Úvod do mikrokontrolérů ATMEL AVR Konkrétn. ATmega. Martin Pokorný 31SCS 2004 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra teorie obvodů Úvod do mikrokontrolérů ATMEL AVR Konkrétn tně klonů řady ATmega Martin Pokorný 31SCS 2004 ÚVOD Rodina mikrokontrolérů

Více

Pohled do nitra mikroprocesoru

Pohled do nitra mikroprocesoru Pohled do nitra mikroprocesoru Obsah 1. Pohled do nitra mikroprocesoru 2. Architektury mikroprocesorů 3. Organizace cvičného mikroprocesoru 4. Registry v mikroprocesoru 5. Aritmeticko-logická jednotka

Více

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

a co je operační systém?

a co je operační systém? a co je operační systém? Funkce vylepšení HW sjednocení různosti zařízení ulehčení programování (např. časové závislosti) přiblížení k potřebám aplikací o soubory namísto diskových bloků o více procesorů

Více

6. Procesory jiných firem... 1

6. Procesory jiných firem... 1 6. Procesory jiných firem. Obsah 6. Procesory jiných firem.... 1 6.1. Acron RISC Machine (ARM)... 1 6.1.1. Charakteristika procesoru ARM... 2 6.1.2. Architektura procesoru ARM... 3 6.1.3. Specifika procesoru

Více

Hardware - komponenty počítačů Von Neumannova koncepce počítače. Von Neumannova koncepce počítače

Hardware - komponenty počítačů Von Neumannova koncepce počítače. Von Neumannova koncepce počítače V roce 1945 vystoupil na přednášce v USA matematik John von Neumann a představil architekturu samočinného univerzálního počítače (von Neumannova koncepce/schéma/architektura). Základy této koncepce se

Více

Intel 80286. Procesor a jeho konstrukce. Vývojové typy, činnost procesoru

Intel 80286. Procesor a jeho konstrukce. Vývojové typy, činnost procesoru Procesor a jeho konstrukce. Vývojové typy, činnost procesoru První obvod nazvaný mikroprocesor uvedla na trh firma Intel v roce 1970. Šlo o 4bitový procesor Intel 4004. V roce 1972 byl MCS8 prvním 8bitovým

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Struktura počítače České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Struktura předmětu Systémová struktura počítače, procesor, paměti, periferní

Více

Obsah. Kapitola 1 Skříně počítačů 15. Kapitola 2 Základní deska (mainboard) 19. Kapitola 3 Napájecí zdroj 25. Úvod 11

Obsah. Kapitola 1 Skříně počítačů 15. Kapitola 2 Základní deska (mainboard) 19. Kapitola 3 Napájecí zdroj 25. Úvod 11 Obsah Úvod 11 Informace o použitém hardwaru 12 Několik poznámek k Windows 13 Windows XP 13 Windows Vista 13 Kapitola 1 Skříně počítačů 15 Typy skříní 15 Desktop 15 Tower (věžová provedení) 15 Rozměry skříní

Více

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051 051 Seznámení s mikropočítačem Architektura mikropočítače Instrukce Paměť Čítače Porovnání s AT89C2051 Seznámení s mikropočítačem řady 8051 Mikroprocesor řady 8051 pochází z roku 1980 a je vytvořené firmou

Více

Periferní operace využívající přímý přístup do paměti

Periferní operace využívající přímý přístup do paměti Periferní operace využívající přímý přístup do paměti Základní pojmy Programová obsluha periferní operace řízení této činnosti procesorem. Periferní operace využívající přerušení řízení řadičem přerušení,

Více

Struktura a architektura počítačů (BI-SAP) 1

Struktura a architektura počítačů (BI-SAP) 1 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 1 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více