Finanční matematika. Téma: Důchody. Současná hodnota anuity

Rozměr: px
Začít zobrazení ze stránky:

Download "Finanční matematika. Téma: Důchody. Současná hodnota anuity"

Transkript

1 Fnanční matematka Téma: Důchody Současná hodnota anuty

2 Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů

3 Členění důchodů dle okamžku vyplacení jednotlvé platby: - předlhůtní - polhůtní dle délky doby vyplacení důchodů: - dočasný - věčný dle toho, kdy se začínají vyplácet důchody: - bezprostřední - odložený

4 Výpočty u důchodu Současná hodnota důchodu D Budoucí hodnota důchodu (spoření) S Vztah mez současnou a budoucí hodnotou důchodu: S = D.(1 + ) n Kde S je budoucí hodnota důchodu; D je současná hodnota důchodu; je úroková sazba úrokové období n je počet úrokových období

5 Důchod bezprostřední Výplata začíná okamžtě bez prodlení 2 druhy předlhůtní polhůtní

6 Důchod bezprostřední předlhůtní na počátku každého období důchod a po n období př úrokové sazbě., Současná hodnota D - součet současných hodnot všech plateb a a a a a n - 1 n

7 Výplata číslo Současná hodnota 1 a/(1 + ) 0 2 a/(1 + ) 1 3 a/(1 + ) 2 n a/(1 + ) n - 1

8 , D = a.[(1 +(1 + ) -1 + (1 + ) (1 + ) -(n-1) ] Dskontní faktor označíme v D = a ( 1 + ) 1 v n

9 , Výraz a n = (1 + ). 1 - (1 + ) -n se nazývá zásobtel předlhůtní, udává současnou hodnotu důchodu n jednotkových výplat, které jsou vyplaceny na počátku n období př úrokové sazbě. Výraz (1 + ) -1 se taky nazývá dskontní faktor

10 Důchod bezprostřední polhůtní Nechť se bude dostávat na konc každého období důchod ve výš a po n období př úrokové sazbě. Počáteční hodnota D je součet současných hodnot všech plateb vztažených k počátku. a. a. a.,,,. a a n - 1 n

11 Výplata číslo Současná hodnota 1 a/(1 + ) 1 2 a/(1 + ) 2 3 a/(1 + ) 3 n a/(1 + ) n

12 D = = a.[(1 + ) -1 +(1 + ) -2 + (1 + ) (1 + ) -n ] Výraz v hranatých závorkách je konečná geometrcká řada Současnou hodnotu polhůtní anuty D = a 1 v n

13 Výraz a n = (1 (1 + ) -n )/ se nazývá zásobtel polhůtní Platí také tyto vztahy: D = D.(1 + ) S = D.(1 + ) n a n = a n.(1 + ) s n = a n.(1 + ) n

14 Příklad : Jakou částku je třeba mít k dspozc teď, aby bylo možné pokrýt každoroční výdaje ve výš Kč po dobu 5 let? Tyto výdaje budou vynaloženy hned na počátku každého roku. Úrokovou sazbu předpokládejme 5% p.a.. Řešení: D = ,05.(1 1,05-5 )/0,05 = ,80 Kč

15 Příklad: Jaká je současná hodnota všech každoročních plateb ve výš Kč vydaných vždy na konc roku po dobu 5 let? Předpokládejme opět úrokovou míru ve výš 5% p.a.. Řešení: D = (1 1,05-5 )/0,05 = 64942,15Kč

16 Důchod bezprostřední s více výplatam za 1 období Uvažujme důchod po n období během jednoho období výplata m-krát částka ve výš x na konc (počátku) každé m-tny období (x) m-1,,,. m..,,,.. ( ) x x x x x S 1 S 1 S 1 S n - 1 n S 1

17 Nejdříve pomocí krátkodobého spoření spočítáme budoucí hodnotu m výplat za 1 období S 1 S 1 (m ± 1) = m.x.(1 +.) 2.m znaménko + vyplácí-l se částka x na počátku každé m-tny úrokového období, znaménko vyplácí-l částka x na konc každé m-tny úrokového období

18 Současná hodnota důchodu se vypočítá jako součet současných hodnot n výplat S 1 vztažených k počátku (1 (1 + ) D = S 1. -n ) (m ± 1). (1 (1 + ) -n ) D = m.x.(1 + ) 2.m.

19 Příklad Na konc každého měsíce je nutno zaplatt nájem za nebytové prostory ve výš Kč. Na konc června musíme zaplatt zpětně nájemné za duben a květen a navíc jsme se rozhodl, že zaplatíme nájemné až do konce roku. Jakou částku budeme v červnu platt, jestlže úroková sazba je 6 % p.a. s měsíčním přpsováním úroků? Výsledek: ,19

20 Řešení Spoření S ( + ) n + 0, = a S = = 60300, 50 0, Důchod 1 v D = a n 1 1 0, D = , = ,69

21 Příklad Kupujete nemovtost. Odhadujete, že bude vynášet nájemné Kč na konc každého měsíce. Předpokládáte její držbu po dobu 3 let, za 3 roky j budete moc prodat za 2,5 ml. Kč. Jaká je maxmální cena, za kterou jste ochotn nemovtost koupt, když požadujete výnos 24 % p.a.? Výsledek:

22 Řešení Cena současná hodnota všech budoucích plateb ( ) n t n P v k k k X P = ( ) , ,24 0, , = = P

23 Příklad Dlužník se zavázal splácet 800 Kč měsíčně, polhůtně po dobu 10 let. Počátkem 5. roku (hned potom, co byla zaplacena 48. splátka) věřtel tuto pohledávku prodal. Kolk čnla cena pohledávky, jestlže úroková sazba byla 8 % p.a. a úrokové období bylo 1 měsíc? Výsledek: ,6

24 Řešení Kupující pohledávky obdrží ještě 12x6 plateb ve výš 800 Kč D = 1 v a n 1 1 D = , , = 45627,6

25 Důchod odložený Výplata je posunutá o k období Dle okamžku, kdy v 1 období dochází k výplatě, se dělí opět na : předlhůtní polhůtní (0) (1) (2) (3),,, (n -1) (n) 0 k k + n

26 Důchod odložený předlhůtní Nechť je vyplacen důchod ve výš a vždy na počátku jednoho období od konce k- tého období do (k + n)-tého období, celkem je vyplaceno n důchodů (anut) př úrokové sazbě....,,,. 0 k a a a a. k + n

27 Hodnota n anut na konc k-tého období lze vypočítat pomocí bezprostředního důchodu:, D = a.(1 + ). k 1 (1 + ) -n Současná hodnota n anut vyplacených na počátku každého období vztažená k úplnému počátku je, D = a.(1 + ) 1-k. 1 (1 + ) -n

28 Důchod odložený polhůtní Nechť je vyplacen důchod ve výš a vždy na konc jednoho období od konce (k+1)- tého období do (k + n)-tého období, celkem je vyplaceno n důchodů (anut) př úrokové sazbě....,,,. 0 k a a a a. k + n

29 Analogcky jako u předlhůtního důchodu odloženého, hodnota n anut na konc k-tého období lze vypočítat pomocí bezprostředního důchodu: D = a. k 1 (1 + ) -n Současná hodnota n anut vyplacených na konc každého období vztažená k úplnému počátku je D = a.(1 + ) -k. 1 (1 + )-n

30 Pokud během jednoho období je vyplaceno m anut ve výš x (ať už na počátku č na konc každé m-tny jednoho období) po n období, postup je zcela analogcký. Nejdříve vypočítáme hodnotu důchodu v čase k, pak dskontujeme k úplnému počátku. Fnální vzorec je následující: (m ± 1). PV = (1 + ) -k.m.x.(1 + ). 2m Poznámka: + ve vzorc platí pro předlhůtní důchod - ve vzorc platí pro polhůtní důchod 1 (1 + ) -n

31 Příklad: Máme k dspozc Kč. Touto částkou s chceme zajstt roční polhůtní důchod na pět let s tím, že s jeho výplatou začneme za dva roky. Jak vysoké budou výplaty př neměnné 4% roční úrokové sazbě? Řešení: = 1,04-2.x.(1 1,04-5 )/0,04 x = 7288,7 Kč

32 Příklad: Po narození dítěte byla uložena částka Kč do podílového fondu s průměrnou roční výnosností ve výš 3,5% do dovršení jeho plnoletost. Zjstěte, jaká je velkost částky vyplacené potomkov na počátku každého měsíce po dobu 10 let. Př vyplacení důchodu předpokládejme vyšší úrokovou sazbu 4,5% p.a. a roční úročení. Řešení: x = 1909,70 Kč = 1, x.( ,045/24). (1 1, )/0,045

33 Důchod věčný Důchod je vyplacen po dobu nekonečně dlouhou Opět se dělí na, Předlhůtní Polhůtní Pro začátek předpokládejme, že důchod je vyplacen jednou za období Nechť je vyplacen důchod ve výš a př úrokové sazbě nekonečně dlouho

34 Důchod věčný předlhůtní: současná hodnota důchodu věčného předlhůtního je lmtní hodnota bezprostředního důchodu předlhůtního, když n, 1 (1 + ) D = lm a.(1 + ). -n a = a + n Důchod věčný polhůtní: stejnou analogí dostaneme vzorec pro výpočet důchodu věčného polhůtního: D = lm a. 1 (1 + ) -n = a/ n

35 Pokud během jednoho období je vyplaceno m anut ve výš x (ať už na počátku č na konc každé m-tny jednoho období) po nekonečně dlouhou dobu, pak současná hodnota věčného důchodu bude: (m ± 1). PV = lm m.x.(1 + ) 2m n 1 (m ± 1). = m.x..(1 + ) 2m (1 (1 + ) -n )

36 Příklad věčný důchod O Kolk je třeba zvýšt částku, kterou jste zajstl pololetní polhůtní věčný důchod ve výš Kč 3000,-, chcete-l jej změnt na čtvrtletní předlhůtní věčný důchod ve výš Kč 1500,-?

37 Rodče naspořl částku Kč, kterou chtějí věnovat na vzdělání svých 2 dětí. Chtějí jm poskytnout každý rok stejný reálný příspěvek během doby jejch studa. Jakou částku dostane mladší dítě ve 3. roce studa, když starší dítě začíná studovat jž nyní a mladší začne studovat až za 4 roky? Obě budou studovat standardně 5 let. Dále víme, že částky budou vyplaceny vždy na konc roku a po celou dobu se roční míra nflace ve výš 2,1 % a úroková míra 4,9 % nezmění.

Důchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný

Důchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9

Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9 K testu průběžný Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat 250 000 při úrokové sazbě 9 % p.a. platné v průběhu prvních 4 let

Více

Budoucí hodnota anuity Spoření

Budoucí hodnota anuity Spoření Finanční matematika Budoucí hodnota anuity Spoření Doposud vypočítáme konečné (budoucí) hodnoty či počáteční (současné) hodnoty, za předpokladu konstantní (jednorázové) současné hodnoty (jednorázového

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích

19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity

Více

( ) = H zásobitel = 1. H i = 1+ +...

( ) = H zásobitel = 1. H i = 1+ +... sou fnance důležté? nanční management Základní pojmy e NPV důležté? Základy úrokového počtu reálná aktva fnanční aktva hmotná aktva nehmotná aktva sou fnance důležté? Kolk a do jakých aktv má frma nvestovat?

Více

ZÁKLADY FINANČNÍ MATEMATIKY

ZÁKLADY FINANČNÍ MATEMATIKY ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice

Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)

Více

Výpočet pojistného v životním pojištění. Adam Krajíček

Výpočet pojistného v životním pojištění. Adam Krajíček Výpočet pojistného v životním pojištění Adam Krajíček Dělení životního pojištění pojištění riziková - jedná se o pojištění, u kterých se předem neví, zda dojde k pojistné události a následně výplatě pojistného

Více

Masarykova univerzita Ekonomicko správní fakulta

Masarykova univerzita Ekonomicko správní fakulta Masarykova unverzta Ekonomcko správní fakulta Fnanční matematka dstanční studjní opora Frantšek Čámský Brno 2005 Tento projekt byl realzován za fnanční podpory Evropské une v rámc programu SOCRATES Grundtvg.

Více

4 Zásobitel, reálná úroková míra, diskont směnky

4 Zásobitel, reálná úroková míra, diskont směnky 4 Zásobitel, reálná úroková míra, diskont směnky Zásobitel, nebo-li také věčná renta, řeší, kolik dnes uložit peněžních prostředků, aby mi mohla být vyplácena pravidelná částka po určité období. Známe

Více

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.

Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

Krátkodobé cenné papíry a Skonto obsah přednášky

Krátkodobé cenné papíry a Skonto obsah přednášky Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice

Více

K n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:

K n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení: Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé

Více

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové

Více

ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky

ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky Otázka: Úročení a příklady výpočtu Předmět: Ekonomie Přidal(a): Penny ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky ÚROKOVÁ SAZBA (MÍRA) = v % vyjadřuje, jakou část z

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ DRUHÝ TUTORIÁL 30. 11. 2013 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 INFORMACE V ISu vypsány termíny: So 11. 1. 2014 13:00 učebna P11 So 1.

Více

Za případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení

Za případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení Jednoduché úročení 1. Jednoduchý příklad na výpočet úrokové sazby ze základní rovnice jednoduchého úročení: FV=PV*(1+r*t). Aby úroková sazba vyšla v p.a., je nutno časovou proměnnou (t) uvažovat v letech

Více

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule Klasický termínovaný vklad SLŽENÉ ÚRKVÁNÍ PŘÍKLAD: Podnikatel uložil na klasický termínovaný vklad částku 300 000 Kč. Jaká bude výše kapitálu za 3 roky, jestliže úroková sazba činí 2% p.a. a je a) roční

Více

Úročení vkladů. jednoduché složené anuitní

Úročení vkladů. jednoduché složené anuitní jednoduché složené anuitní Úročení vkladů Úrok = cena půjčených peněz, kterou platí ten, kdo peníze dočasně užívá, je vyjádřen v peněžních jednotkách (v Kč) (míra) = v %, vyjadřuje v procentech jakou část

Více

Obligace obsah přednášky

Obligace obsah přednášky Obligace obsah přednášky 1) Úvod do cenných papírů 2) Úvod do obligací (vymezení, dělení) 3) Cena obligace (teoretická, tržní, kotace) 4) Výnosnost obligace 5) Cena kupónové obligace mezi kupónovými platbami

Více

Stejně velké platby - anuita

Stejně velké platby - anuita Stejně velké platby - anuita Anuitní platby Existuje vzorec, pomocí kterého lze uspořádat splátky jistiny a platby úroků tak, že jejich součet v každém období (např. každý měsíc) je stejný. Běžný příklad:

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

Vyplatí se vám investovat do nemovitosti na pronájem?

Vyplatí se vám investovat do nemovitosti na pronájem? Vyplatí se vám investovat do nemovitosti na pronájem? Ceny nemovitostí šly v poslední době dolů a v současnosti jsou na zajímavých úrovních. Přitom investice do nemovitostí a příjem z jejich pronájmů jsou

Více

Obligace II obsah přednášky

Obligace II obsah přednášky Obligace II obsah přednášky 1) Durace obligace 2) Durace portfolia 3) Obchodování obligací kurzovní lístky Durace definice Durace udává střední dobu splatnosti obligace (tento pojem zavedl v roce 1938

Více

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D. ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

Nedejte šanci drahým a nevýhodným úvěrům

Nedejte šanci drahým a nevýhodným úvěrům Nedejte šanci drahým a nevýhodným úvěrům Finanční gramotnost v praxi Praha, 26/5/2011 Autor: Ing. Pavel Voříšek Česká spořitelna v 1.0 18/5/2011 Obsah RPSN: Jak jednoduše srovnávat různé úvěry?» Poskytovatelé

Více

1 Běžný účet, kontokorent

1 Běžný účet, kontokorent 1 Běžný účet, kontokorent Běžný účet je základním bankovním nástrojem pro správu klientových financí. Jeho primárním účelem je umožnit klientovi hospodařit s peněžní prostředky prostřednictvím některého

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5

SPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5 SPOŘENÍ KRÁTKODOBÉ Finanční matematika 5 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm05

Více

Finanční matematika pro každého příklady + CD-ROM

Finanční matematika pro každého příklady + CD-ROM Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady

Více

Analýza cenných papírů 2 Luděk BENADA E-mail: 75970@mail.muni.cz č. dveří 533 508 Boris ŠTURC sturc@mail.muni.cz Konzultační hodiny: pá 16:20-17:5017:50 čt dle dohody Dluhopisy Dluhový instrument CP peněžního

Více

Článek I. Základní ustanovení

Článek I. Základní ustanovení Zásady prodeje bytů v bytových domech ve vlastnictví obce Kuks -------------------------------------------------------------------------------- Zastupitelstvo obce Kuks rozhodlo na svém veřejném zasedání

Více

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014 Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

FRP cvičení Leasing

FRP cvičení Leasing FRP 3. 4. cvičení Leasing Slovo "leasing" bylo převzato do české terminologie z anglického slova, které v překladu znamená "pronájem". Jedná se o obchodní operaci leasingového pronajímatele (leasingová

Více

Excel COUNTIF COUNTBLANK POČET

Excel COUNTIF COUNTBLANK POČET Excel Výpočty a vazby v tabulkách COUNTIF Sečte počet buněk v oblasti, které odpovídají zadaným kritériím. Funkce je zapisována ve tvaru: COUNTIF(Oblast;Kritérium) Oblast je oblast buněk, ve které mají

Více

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu

Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.06 Integrovaná střední

Více

CVIČNÉ PŘÍKLADY z finanční matematiky

CVIČNÉ PŘÍKLADY z finanční matematiky CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...

Více

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534

Úvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534 VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012

Více

3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy

3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy 3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,

Více

Pasivní bankovní operace, vkladové bankovní produkty.

Pasivní bankovní operace, vkladové bankovní produkty. 5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV

Více

PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1)

PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1) PLC 4. cvičení KRÁTKODOBÉ PLÁNOVÁNÍ (1) 1) Sestavení podkladů pro operativní plán Podnik vyrábí brzdové destičky. V budoucnu mohou nastat různé změny, na které je nutné reagovat. Prodej brzdových destiček

Více

BKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro)

BKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) BKF_CZAF CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 13. 11. 2015 1 Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) 322829@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více

Carmen Simerská. Ústav matematiky VŠCHT, Praha. Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.

Carmen Simerská. Ústav matematiky VŠCHT, Praha. Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter. Sbírka příkladů Finanční matematika Carmen Simerská Ústav matematiky VŠCHT, Praha Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter. Sbírka příkladů Finanční

Více

FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE. COST BENEFIT ANALÝZA Část II.

FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE. COST BENEFIT ANALÝZA Část II. FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE COST BENEFIT ANALÝZA Část II. Diskontní sazba Diskontní sazba se musí objevit při výpočtu ukazatelů ve stejné podobě jako hotovostní toky. Diskontní sazba = výnosová

Více

CITROËN CASHBACK VYBERTE SI SVOJI SLEVU

CITROËN CASHBACK VYBERTE SI SVOJI SLEVU CITROËN Příklady financování pro: 1) Citroën C4 Tendance 1,6 Vti 2) Citroën C3 Picasso Tendance 1,4 Vti 95 3) Citroën Berlingo XTR 1,6 HDi 115 CITROËN Společnost CITROËN Česká Republika s.r.o. (CITROËN)

Více

Produkty finanční matematiky. Podle standardů finanční. gramotnosti pro střední školy. Předmět matematika Praktické využití posloupností a řad

Produkty finanční matematiky. Podle standardů finanční. gramotnosti pro střední školy. Předmět matematika Praktické využití posloupností a řad N{zev školy Číslo šablony/číslo sady Gymnázium J. V. Jirsíka, Fráni Šrámka, České Budějovice VI/2/ Poř. číslo v sadě 1 Jméno autora Období vytvoření materi{lu N{zev souboru Zařazení materi{lu podle ŠVP

Více

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem restart. To oceníme při opakovaném použití dokumentu. Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Finanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.

Finanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Finanční řízení podniku cvičení 1 I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto

Více

Důchodové pojištění, jeho produktové modifikace a srovnání s životním pojištěním

Důchodové pojištění, jeho produktové modifikace a srovnání s životním pojištěním Ekonomicko-správní fakulta MU v Brně Seminární práce z předmětu: Pojišťovnictví JS 2005/2006 Téma: Důchodové pojištění, jeho produktové modifikace a srovnání s životním pojištěním Vypracoval: Marcela Dubová,

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

FINANČNÍ MATEMATIKA I

FINANČNÍ MATEMATIKA I UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Eva Bohanesová FINANČNÍ MATEMATIKA I Olomouc 2006 Oponenti: Ing. Jaroslava Kubátová, Ph.D. Mgr. RNDr. Ivo Müller, Ph.D. Studijní text vznikl jako

Více

VY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:

VY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.: Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ.1.07/1.4.00/21.2362 Kód: 01.02 Pořadové číslo materiálu: 34 I/2 Inovace a zkvalitnění výuky

Více

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.

Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů. I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno

Více

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18)

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) Zkratkou RPSN se označuje takzvaná roční procentní sazba nákladů. Udává, kolik procent z původní dlužné částky musí spotřebitel za jeden rok zaplatit v

Více

Metodika výpočtu RPSN stavebního spoření

Metodika výpočtu RPSN stavebního spoření Metodika výpočtu RPSN stavebního spoření 1. Východiska 1.1. Základním východiskem je zákon Způsob výpočtu RPSN vychází ze Zákona o úvěru pro spotřebitele (dále jen ZÚS). Tato metodika pouze sjednocuje

Více

Závazné požadavky na parametry úvěrů

Závazné požadavky na parametry úvěrů Závazné požadavky na parametry úvěrů Limity úvěrů: - délka splatnosti úvěru maximálně 30 let, - bude umožněn odklad splátek dle typu úvěru 0 až 2 roky s tím, že úrok se bude platit od počátku poskytnutí

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů

Více

Makroekonomie I. Dvousektorová ekonomika. Téma. Opakování. Praktický příklad. Řešení. Řešení Dvousektorová ekonomika opakování Inflace

Makroekonomie I. Dvousektorová ekonomika. Téma. Opakování. Praktický příklad. Řešení. Řešení Dvousektorová ekonomika opakování Inflace Téma Makroekonomie I Dvousektorová ekonomika opakování Inflace Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Opakování Dvousektorová ekonomika Praktický příklad Dvousektorová ekonomika je charakterizována

Více

Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor. Složené úročení: roční úrokový faktor umocněný na počet let

Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor. Složené úročení: roční úrokový faktor umocněný na počet let Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor PV (1 + u) u (sazba) r (sazba p.a.) d (dní) (dní) Složené úročení: roční úrokový faktor umocněný na počet let Úroky lze vyplácet nebo

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Pracovní list pro téma III.2.9 Podnikání Praktický příklad na založení firmy VY_32_INOVACE_329_20

Více

PŘEHLED POPLATKŮ A PARAMETRŮ POJIŠTĚNÍ VÝBĚROVÉ ŽIVOTNÍ POJIŠTĚNÍ MAXIMUM EVOLUTION

PŘEHLED POPLATKŮ A PARAMETRŮ POJIŠTĚNÍ VÝBĚROVÉ ŽIVOTNÍ POJIŠTĚNÍ MAXIMUM EVOLUTION PŘEHLED POPLATKŮ A PARAMETRŮ POJIŠTĚNÍ VÝBĚROVÉ ŽIVOTNÍ POJIŠTĚNÍ MAXIMUM EVOLUTION PLATNÝ OD 1. 10. 2016 Část A. Poplatky za vedení podílového účtu a jednorázové poplatky Rozdíl mezi prodejní*) a nákupní

Více

PENÍZE NAVÍC. pravidla hry

PENÍZE NAVÍC. pravidla hry PENÍZE NAVÍC pravidla hry PENÍZE NAVÍC - HRA O ŽIVOT(Ě) aneb 30 LET VIRTUÁLNÍ REALITY ČESKÉ DOMÁCNOSTI Vítejte ve hře o životě PENÍZE NAVÍC, která vás provede finančním životem běžné české domácnosti.

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

Bankovnictví a pojišťovnictví 5

Bankovnictví a pojišťovnictví 5 Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:

Více

ČÁSTI: A: OBECNÉ PODMÍNKY B: ZVLÁŠTNÍ PODMÍNKY

ČÁSTI: A: OBECNÉ PODMÍNKY B: ZVLÁŠTNÍ PODMÍNKY Penzijní plán č. 2 transformovaného fondu Stabilita, ČSOB Penzijní společnosti, a. s. člena skupiny ČSOB (dříve II. Penzijní plán Českomoravského penzijního fondu a.s.) ČÁSTI: A: OBECNÉ PODMÍNKY B: ZVLÁŠTNÍ

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1

FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové

Více

Finanční matematika v českých učebnicích

Finanční matematika v českých učebnicích Finanční matematika v českých učebnicích 1 Teoretické minimum finanční matematiky In: Martin Melcer (author): Finanční matematika v českých učebnicích (Od Marchetovy reformy) (Czech) Praha: Matfyzpress

Více

16.5.2010. Základem pro výpočet mezd je hrubá mzda. Obsahuje: Z hrubé mzdy (HM) se odečítá:

16.5.2010. Základem pro výpočet mezd je hrubá mzda. Obsahuje: Z hrubé mzdy (HM) se odečítá: 10_Mzdy, zaměstnanci Výukový text o výpočtu a účtování mezd GAP Education střední škola Úvod Obsahem této prezentace bude především výpočet mzdy a její zaúčtování Výpočet mezd je znázorněn dle právního

Více

Životní pojištění Rodina. Sazebník a přehled poplatků platný od 1. dubna 2016

Životní pojištění Rodina. Sazebník a přehled poplatků platný od 1. dubna 2016 Životní pojištění Rodina Sazebník a přehled poplatků platný od 1. dubna 2016 OBSAH Přehled poplatků 04 05 Sazebník 06 20 Produktové limity 06 Sazebník hlavního pojištění 1. pojištěný (KR1C) 07 08 Sazebník

Více

Penzijní plán č. 1 Penzijního fondu České pojišťovny, a.s.

Penzijní plán č. 1 Penzijního fondu České pojišťovny, a.s. Penzijní plán č. 1 Penzijního fondu České pojišťovny, a.s. 1 Základní údaje 1.1 Penzijní fond České pojišťovny, a.s. (dále jen Penzijní fond ), je penzijním fondem podle zákona č. 42/1994 Sb., o penzijním

Více

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků

1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků 1 Cash Flow Rozvaha a výkaz zisku a ztráty jsou postaveny na aktuálním principu, tj. zakládají se na vztahu nákladů a výnosů k časovému období a poskytují informace o finanční situaci a ziskovosti podniku.

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4

BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 Sada: Ekonomie Téma: Banky Autor: Mgr. Pavel Peňáz Předmět: Základy společenských věd Ročník: 3. ročník Využití: Prezentace určená pro výklad a opakování Anotace:

Více

Penzijní plán Penzijního fondu České pojišťovny, a. s.

Penzijní plán Penzijního fondu České pojišťovny, a. s. Penzijní plán Penzijního fondu České pojišťovny, a. s. 1 Základní údaje 1.1. Penzijní fond České pojišťovny, a. s. (dále jen "Penzijní fond"), je penzijním fondem podle zákona č. 42/1994 Sb. o penzijním

Více

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1

ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY. Finanční matematika 1 ZÁKLADNÍ POJMY FINANČNÍ MATEMATIKY Finanční matematika 1 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Sbírka příkladů z finanční matematiky Michal Veselý 1

Sbírka příkladů z finanční matematiky Michal Veselý 1 Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.

Více

Výhody poradce Money Plus +

Výhody poradce Money Plus + PRESENTÁTOR Popis práce finančního trenéra Sociální dávky při pracovní neschopnosti, Půjčky vs. Investice, Financování bydlení a Finanční svoboda Výhody poradce Money Plus + penzijní fond hypotéka leasing

Více

Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah

Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah Vítáme Vás na semináři organizovaném v rámci projektu Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah Reg. číslo projektu: CZ.1.07/3.1.00/50.0015 Tento projekt je spolufinancován Evropským

Více

Nájemní bydlení nebo vlastní na úvěr

Nájemní bydlení nebo vlastní na úvěr Nájemní bydlení nebo vlastní na úvěr Autor: Petr Syrový 2. 6. 2014 Cíl: Cílem je porovnání výhodnosti bydlení v nájmu nebo ve vlastním bytě, který se kupuje na hypoteční úvěr. Porovnáváme z hlediska ceny

Více