ČÍSELNÉ RADY. a n (1) n=1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ČÍSELNÉ RADY. a n (1) n=1"

Transkript

1 ČÍSELNÉ RADY Budeme sa zaoberať výrazmi, ktoré obsahujú nekonečne veľa sčítancov. Takéto výrazy budeme nazývať nekonečné rady. V nasledujúcom príklade je ilustrované, ako môže takýto výraz vzniknúť. Príklad. Vyjadrime racionálne číslo 3/7 dekadickým zápisom 3/7=, =+8/0+5/0 +7/0 3 ++/ Nechjedanáčíselnápostupnosť {a n } = {a,a,...,a n,...}.formálnevytvorenývýraz a + a +...+a n +... nazývamenekonečnýčíselnýrad,stručnerad,vytvorenýzčlenovdanejpostupnosti.čísla a,a,...,a n,... nazývame členmi radu. Rad označujeme tiež symbolom a n () (čítasa:suma a n, nideoddo ). Z elementárnej aritmetiky poznáme presný význam súčtu konečného počtu sčítancov. Našim cieľom je rozšíriť pojem súčtu pre nekonečný počet sčítancov. Nechjedanýrad a n = a + a +...+a n +... Utvorme súčet jeho prvých dvoch, troch, atď. členov. Označme s = a s = a + a s 3 = a + a + a 3. s n = a + a +...+a n. Číslo s n nazývame n-týmčiastočnýmsúčtomdanéhoradu. Postupnosť {s,s,...s n,...}nazývamepostupnosťoučiastočnýchsúčtov danéhoradu. Akpostupnosť {s n } čiastočnýchsúčtovradu a n konverguje,t.j.akexistujevlastnálimita lim s n= s hovoríme,žerad a n jekonvergentnýamásúčet s.píšeme a n = s Akpostupnosť {s n } jedivergentná,hovoríme,žerad a n jedivergentnýanemásúčet. Dôležitým príkladom radu je geometrický rad. Geometrická postupnosť

2 Postupnosť {a n } sanazývageometrická,akexistujetakéčíslo q,žeprekaždéprirodzenéčíslo n platí: a n+ = a n q Číslo q sa nazýva kvocient. Pre geometrickú postupnosť platia tieto tvrdenia: () n-tý člen geometrickej postupnosti je daný vzťahom a n = a q (n ) () Preľubovoľnédvačleny a r, a s geometrickejpostupnostiplatí a r = a s.q (r s) (3) Presúčet s n prvých nčlenovgeometrickejpostupnostiplatí q n s n = a,ak q, q s n = na,ak q= Geometrický rad Akjedanágeometrickápostupnosť {a n } sprvýmčlenom a 0akvocientom q,takpríslušnýrad a + a +...+a n +...=a + a q+...+a q n +...= a q n sanazýva geometrickýrad.pre n-týčiastočnýsúčet s n platí: s n = a + a q+...+a q n q n = a q s n = na, ak q=. Dásadokázať,že pre q postupnosť {s n } diverguje. pre q <postupnosť {s n } konvergujeaplatí, ak q, Preto geometrickýrad Príklad. Rad lim s n= lim a q n q = a q lim (qn )= a q (0 )= a q je geometrický rad, lebo a q n jepre q <konvergentnýajehosúčetje s= a q n = n: n = = q n +... jekonštanta(nezávisíodn).jehokvocient q=/ <,pretojedanýradkonvergentnýaprejehosúčet splatí: s= n = = Divergentné rady sú len formálne výrazy, takže ich ďalšie vyšetrovanie nemá význam. Teraz si uvedieme vetu, ktorá umožňuje vylúčiť z našich úvah istú podmnožinu divergentných radov.

3 Nutná podmienka konvergencie radu. Akrad a n jekonvergentný,potom lim a n=0. Príklad3.Rad Rad 5n n+ n je divergentný, lebo lim n= =0. jedivergentný,lebo lim 5n n+ =5 0. Podmienka lim a n =0jelennutná,aleniepostačujúcaprekonvergenciuradu. Ukážemesitona príklade. Príklad 4. Rad n = n +... sanazývaharmonickýrad.jeho n-týčlenje a n = n.platí: lim a n= lim n =0 Napriek tomu sa dá dokázať, že tento rad diverguje. Pre rad n + je adásadokázať,žetentoradkonverguje. lim a n= lim n + =0 Vidímeteda,žeak lim a n=0,rad a n môžealeajnemusíbyťkonvergentný. Na vyšetrovanie konvergencie číselných radov používame vety, ktoré sa nazývajú kritériá konvergencie. Rady s nezápornými členmi Rad sa nazýva rad s nezápornými členmi. a n, a n 0 () Porovnávacie kritérium. Nech n 0 N také,že n n 0 je 0 a n b n.potomplatí.akkonvergujerad b n, potomkonvergujeajrad a n..akdivergujerad a n, potomdivergujeajrad b n. Hovoríme, že rad jemajorantnýradkradu rad b n a n jeminorantnýradkradu a n, b n. 3

4 d Alembertovokritérium.Nechprečlenyradu a n kde a n 0platí: a n+ lim = l (lmôžebyťaj ). a n Potom. Ak l >,raddiverguje.. Ak l <,radkonverguje. 3. Ak l=,podľatohotokritérianemožnookonvegenciiradurozhodnúť. Cauchyhokritérium.Nechprečlenyradu a n kde a n 0platí: lim n an = l (lmôžebyťaj ). Potom. Ak l >,raddiverguje.. Ak l <,radkonverguje. 3. Ak l=,podľatohotokritérianemožnookonvegenciiradurozhodnúť. Príklad5.Pomocoud Alembertovhokritériavyšetrimekonvergenciuradu Daný rad je konvergentný. a n+ n+ lim = lim a n n+ : n n= lim Cauchyho integrálne kritérium n+ n n n. = lim n+ = n <. Nech k radu() existuje funkcia f(x), ktorá je spojitá, nezáporná a nerastúca na nejakom intervale a, ) a n N, n n 0 platí a n = f(n). Potom ak f(x)dx konverguje, aj rad() konverguje. Ak f(x)dx diverguje, aj rad() diverguje. a a Radom so striedavými znamienkami nazývame rad kde a n >0 pre,,...,n. Leibnizovo kritérium Rady so striedavými znamienkami a a + a 3 a ( ) n a n +...= ( ) n a n, (3) Nechpostupnosť {a n } vytvorenázčlenovradu(3)jenerastúca.potomrad(3)konvergujevtedya len vtedy ak lim a n=0. Rady s ľubovoľnými členmi Označme a n, a n R (4) a n. (5) 4

5 Veta. Ak rad(5) konverguje, potom konverguje aj rad(4). Definícia. Hovoríme, že rad(4) absolútne konverguje, ak konverguje aj rad(5). Rad, ktorý konverguje, ale nekonverguje absolútne nazývame relatívne konvergentným. Ak daný rad je rad s nezápornými členmi, potom absolútna konvergencia je to isté ako konvergencia. Teda rad s nezápornými členmi ak konverguje, tak konverguje absolútne. Kritériá konvergencie, ktoré sme uviedli pre rady s nezápornými členmi môžme použiť na vyšetrenie absolútnej konvergencie ľubovoľnych radov. Tieto kritéria však nedávajú odpoveď na to, či daný rad je relatívne konvergentný. Jedine Leibnizovo kritérium môžeme použiť na vyšetrenie relatívnej konvergencie radov so striedavými znamienkami. Preto v prípade, že rad nekonverguje absolútne, je užitočné vedieť, či konverguje relatívne. Na to máme niekoľko kritérií. Uvedieme jedno z nich. Abelovo kritérium Uvažujme rad Akrad a n potomrad a n b n a b + a b +...a n b n +...= a n b n. konvergujeaakpostupnosť {b n } jemonotónnaaohraničená, konverguje. Súčet radov Nechsúdanérady a n = a + a +...+a n +... (6) Súčtomradov(6)a(7)nazývamerad b n = b + b +...+b n +... (7) (a n + b n )=(a + b )+(a + b )+...+(a n + b n )+... (8) Vzhľadom na definíciu súčtu radov môžeme formálne písať a n + b n = (a n + b n ) Ak oba rady(6),(7) konvergujú, potom aj rad(8) konverguje. Ak jeden z radov(6),(7) konverguje a druhý diverguje, potom rad(8) diverguje. Ak oba rady(6),(7) divergujú, potom rad(8) môže byť konvergentný aj divergentný. 5

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3

Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3 Limita funkcie y 2 2 1 1 2 1 y 2 2 1 lim 3 1 1 Čo rozumieme pod blížiť sa? Porovnanie funkcií y 2 2 1 1 y 2 1 2 2 1 lim 3 1 1 1-1+ Limita funkcie lim f b a Ak ku každému číslu, eistuje také okolie bodu

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Lineárne nerovnice, lineárna optimalizácia

Lineárne nerovnice, lineárna optimalizácia Opatrenie:. Premena tradičnej škol na modernú Gmnázium Jozefa Gregora Tajovského Lineárne nerovnice, lineárna optimalizácia V tomto tete sa budeme zaoberat najskôr grafickým znázornením riešenia sústav

Více

Použitie grafického kalkulátora Casio ClassPad300 vo vyučovaní matematiky v tematickom celku POSTUPNOSTI

Použitie grafického kalkulátora Casio ClassPad300 vo vyučovaní matematiky v tematickom celku POSTUPNOSTI Použitie grafického kalkulátora Casio ClassPad300 vo vyučovaní matematiky v tematickom celku POSTUPNOSTI Martina Bestrová Abstrakt: Ako hovorí už samotný názov, článok sa zaoberá použitím grafického kalkulátora

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

XX. ročník BRKOS 2013/2014. Pomocný text

XX. ročník BRKOS 2013/2014. Pomocný text XX. ročník BRKOS 203/204 Pomocný text Nekonečná série V šesté, nekonečné sérii se budeme zabývat tím, jak se různé matematické objekty chovají, když jejich standardní, konečné pojetí rozšíříme na nekonečno.

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

(verze 12. května 2015)

(verze 12. května 2015) Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada. Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n

Více

Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky. Diferenciálny počet očami G. W. Leibnitza

Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky. Diferenciálny počet očami G. W. Leibnitza Katolícka univerzita v Ružomberku Pedagogická fakulta Katedra matematiky Diferenciálny počet očami G. W. Leibnitza História matematiky Mária Šuvadová 4. roč. MAT INF Niečo na úvod V rôznych knihách matematiky

Více

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13 Příklad 1 Určete poloměr a obor bodové konvergence mocninných řad: a) 1 8 b) +1 c) 3 d) +2+1 e)! f)! 3 g) +2 +3 h) 2 2 1 =8, = 7,9 =1, = 1,1 =3, = 3,3 =1, = 2,0 =+, =,+ =0, =3 =1, = 3,1 = 1 2, = 1 2,1

Více

Teória grafov. Stromy a kostry 1. časť

Teória grafov. Stromy a kostry 1. časť Teória grafov Stromy a kostry 1. časť Definícia: Graf G=(V, E) nazývame strom, ak neobsahuje kružnicu ako podgraf Definícia Strom T=(V, E T ) nazývame koreňový strom ak máme v ňom pevne vybraný vybraný

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

7. Relácia ekvivalencie a rozklad množiny

7. Relácia ekvivalencie a rozklad množiny 7 Relácia ekvivalencie a rozklad množiny V tejto časti sa budeme venovať špeciálnemu typu binárnych relácií na množine - reláciám ekvivalencie a ich súvisu s rozkladom množiny Relácia ekvivalencie na množine

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Pracovné prostredie MS EXCEL 2003.

Pracovné prostredie MS EXCEL 2003. Pracovné prostredie MS EXCEL 2003. Tabuľkové kalkulátory sú veľmi praktické aplikácie pre realizáciu výpočtov, grafických prezentácií údajov, ako aj pe prácu s rôznymi údajmi ako s bázou dát. Tieto programy

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Ing. Jozef Klus KOMBINAČNÉ LOGICKÉ OBVODY

Ing. Jozef Klus KOMBINAČNÉ LOGICKÉ OBVODY Ing. Jozef Klus KOMBINAČNÉ LOGICKÉ OBVODY ÚVOD U týchto obvodov je výstup určený len kombináciou vstupných veličín. Hodnoty výstupných veličín nezávisia na predchádzajúcom stave logického obvodu kombinačný

Více

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ 64 1 TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ OBLASŤ PRIJATIA A ZAMIETNUTIA HYPOTÉZY PRI TESTOVANÍ CHYBY I. A II. DRUHU Chyba I. druhu sa vyskytne vtedy, ak je hypotéza správna, ale napriek tomu je zamietnutá,

Více

Jak to udělat, aby se vám na monitoru zobrazil náhled slidů s poznámkami a publiku jenom slidy?

Jak to udělat, aby se vám na monitoru zobrazil náhled slidů s poznámkami a publiku jenom slidy? BEAMER PREZENTÁCIA S VLASTNÝMI POZNÁMKAMI Otázka Jak to udělat, aby se vám na monitoru zobrazil náhled slidů s poznámkami a publiku jenom slidy? Návod PDF umí Acrobat JavaScript Ukážka Prezentáciu s vlastnými

Více

i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame:

i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame: 0 Interpolácia 0 Úvod Hlavnou myšlienkou interpolácie je nájs t funkciu polynóm) P n x) ktorá sa bude zhodova t s funkciou fx) v n rôznych uzlových bodoch x i tj P n x) = fx i ) = f i = y i i = 0 n Niekedy

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

To bolo ľahké. Dokážete nakresliť kúsok od prvého stromčeka rovnaký? Asi áno, veď môžete použiť tie isté príkazy.

To bolo ľahké. Dokážete nakresliť kúsok od prvého stromčeka rovnaký? Asi áno, veď môžete použiť tie isté príkazy. Opakuj a pomenuj Nakreslime si ovocný sad Príklad 1 Pomocou príkazového riadku skúste s korytnačkou nakresliť ovocný stromček. Vaša postupnosť príkazov sa možno podobá na nasledujúcu:? nechfp "hnedá? nechhp

Více

Základy algoritmizácie a programovania

Základy algoritmizácie a programovania Základy algoritmizácie a programovania Pojem algoritmu Algoritmus základný elementárny pojem informatiky, je prepis, návod, realizáciou ktorého získame zo zadaných vstupných údajov požadované výsledky.

Více

Obsah. Reprezentácia údajov v počítači. Digitalizácia číselnej informácie. Digitalizácia znakov a textovej informácie.

Obsah. Reprezentácia údajov v počítači. Digitalizácia číselnej informácie. Digitalizácia znakov a textovej informácie. Obsah Reprezentácia údajov v počítači. Digitalizácia číselnej informácie. Digitalizácia znakov a textovej informácie. Reprezentácia údajov v počítači. Počítač je stroj, ktorý na kódovanie údajov (čísla,

Více

MOCNINY A ODMOCNINY Eva Zummerová

MOCNINY A ODMOCNINY Eva Zummerová MOCNINY A ODMOCNINY Eva Zummerová . Mocniny s prirodzeným exponentom Zápis a n (čítame a na n-tú ), kde a R, n N a platí : a n = a.a...a n činiteľov sa nazýva n-tá mocnina čísla a. Číslo a sa nazýva základ

Více

Test. Ktorý valec by ste použili? A. Jednočinný valec B. Dvojčinný valec. Odpoveď:

Test. Ktorý valec by ste použili? A. Jednočinný valec B. Dvojčinný valec. Odpoveď: Test Týmto testom môžete zistiť, či sú Vaše základné znalosti o pneumatickom riadení postačujúce pre nadstavbový seminár P121, alebo je pre Vás lepšie absolvovať základný seminár EP111. Test je rýchly,

Více

7.1 Návrhové zobrazenie dotazu

7.1 Návrhové zobrazenie dotazu 7.1 Návrhové zobrazenie dotazu Ovládanie návrhového zobrazenia, ktoré je jedným z možností zobrazenia dotazu, je nevyhnutné pri tvorbe zložitejších dotazov, pretože v ňom môžeme definovať akýkoľvek dotaz

Více

Prednáška 01/12. doc. Ing. Rastislav RÓKA, PhD. Ústav telekomunikácií FEI STU Bratislava

Prednáška 01/12. doc. Ing. Rastislav RÓKA, PhD. Ústav telekomunikácií FEI STU Bratislava Prednáška 01/12 doc. Ing. Rastislav RÓKA, PhD. Ústav telekomunikácií FEI STU Bratislava Prenos informácií pomocou svetla vo voľnom priestore - viditeľná oblasť svetla, - známy už z dávnych dôb, - používa

Více

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni. KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4

Více

Úroveň strojového kódu procesor Intel Pentium. Adresovanie pamäte

Úroveň strojového kódu procesor Intel Pentium. Adresovanie pamäte Úroveň strojového kódu procesor Intel Pentium Pamäťový operand Adresovanie pamäte Priama nepriama a indexovaná adresa Práca s jednorozmerným poľom Praktické programovanie assemblerových funkcií Autor:

Více

Kapitola 1. Funkční posloupnosti a řady

Kapitola 1. Funkční posloupnosti a řady 1 2 Kapitola 1 Funkční posloupnosti a řady Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 4 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc Prednáška č. 4 OBSAH. Sústavy lineárnych rovníc 2. Priame metódy 3. Gaussova eliminačná metóda 4. Výber hlavného prvku 5.

Více

Multiplexor a demultiplexor

Multiplexor a demultiplexor Multiplexor a demultiplexor Mux_DMux [2] Funkcia multiplexoru ako prepínača A D 1 D 0 Y 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 3 x NAND Ak A = 0 výstup Y = D 0 a ak A = 1 výstup

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem Matematika 3. Ing. Marek Nikodým, Ph.D. Katedra matematiky a deskriptívní geometrie VŠB-TU Ostrava DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležité a mají obrovské využití hlavně ve fyzice.

Více

Konfigurácia IP Bell 02C Dverný vrátnik a FIBARO Home Center 2

Konfigurácia IP Bell 02C Dverný vrátnik a FIBARO Home Center 2 Konfigurácia IP Bell 02C Dverný vrátnik a FIBARO Home Center 2 Použité zariadenia: Riadiaca jednotka - Fibaro Home Center 2 vo verzii 4.059 BETA Dverný vrátnik - IP Bell 02C od spoločnosti ALPHATECH TECHNOLOGIES

Více

Súmernosti. Mgr. Zuzana Blašková, "Súmernosti" 7.ročník ZŠ. 7.ročník ZŠ. Zistili sme. Zistite, či je ľudská tvár súmerná

Súmernosti. Mgr. Zuzana Blašková, Súmernosti 7.ročník ZŠ. 7.ročník ZŠ. Zistili sme. Zistite, či je ľudská tvár súmerná Mgr. Zuzana Blašková, "úmernosti" 7.ročník ZŠ 1 úmernosti 7.ročník ZŠ Mgr. Zuzana Blašková 2 ZŠ taničná 13, Košice Osová súmernosť určenie základné rysovanie vlastnosti úlohy s riešeniami osovo súmerné

Více

Beáta Stehlíková Časové rady, FMFI UK, 2013/2014. CvičenievR-kuI.:ARIMAmodely p.1/15

Beáta Stehlíková Časové rady, FMFI UK, 2013/2014. CvičenievR-kuI.:ARIMAmodely p.1/15 Cvičenie v R-ku I.: ARIMA modely Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 CvičenievR-kuI.:ARIMAmodely p.1/15 Príklad 1: dáta Použité dáta: Počet používatel ov prihlásených na server, dáta po minútach,

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Operačný systém Úvodná prednáška

Operačný systém Úvodná prednáška Operačný systém Úvodná prednáška Pohľad zvonka (z vyšších úrovní) Pohľad zvnútra Pojmy správy procesov Úlohy jednotlivých častí operačného systému Autor: Peter Tomcsányi, Niektoré práva vyhradené v zmysle

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P

NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P 1. VLASTNÉ POLOVODIČE Vlastnými polovodičmi nazývame polovodiče chemicky čisté, bez prímesí iných prvkov. V súčasnosti je najpoužívanejším polovodičovým

Více

Sada 1 Matematika. 04. Nekonečné řady

Sada 1 Matematika. 04. Nekonečné řady S třední škola stavební Jihlava Sada 1 Matematika 04. Nekonečné řady Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a

Více

KOMBINATORICKÉ PRAVIDLO SÚČINU

KOMBINATORICKÉ PRAVIDLO SÚČINU KOMBINATORIKA MODERNÉ VZDELÁVANIE PRE VEDOMOSTNÚ SPOLOČNOSŤ/ PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ KÓD ITMS PROJEKTU: 26110130645 UČIŤ MODERNE, INOVATÍVNE, KREATÍVNE ZNAMENÁ OTVÁRAŤ BRÁNU DO SVETA

Více

Import Excel Univerzál

Import Excel Univerzál Import Excel Univerzál PRÍKLAD Ako jednoducho postupova pri importe akéhoko vek súboru z MS Excel do programu CENKROS plus, ktorý má podobu rozpo tu (napr. rozpo et vytvorený v inom programe)? RIEŠENIE

Více

Ministerstvo financií Slovenskej republiky Vznik daňovej povinnosti pri nadobudnutí tovaru v tuzemsku z iného členského štátu EÚ

Ministerstvo financií Slovenskej republiky  Vznik daňovej povinnosti pri nadobudnutí tovaru v tuzemsku z iného členského štátu EÚ www.finance.gov.sk Vznik daňovej povinnosti pri nadobudnutí tovaru v tuzemsku z iného členského štátu EÚ vznik daňovej povinnosti pri nadobudnutí tovaru v tuzemsku z iného členského štátu EÚ upravuje 20

Více

Na aute vyfarbi celé predné koleso na zeleno a pneumatiku zadného kolesa vyfarbi na červeno.

Na aute vyfarbi celé predné koleso na zeleno a pneumatiku zadného kolesa vyfarbi na červeno. Kružnica alebo kruh Aký je rozdiel medzi kružnicou a kruhom si vysvetlíme na kolese auta. Celé koleso je z tohto pohľadu kruh. Pneumatika je obvod celého kolesa obvod kruhu a obvod kruhu nazývame inak

Více

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. 1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)

Více

1. LABORATÓRNE CVIČENIE

1. LABORATÓRNE CVIČENIE MENO: ROČNÍK A TRIEDA: 1. LABORATÓRNE CVIČENIE ROVNOMERNÝ POHYB - ZÁVISLOSŤ POLOHY OD ČASU Cieľ: Naučiť sa pracovať so senzorom polohy a ako sú rôzne druhy pohybu prezentované na grafe závislosti polohy

Více

PRIEMYSELNÁ INFORMATIKA DISKRÉTNE LINEÁRNE RIADENIE

PRIEMYSELNÁ INFORMATIKA DISKRÉTNE LINEÁRNE RIADENIE e(k 1) e(k) e(k) e(k 1) PRIEMYSELNÁ INFORMATIKA 5.5. Číslicové regulátory Od číslicového regulátora budeme očakávať rovnakú funkciu ako od spojitého regulátora a tou je vstupujúcu regulačnú odchýlku zosilňovať,

Více

MEP ekonomika podniku učtovníctvo 1. časť Ekonomika podniku

MEP ekonomika podniku učtovníctvo 1. časť Ekonomika podniku MEP ekonomika podniku učtovníctvo 1. časť Ekonomika podniku (časť: úvod do podvojného účtovníctva) - kolobeh hospodárských prostriedkov, - súvaha, výsledovka, - účtovníctvo, účet, - podvojná sústava účtovníctva,súvzťažné

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

Reálné posloupnosti 1. Reálné posloupnosti

Reálné posloupnosti 1. Reálné posloupnosti Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval

Více

Ďalší spôsob, akým je možné vygenerovať maticu je použitie zabudovaných funkcií na generovanie elementárnych matíc.

Ďalší spôsob, akým je možné vygenerovať maticu je použitie zabudovaných funkcií na generovanie elementárnych matíc. MATICE MATLAB poskytuje obrovskú podporu práce s maticami. Táto hodina sa bude zaoberať základmi práce s maticami. Cieľom prvej časti hodiny je objasnenie základných princípov tvorby matíc, ich editáciu

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Fyzika a as. Vladimír Balek. december u ím ierne diery a ve ký tresk na bratislavskom matfyze

Fyzika a as. Vladimír Balek. december u ím ierne diery a ve ký tresk na bratislavskom matfyze u ím ierne diery a ve ký tresk na bratislavskom matfyze december 2015 téma fyziky: POHYB koná sa v ase, preto fyzika musí ma POJEM asu (o ase) téma fyziky: POHYB koná sa v ase, preto fyzika musí ma POJEM

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

MANUÁL K TVORBE CVIČENÍ NA ÚLOHY S POROZUMENÍM

MANUÁL K TVORBE CVIČENÍ NA ÚLOHY S POROZUMENÍM MANUÁL K TVORBE CVIČENÍ NA ÚLOHY S POROZUMENÍM Cvičenia na úlohy s porozumením si vieme pre žiakov vytvoriť v programe, ktorý stiahneme zo stránky http://www.education.vic.gov.au/languagesonline/games/comprehension/index.htm.

Více

3 Mechanická práca a energia

3 Mechanická práca a energia 3 Mechanická práca a energia U áut je bežné hodnotiť ich výkon v jednotke kone. Napríklad podľa výrobcu, model auta Peugeot 07 má výkon 68 koní. Na súťažiach F sú od sezóny 007 používané motory s výkonom

Více

Šifrovanie, kódovanie, bit a byte, digitálne informácie. Kódovanie informácií v PC binárna (dvojková) číselná sústava

Šifrovanie, kódovanie, bit a byte, digitálne informácie. Kódovanie informácií v PC binárna (dvojková) číselná sústava Šifrovanie, kódovanie, bit a byte, digitálne informácie Šifry šifrovanie sa používa všade tam, kde treba utajiť obsah komunikácie. Existuje veľmi veľa metód na tajné šifrovanie (a protimetód na dešifrovanie).

Více

CHARAKTERISTIKA JEDNOROZMERNÝCH ŠTATISTICKÝCH SÚBOROV

CHARAKTERISTIKA JEDNOROZMERNÝCH ŠTATISTICKÝCH SÚBOROV CHARAKTERISTIKA JEDNOROZMERNÝCH ŠTATISTICKÝCH SÚBOROV Táto časť sa venuje metódam štatistického výskumu súboru, pri ktorých sa zaoberáme jednotlivými štatistickými znakmi samostatne, bez toho, žeby sme

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden

Více

Diaľkové spojenie programom WinLoad/BabyWare je dôležitý nástroj pri servisnej činnosti. Ušetrí veľa času a námahy. Dá sa nadviazať cez:

Diaľkové spojenie programom WinLoad/BabyWare je dôležitý nástroj pri servisnej činnosti. Ušetrí veľa času a námahy. Dá sa nadviazať cez: Ako sa spojiť s ústredňou PARADOX cez PC pomocou smartfónu? Úvod. Diaľkové spojenie programom WinLoad/BabyWare je dôležitý nástroj pri servisnej činnosti. Ušetrí veľa času a námahy. Dá sa nadviazať cez:

Více

Dvojmaticové hry. tefan Pe²ko. 18. april Katedra matematických metód, FRI šu

Dvojmaticové hry. tefan Pe²ko. 18. april Katedra matematických metód, FRI šu Katedra matematických metód, FRI šu 18. april 2012 ƒastej²ie neº s antagonistickými koniktami sa stretávame s koniktami, v ktorých kaºdý z inteligentných ú astníkov sleduje svoje záujmy, ktoré sú iasto

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

Obchodná akadémia Ružomberok Ing. Igor Rosa

Obchodná akadémia Ružomberok Ing. Igor Rosa 1 Komunikácia: vyvinulo sa z lat. communicare = deliť sa, zverovať, vo všeobecnosti znamená komunikácia rozhovor, v sociálnej komunikácii poznáme tri druhy komunikácie: verbálna, neverbálna, komunikácia

Více

TomTom Referenčná príručka

TomTom Referenčná príručka TomTom Referenčná príručka Obsah Rizikové zóny 3 Rizikové zóny vo Francúzsku... 3 Upozornenia na rizikové zóny... 3 Zmena spôsobu upozornenia... 4 tlačidlo Ohlásiť... 4 Nahlásenie novej rizikovej zóny

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá

Více

Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Grafy

Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Grafy Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ Grafy Graf efektívne vizuálne nástroje dáta lepšie pochopiteľné graf môže odhaliť trend alebo porovnanie zobrazujú

Více

Finančné riaditeľstvo Slovenskej republiky

Finančné riaditeľstvo Slovenskej republiky Finančné riaditeľstvo Slovenskej republiky Informácia k odpočtu daňovej straty v tabuľke D tlačiva daňového priznania k dani z príjmov právnickej osoby Daňovník - právnická osoba so zdaňovacím obdobím

Více

8. Implikácia. A nazývame obrátenou implikáciou k implikácii A B. Pravdivostná hodnota implikácie a obrátenej implikácie je rôzna.

8. Implikácia. A nazývame obrátenou implikáciou k implikácii A B. Pravdivostná hodnota implikácie a obrátenej implikácie je rôzna. 8. Implikácia Implikáciu B A nazývame obrátenou implikáciou k implikácii A B. Pravdivostná hodnota implikácie a obrátenej implikácie je rôzna. Implikáciu B' A' nazývame obmenou implikácie A B. Implikácia

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Prevody z pointfree tvaru na pointwise tvar

Prevody z pointfree tvaru na pointwise tvar Prevody z pointfree tvaru na pointwise tvar Tomáš Szaniszlo 2010-03-24 (v.2) 1 Príklad (.(,)). (.). (,) Prevedenie z pointfree do pointwise tvaru výrazu (.(,)). (.). (,). (.(,)). (.). (,) Teraz je funkcia

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

Přehled probrané látky

Přehled probrané látky Přehled probrané látky 1. přednáška 5.10.2004. Organizační pokyny. Motivace - řetězovka, brachystochrona, analýza v The Art of Computer Programming D. Knutha. Co probereme v ZS: R, posloupnosti a řady,

Více

Testovanie 5. v školskom roku 2015/2016. Testovanie sa uskutoční 25. novembra 2015 (streda). Žiaci budú testy písať v nasledovnom poradí:

Testovanie 5. v školskom roku 2015/2016. Testovanie sa uskutoční 25. novembra 2015 (streda). Žiaci budú testy písať v nasledovnom poradí: Testovanie 5 Testovanie žiakov 5. ročníka základných škôl sa uskutoční 25. novembra 2015 (streda) na všetkých základných školách SR z predmetov slovenský jazyk a literatúra, maďarský jazyk a literatúra

Více

Vážení používatelia programu WISP.

Vážení používatelia programu WISP. Vážení používatelia programu WISP. V súvislosti s Kontrolným výkazom DPH (ďalej iba KV) sme doplnili od verzie IS WISP 165.3633 a DB 165.1414 údaje potrebné pre ďalšie spracovanie a vyhotovenie súboru

Více

PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu.

PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu. PODPROGRAMY Podprogram je relatívne samostatný čiastočný algoritmus (čiže časť programu, ktorý má vlastnosti malého programu a hlavný program ho môže volať) Spravidla ide o postup, ktorý bude v programe

Více

Kombinatorická pravdepodobnosť (opakovanie)

Kombinatorická pravdepodobnosť (opakovanie) Kombinatorická pravdepodobnosť (opakovanie) Metódy riešenia úloh z pravdepodobnosti a štatistiky Cvičenie 1 Beáta Stehlíková, FMFI UK Bratislava www.iam.fmph.uniba.sk/institute/stehlikova Príklad 1: Zhody

Více

NEINTERAKTÍVNA KOMUNIKÁCIA

NEINTERAKTÍVNA KOMUNIKÁCIA NEINTERAKTÍVNA KOMUNIKÁCIA ICSED3 informatika Gymnázium Kráľovnej pokoja, Žilina Mgr. Miroslav Malacha Komunikácia prostredníctvom IKT Komunikácia: vyvinulo sa z lat. communicare= deliť sa, zverovať, všeobecnosti

Více