Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí

Rozměr: px
Začít zobrazení ze stránky:

Download "Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí"

Transkript

1 Rovnice kontinuity V otrubí a vývěvou musí roudit vždy stejné množství lynu. Platí n n n n n n S S S t V t V t V q q q q = = = = = = = = = = Vacuum Technology J.Šandera, FEEC, TU Brno 1

2 Princiy čerání: Vývěvy (Vacuum Pums) a) Stlačování a exanse lynů (ístové, vodokružné, rotační, Rootovy vývěvy) b) Tření v důsledku viskosity lynů (arní a vodní tryskové) c) Tření v důsledku difuze (arní difuzní vývěvy) d) Tření za molekulárních odmínek (molekulární, turbomolekulární vývěvy) e) Čerání v důsledku ionisace Vacuum Technology J.Šandera, FEEC, TU Brno 2

3 Mezní tlak vývěvy (Lowest Pressure) 0... ři mezním tlaku je u většiny vývěv čerací rychlost 0 Hodnota mezního tlaku závisí hlavně na, a) mrtvém rostoru ve vývěvě b) netěsnostech c) tense ar maziv nevytváříse čisté vakuum Vacuum Technology J.Šandera, FEEC, TU Brno 3

4 Čerací rychlost vývěvy (Puming Seed) Udává objem lynu čeraný za určitou dobu [m 3 /sec, l/hod] S o = Čerací rychlost je buď konstantní, nebo závislá na tlaku. Při 0 je S 0 0 Efektivní čerací rychlost čerací rychlost v ústí do čerané komory V t Nakreslit obrázek Platí: S C S = 0. ef S + C 0 Vacuum Technology J.Šandera, FEEC, TU Brno 4

5 Příklady čeracích charakteristik S C S ef =. 0 S + C 0 V S o = t Difůzní vývěva Platí: Vacuum Technology J.Šandera, FEEC, TU Brno 5

6 Efektivní čerací rychlost - odvození Nakreslit obrázek Rovnice kontinuity Platí: 1. S0 = k. S ef ( ) k C S = 1 Úravou dostáváme S C S = 0. ef S + C 0 Vacuum Technology J.Šandera, FEEC, TU Brno 6

7 Teoretická, konstrukční a skutečná čerací rychlost Pro mechanické vývěvy latí, S teor = S konstr. 1 Charakteristická vlastnost mechanických vývěv s klesajícím tlakem klesá čerací rychlost Skutečná čerací rychlost: S = λ. S skut konstr 0 Součinitel lnění vývěvy závisí na tlaku a frekvenci Namalovat obrázek Vacuum Technology J.Šandera, FEEC, TU Brno 7

8 Zětný tlak (Exhaust Pressure) Tlak roti kterému může vývěva racovat tlak na výfuku a) Čerají do atmosferického tlaku. (Roughing or Backing) vývěvy ( mechanické rotační, tryskové) b) Které otřebují ředvakuum.. (difůzní, Rootsovy, molekulární) c) Které nemají výfuk.. (Sorční, iontové) Vacuum Technology J.Šandera, FEEC, TU Brno 8

9 1) Příad že, Efektivní čerání vývěvou C>>S 0 Vodivost otrubí je mnohem větší jako efektivní čerací rychlost v tomto říadě rozhoduje o čerání vývěva srávné 2) Příad že, C C<<S 0 v tomto říadě rozhoduje vodivost otrubí nehosodárné čerání Vacuum Technology J.Šandera, FEEC, TU Brno 9

10 Transortní vývěvy nasávají a vyfukují lyn, dělí se na, Mechanické S řenosem imulsu ístové vodokružné rotační olejové se statorovým křídlem s kolujícím rotorem rootsovy molekulární turbomolekulární tryskové difůzní vývěvy Vacuum Technology J.Šandera, FEEC, TU Brno 10

11 Teorie činnosti mechanických transortních vývěv Základem je ístová vývěva oak komresoru Tento systém není mechanicky vyvážený dělají se jiné konstrukce Vacuum Technology J.Šandera, FEEC, TU Brno 11

12 Vodokružná vývěva Source:W.Umrath, Fundamentals of Vacuum Technology, Cologne, August velkáčerací rychlost (až 1000m 3 /hod -velkásotřeba vody - odolná vůči nečistotám - vhodná ro metalurgii - nejnižší tlak 5000 Pa - stejná sotřeba vody, jako kolik vyčerá Voda ve vývěvě má následující funkce: -utěsňuje systém - odvádí telo ze systému - absorbuje vodu a áry Vacuum Technology J.Šandera, FEEC, TU Brno 12

13 Membránová vývěva Z důvod Source:W.Umrath, Fundamentals of Vacuum Technology, Cologne, August 1998 Vacuum Technology J.Šandera, FEEC, TU Brno 13

14 Rotační vývěvy Pohyb ístu je nahrazen křídly v otáčejícím se rotoru - dosahovaný tlak cca jednotky Pa - systém je nejčastěji uložen v olejové lázni - často se vyrábí vícestuňové systémy - oužívají se jako rimární vývěvy Vacuum Technology J.Šandera, FEEC, TU Brno 14

15 Dvoukřídlá rotační olejová vývěva Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 15

16 Rotační vývěva s ohyblivou řeážkou Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 16

17 Rotační Kinney vývěva Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 17

18 Rotační lunžrová vývěva Olej v zásobníku má za úkol mazat chladit ucat netěsnosti Jednostuňové a vícestuňové Kombinují se s Roots vývěvami Source:W.Umrath, Fundamentals of Vacuum Technology, Cologne, August 1998 Vacuum Technology J.Šandera, FEEC, TU Brno 18

19 Trochoidální vývěva Source:W.Umrath, Fundamentals of Vacuum Technology, Cologne, August 1998 Vacuum Technology J.Šandera, FEEC, TU Brno 19

20 Vybavení rotačních vývěv a vlastnosti olejů Automatické zavzdušňování vzduchem zbaveným vlhkosti a rašnosti ři zastavení vývěvy Zablokován rozběh oačným směrem Odojení vývěvy ři řetížení Měření rovozních hodin Telotní čidla ři řehřátí Dolňování stavu oleje s filtrací Vlastnosti olejů: řírodní, nebo syntetické olejovité látky, musí mít definovaný telotní rozsah, viskositu, nízkou tenzi nasycených ar Vacuum Technology J.Šandera, FEEC, TU Brno 20

21 Tryskové a arní ejektorové vývěvy s řenosem imulsu Dosahované vakuum je závislé na tlaku nasycených ar kaaliny (vody). Při 15 0 C dosahují tlaku 15 mbar Malá čerací rychlost (30l/s) Podobnou konstrukci mají ejektory ro výrobu vakua ze stlačeného vzduchu ro maniulátory okamžité vynutí vakua Vacuum Technology J.Šandera, FEEC, TU Brno 21

22 Rootsova vývěva vývěva s řenosem imulsu mezera mezi rotory 0,15 až 1mm otáčky rotorů 1500 až 4000 ot/min nemůže čerat roti říliš velkému tlaku na výstuu -roč, zětný ventil Source:W.Umrath, Fundamentals of Vacuum Technology, Cologne, August 1998 Vacuum Technology J.Šandera, FEEC, TU Brno 22

23 Molekulární vývěvy vysoké otáčky rotoru (až ot/min) ředávají ohybový moment částicím lynu molekuly lynu se ohybují v úzké mezeře mezi statorem a rotorem jsou nahrazovány dokonalejšími turbo molekulárními umami Musí vzniknout molekulární odmínky l >h Gaede (1913) Holweck Siegbahn Vacuum Technology J.Boušek, FEEC, BUT Brno 23

24 Turbomolekulární vývěvy Namalovat čerací charakteristiku.. Vacuum Technology J.Boušek, FEEC, BUT Brno 24

25 Turbomolekulární vývěvy Čerací rychlost: Více jako 500 l/s (méně než difuzní vývěvy) Mezní tlak: 1 Pa 10-8 Pa ( Torr) Závislost na čeraném lynu: - vodík a helium mají vyšší rychlost částic lynu, roto zěrný roud lynu je v tomto říadě vyšší než u ostatních lynů - ro vodík a helium mají tyto vývěvy nižší komresní oměr Použití turbomolekulárních vývěv - oužití ro UHV vakuum - středně drahý rovoz - čistý čerací roces, čerá dobře vzácné lyny - rovoz vyžaduje ravidelnou drahou údržbu - jsou citlivé na zničení - velká rychlost otáčení řináší roblémy s ložisky - magnetický závěs, vibrace systému Vacuum Technology J.Boušek, FEEC, BUT Brno 25

26 Difůzní vývěvy - konstrukce 3-stuňová chlazená vodou Chlazená kaalným dusíkem Vacuum Technology J.Boušek, FEEC, BUT Brno 26

27 Difůzní vývěvy Princi funkce: Ve sodní části (varník) se ohřívá kaalina, áry stouají vzhůru, v tryskách o obvodu mění směr. Při ohybu strhávají částice čeraného lynu Trysky jsou umístěny v několika řadách očet stuňů vývěvy Páry kaaliny ři kontaktu s chlazenou stěnou vývěvy kondensují a stékají zět do varníku Chlazení se realizuje nejčastěji vodou. Je třeba automatika, která vyloučí vynutí chlazení, okud je vývěva horká Vacuum Technology J.Boušek, FEEC, BUT Brno 27

28 Vlastnosti difůzních vývěv Čerací rychlost: Až 2000l/sec Dosahované vakuum: 100 až 10-5 Pa, je závislé na očtu stuňů, chlazení a čeraném lynu Začíná čerat až od tlaku jednotek ascalu. Používá ve sojení s rotační vývěvou Vysoká mechanická odolnost nemá žádné ohyblivé součásti Vacuum Technology J.Boušek, FEEC, BUT Brno 28

29 Čerací charakteristika difůzní vývěvy Začíná čerat až od tlaku jednotek ascalu Používá ve sojení s rotační vývěvou Čerací rychlost 1000 l/s a více Vacuum Technology J.Šandera, FEEC, TU Brno 29

30 Příslušenství difúzních vývěv laače ar a vymrazovačky indikace ohřevu a řehřátí oožděné vynutí chladící vody kontrola hladiny oleje ve vývěvě (asoň onorná tyč) oleje flegmatické kaaliny, nízká tense ar Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 30

31 Chování materiálů ři nízkých telotách Kovy ztrácejí houževnatost a stávají se sklovitě křehkými Používají se kovy a slitiny s menší křehkostí Cu,Al, bronzi, slitiny titanu a austenitické oceli (nerezavějící, nemagnetické) Plastické hmoty a ryž se stávají křehkými Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 31

32 Sorční vývěvy Vážou čeraný lyn, Charakteristika nemají výfukový ventil, velká čerací rychlost, nemají ohyblivé součásti velká životnost Kryogenní Iontové vývěvy k- kondenzační k-sorbční Sublimační getrové Iontové chemisorbční Vacuum Technology J.Šandera, FEEC, TU Brno 32

33 Kondenzační kryovývěvy Při řerušení chlazení se uvolní velké množství lynů, je třeba řetlakový ojistný ventil Omezená čerací doba, čerá dokud se chladicí elementy neokryjí kondenzátem Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 33

34 Kryogenní (kryokondenzační) vývěvy Vacuum Technology J.Boušek, FEEC, BUT Brno 34

35 Charakteristika kryogenních (kryokondenzačních) vývěv Charakter čerání: čerací rychlost až l/s, čerají inertní lyny, vodík čerací rychlost je omezena efúzní vodivostí otvoru velký ovrch velká čerací rychlost (11 l/cm 2 ) tlaky 10-1 Pa až 10-9 Pa začíná čerat o dodání kaalného lynu do zásobníku jednoduchá obsluha, jednoduchá konstrukce drahý rovoz vyžadují dusíkové hosodářství omezená doba rovozu, je třeba regenerovat Vacuum Technology J.Boušek, FEEC, BUT Brno 35

36 Kryosorční vývěvy Konstrukce: Válcová nádoba nalněná zeolitem, onořená do Dewarovy nádoby s kaalným dusíkem. Uvnitř nádoby jsou hliníková křídla ro leší řestu tela do objemu zeolitu Vacuum Technology J.Boušek, FEEC, BUT Brno 36

37 Kryosorbční vývěvy Nálň krystalické látky na bázi hlinitokřemičitanů (Zeolity) 1g zeolitu má účinný ovrch až 700m 2 Po vyčerání následuje regenerace nálně ři telotě 600 o C Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Source:W.Umrath, Fundamentals of Vacuum Technology, Cologne, August 1998 Vacuum Technology J.Šandera, FEEC, TU Brno 37

38 Použití sorčních, kryosorčních vývěv ro vědecké alikace, UHV vakuum oužití tam, kde není třeba velká čerací rychlost vyrábí čisté vakuum mezní tlak až 10-9 Pa maximální čerací rychlost, závisí na konstrukci vývěvy (velikost vstuního otvoru) čerací rychlost roste s klesající telotou třeba regenerovat ři telotě cca 300 o C, tlak se může zvýšit více jako na 100 Pa Vacuum Technology J.Boušek, FEEC, BUT Brno 38

39 Iontové vývěvy Princi: Ionizovaný lyn se zachycuje na záorně nabité elektrodě, tím se zmenšuje očet částic v objemu. - ro zvýšení účinnosti se ionizace kombinuje s sorcí a getrováním + k = i S 0 = β.k e.. náboj elektronu. účinnost čerání (ionizací). konstanta β je dána konstrukcí vývěvy (Torr.l/sec.A) maximální hodnota je, β 1 = en max = n.. množství molekul v 1l lynu ři = 1 torr ři 20 o C, n=3,27 x (1/Torr.l) i +.. roud iontů Iontové vývěvy musí začít čerat až od tlaku cca 10-2 torr, jinak je ionizační roud vysoký a vývěva se říliš ohřívá Vacuum Technology J.Šandera, FEEC, TU Brno 39

40 Sublimační getrové vývěvy Založeny na rinciu adsorce a chemické vazby V nádobě sublimuje Ti getr na co největší lochu lástě. Potom chemická vazba lynů (O 2, N 2, H 2 ), nebo fyzikální adsorbce na stále se obnovující ovrch Ti Odařování může být kontinuální, nebo imulsní, elektronovým arskem Pokud je vrstva chlazena kryosublimační vývěva Reakční schonost lynu se zvyšuje ionizací lynu Proč se oužívá titan: - Vysoká chemická reaktivita - Nízká tense nasycených ar (10-8 Pa) -Vývěvy nečerají inertní lyny Obr. Herbův orbitron Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 40

41 Sublimační getrové vývěvy odmínky srávné funkce - maximální čerací tlak 10-1 Pa -střední volná dráha částic lynu musí být větší než vzdálenost výarníku a stěn vývěvy -ři vysokých tlacích čerají šatně je vysoká sotřeba titanu a nízká životnost - čerání je selektivní, dobře čerá O 2,N 2, vodní áry, - je vhodná ro HV a UHV alikace Source: Ladislav Fikes, Fyzika nízkých tlaků, SNTL 1991 Vacuum Technology J.Šandera, FEEC, TU Brno 41

42 Narašovací iontové vývěvy Princi čerání: Narášené atomy titanu adsorbují reaktivní lyny, inertní lyny jsou ionizovány a zachycovány na katodě Charakteristika: čerají v libovolné oloze, netřeba zkaalněné lyny vyrábí čisté vakuum, bez organického znečistění velká solehlivost čeraci rychlost více jako 500 l/s rozsah tlaků je 10-2 až 10-7 Pa čerají od 1 Pa Vacuum Technology J.Boušek, FEEC, BUT Brno 42

43 Narašovací iontové vývěvy - konstrukce Princi čerání: Anoda je komorová. Mezi anodou a katodou (5 až 7 kv) hoří doutnavý výboj. Narášené atomy titanu adsorbují reaktivní lyny, inertní lyny jsou ionizovány a zachycovány na katodě, dráha letu ionizovaných lynů je rodloužena magnetickým olem Source:A.Roth, Vacuum Technology,Elsevier Science B.V. Amsterdam 1990 Vacuum Technology J.Boušek, FEEC, BUT Brno 43

44 Narašovací iontové vývěvy - konstrukce Vacuum Technology J.Boušek, FEEC, BUT Brno 44

45 Triodová iontová vývěva Konstrukce, která umožňuje čerat argon. Katoda má tvar mřížky, narášený Ti rochází řes katodu na stěnu vývěvy, stejně jako ionty lynu, které se zachycují na narášeném Ti. Vacuum Technology J.Boušek, FEEC, BUT Brno 45

46 Vacuum Technology J.Boušek, FEEC, BUT Brno 46

47 Měření čerací rychlosti - metoda konstantního tlaku S V q = atm. t q 0 = = k atm. V t. k do vakuové komory se ouští definované množství lynu roud q tlak měříme vakuometrem roud lynu se měří z úbytku objemu lynu v kalibrované byretě obvykle ři atmosférickém tlaku Vacuum Technology J.Šandera, FEEC, TU Brno 47

48 Měření čeracích rychlostí metoda konstantního objemu Normalizovaná hermetická komora objemu V.. Namalovat obrázek Sledujeme úbytek tlaku v čase - zaisovač Řešením diferenciální rovnice dostáváme S S 0 0. ( t t ) = 2 1. S 2,303. t 0 2 = = V.ln V t V 1 d dt 1 2 ln Vacuum Technology J.Šandera, FEEC, TU Brno 48

49 Časy otřebné k vyčerání na žádaný tlak ln. S V t t t = = Tento vztah latí do tlaků cca 0,1Pa, otom se začne ulatňovat hlavně desorce ze stěn. Vacuum Technology J.Šandera, FEEC, TU Brno 49

50 Minimální tlaky dosažitelné v reálné vakuové aaratuře Minimální dosažitelný tlak závisí na čerací rychlosti vývěvy, mezním tlaku vývěvy a na velikostech zdrojů roudu lynu v komoře min = 0 + q S q q celk des erm dif techn net = + ef + + q S ef + q + q 0 Největším roblémem je ři nízkých tlacích desorce Vacuum Technology J.Šandera, FEEC, TU Brno 50

51 Schéma vakuové aaratury Vacuum Technology J.Šandera, FEEC, TU Brno 51

Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí

Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí Rovnice kontinuity V potrubí a vývěvou musí proudit vždy stejné množství plynu. Platí n n n n n n S p S p S p t V p t V p t V p q q q q............... 2 2 1 1 2 2 2 1 1 1 3 2 1 = = = = = = = = = = Vacuum

Více

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak

Více

Vývěvy s transportem molekul z čerpaného prostoru

Vývěvy s transportem molekul z čerpaného prostoru Vývěvy s transportem molekul z čerpaného prostoru Paroproudové vývěvy Molekuly plynu získávají dodatečnou rychlost ve směru čerpání prostřednictvím proudu pracovní látky(voda, pára, plyn). Většinou je

Více

Získávání nízkých tlaků

Získávání nízkých tlaků Vývěvy s přenosem hybnosti Princip činnosti : Molekulám čerpaného plynu se uděluje přídavná hybnost v takovém směru, aby se pohybovaly ve směru čerpání, tj. z čerpaného objemu směrem k výstupu vývěvy.

Více

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Vakuum 2. Část Doc. Ing. Karel Daďourek 2006 Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopna funkce p 0 Čerpací schopnost

Více

Konstrukce vakuových zařízení

Konstrukce vakuových zařízení Konstrukce vakuových zařízení Základní parametry vývěv Mezní tlak vývěvy p mez Tlak na výstupu vývěvy, od kterého je schopná funkce p 0 (je schopná pracovat od atmosférického tlaku?) Čerpací schopnost

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Měření vakua. Vacuum Technology J.Šandera, FEEC, TU Brno 1

Měření vakua. Vacuum Technology J.Šandera, FEEC, TU Brno 1 Měření vakua Je třeba měřit vakuum ve velkém rozsahu (10-10 až 10 5 Pa) Používají se mechanické a elektrické principy Co požadujeme po vakuometrech: - absolutní měření a nezávislost údaje na druhu plynu

Více

Přednáška 9. Vývěvy s vazbou molekul: kryosorpční, zeolitové, iontové a sublimační vývěvy. Martin Kormunda

Přednáška 9. Vývěvy s vazbou molekul: kryosorpční, zeolitové, iontové a sublimační vývěvy. Martin Kormunda Přednáška 9 Vývěvy s vazbou molekul: kryosorpční, zeolitové, iontové a sublimační vývěvy. Sorpční vývěvy využívají převážně jevu adsorpce molekul na povrchu tak jsou molekuly odstraňovány z čerpaného objemu

Více

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip: Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova

Více

F4160. Vakuová fyzika 1. () F / 23

F4160. Vakuová fyzika 1.   () F / 23 F4160 Vakuová fyzika 1 Pavel Slavíček email: ps94@sci.muni.cz () F4160 1 / 23 Osnova: Úvod a historický vývoj Volné plyny statický stav plynů dynamický stav plynů Získávání vakua - vývěvy s transportem

Více

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná

Více

F6450. Vakuová fyzika 2. Vakuová fyzika 2 1 / 32

F6450. Vakuová fyzika 2.   Vakuová fyzika 2 1 / 32 F6450 Vakuová fyzika 2 Pavel Slavíček email: ps94@sci.muni.cz Vakuová fyzika 2 1 / 32 Osnova Vázané plyny Sorpční vývěvy kryogenní zeolitové sublimační iontové getrové - vypařované, nevypařované (NEG)

Více

F6450. Vakuová fyzika 2. () F / 21

F6450. Vakuová fyzika 2.   () F / 21 F6450 Vakuová fyzika 2 Pavel Slavíček email: ps94@sci.muni.cz () F6450 1 / 21 Osnova Vázané plyny Sorpční vývěvy kryogenní zeolitové sublimační iontové getrové - vypařované, nevypařované (NEG) Měření ve

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

Přednáška 8. Vývěvy s proudem pracovní tekutiny: vodní vývěva, ejektorové a difúzní vývěvy. Martin Kormunda

Přednáška 8. Vývěvy s proudem pracovní tekutiny: vodní vývěva, ejektorové a difúzní vývěvy. Martin Kormunda Přednáška 8 Vývěvy s proudem pracovní tekutiny: vodní vývěva, ejektorové a difúzní vývěvy Vodokružní vývěva vývěva využívá rotační pohyb podobně jako rotační olejová vývěva obdobně vznikají uzavřené komory

Více

Teoretické základy vakuové techniky

Teoretické základy vakuové techniky Procesy při čerpání soustavy Předpokládejme, že vývěvou čerpáme vakuovou soustavu od počátečního atmosférického tlaku až do vysokého vakua. Zpočátku jde o objemový proces, čerpané plyny vykazují viskózní

Více

p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w

p V = n R T Při stlačování vkládáme do systému práci a tím se podle 1. věty termodynamické zvyšuje vnitřní energie systému U = q + w 3. DOPRAVA PLYNŮ Ve výrobních procesech se často dopravují a zpracovávají plyny za tlaků odlišných od tlaku atmosférického. Podle poměru stlačení, tj. poměru tlaků před a po kompresi, jsou stroje na dopravu

Více

Přednáška 6. Vývěvy s pracovní komorou: pístové, s valivým pístem, olejové a suché rotační vývěvy, šroubové vývěvy.

Přednáška 6. Vývěvy s pracovní komorou: pístové, s valivým pístem, olejové a suché rotační vývěvy, šroubové vývěvy. Přednáška 6 Vývěvy s pracovní komorou: pístové, s valivým pístem, olejové a suché rotační vývěvy, šroubové vývěvy. Vývěvy Základní rozdělení: transportní přenášejí molekuly od vstupního hrdla k výstupnímu

Více

Základy teorie vozidel a vozidlových motorů

Základy teorie vozidel a vozidlových motorů Základy teorie vozidel a vozidlových motorů Předmět Základy teorie vozidel a vozidlových motorů (ZM) obsahuje dvě hlavní kaitoly: vozidlové motory a vozidla. Kaitoly o vozidlových motorech ukazují ředevším

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

PRŮTOK PORÉZNÍ VRSTVOU

PRŮTOK PORÉZNÍ VRSTVOU PRŮTOK PORÉZNÍ RSTOU Průmyslové alikace Nálňové aaráty Filtrační zařízení Porézní vrstva: órovitá řeážka (lsť, keramika, aír) zrnitá vrstva (ísek, filtrační koláč) nálň (kuličky, kroužky, sedla, tělíska)

Více

Přednáška 5. Martin Kormunda

Přednáška 5. Martin Kormunda Přednáška 5 Metody získávání nízkých tlaků : čerpací rychlost, časový průběh čerpacího procesu, mezní tlak, zbytková atmosféra, rozdělení tlaku v systému při čerpání. Zásady návrhu vakuových systémů. Metody

Více

Inženýrství chemicko-farmaceutických výrob

Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace

Více

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin. Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

5. Získávání a měření nízkých tlaků

5. Získávání a měření nízkých tlaků 5. Získávání a měření nízkých tlaků Úvod Přesto, že latinské slovo vacume znamená prázdný, neznáme dosud prostor, který by byl charakterizován neexistencí látky. Výrazu vakuum připisujeme prostor, který

Více

PZP (2011/2012) 3/1 Stanislav Beroun

PZP (2011/2012) 3/1 Stanislav Beroun PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Sorpční vývěvy. 1. Vývěvy využívající fyzikální adsorpce (kryogenní vývěvy)

Sorpční vývěvy. 1. Vývěvy využívající fyzikální adsorpce (kryogenní vývěvy) Sorpční vývěvy Využívají adsorpce, tedy vazby molekul na povrch pevných látek. Lze je rozdělit do dvou skupin:. vývěvy využívající fyzikální adsorpce. vývěvy využívající chemisorpce. Vývěvy využívající

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je

Více

BH059 Tepelná technika budov Konzultace č. 2

BH059 Tepelná technika budov Konzultace č. 2 Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace

Více

3. Aktivní snímače. 3.1 Termoelektrické snímače

3. Aktivní snímače. 3.1 Termoelektrické snímače 3. Aktivní snímače 3.1 Termoelektrické snímače Termoelektrické snímače jsou založen na termoelektrickém jevu, který je zůsoben závislostí stkového otenciálu dvou různých kovů na telotě. V obvodu ze dvou

Více

3. Výroba stlačeného vzduchu - kompresory

3. Výroba stlačeného vzduchu - kompresory echatronika 02 - Pneumatika 1 z 5 3. Výroba stlačeného - kompresory Kompresory jsou stroje ke stlačování (kompresi), neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého pohybu) na tlakovou

Více

3. VÁZANÉ P L Y N Y... 81

3. VÁZANÉ P L Y N Y... 81 Obsah PŘEDMLUVA... 12 L Ú V O D...' ' ' ' ' 14 1.1. Problematika nízkých tlaků... 14 1.2. V akuum... 14 1.3. Význam vysokého vakua pro vědu, techniku a prům ysl... 14 1.4. Využiti vysokého a velmi vysokého

Více

Plazmové svařování a dělení materiálu. Jaromír Moravec

Plazmové svařování a dělení materiálu. Jaromír Moravec Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.

Více

Fyzikální základy moderních technologií

Fyzikální základy moderních technologií Fyzikální základy moderních technologií Obsah přednášky : I. Vakuová technika II. Plazma a aplikace plazmových technologií III. Moderní lasery a jejich aplikace IV. Piezoelektrické jevy a jejich aplikace

Více

K141 HY3V (VM) Neustálené proudění v potrubích

K141 HY3V (VM) Neustálené proudění v potrubích Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Transportní vývěvy. Mechanické vývěvy. 1. Pístová vývěva

Transportní vývěvy. Mechanické vývěvy. 1. Pístová vývěva Transportní vývěvy Mechanické vývěvy Základem těchto vývěv je pracovní komora, periodicky zvětšující a zmenšující svůj objem. Historicky nejstarší vývěva tohoto typu je: 1. Pístová vývěva Výpočet čerpací

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

3. Výroba stlačeného vzduchu - kompresory

3. Výroba stlačeného vzduchu - kompresory zapis_pneumatika_kompresory - Strana 1 z 6 3. Výroba stlačeného vzduchu - kompresory Kompresory jsou stroje ke stlačování ( #1 ) vzduchu, neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

Přednáška 10. Měření nízkých tlaků : membránové a kompresní vakuoměry, tepelné vakuoměry, ionizační vakuoměry. Martin Kormunda

Přednáška 10. Měření nízkých tlaků : membránové a kompresní vakuoměry, tepelné vakuoměry, ionizační vakuoměry. Martin Kormunda Přednáška 10 Měření nízkých tlaků : membránové a kompresní vakuoměry, tepelné vakuoměry, ionizační vakuoměry. Měření ve vakuové technice jde o metody měření fyzikálních veličin, které jsme dříve definovali:

Více

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2

TECHNICKÝ KATALOG GRUNDFOS. UPS, UPSD série 200 2.2 TECNICKÝ KATALOG GRUNDFOS UPS, UPSD série. Oběhová bezucávková čeradla (mokroběžná) ro toná zařízení Obsah UPS, UPSD série Obecné informace strana Výkonový rozsah Výrobní rogram Tyový klíč Použití 5 Otoné

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

13. Skupenské změny látek

13. Skupenské změny látek 13. Skuenské změny látek Skuenství je konkrétní forma látky, charakterizovaná ředevším usořádáním částic v látce a rojevující se tyickými fyzikálními a chemickými vlastnostmi. Pro označení skuenství se

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014 Laser je řístroj, který generuje elektromagnetické záření monochromatické, směrované (s malou rozbíhavostí), koherentní, vysoce energetické, výkonné, s velkým jasem Základní konstrukční součásti evnolátkového

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu

Více

Povrchové procesy. Přichycení na povrch.. adsorbce. monomolekulární, multimolekulární (namalovat) Přichycení do objemu, také plyn v kapalině.

Povrchové procesy. Přichycení na povrch.. adsorbce. monomolekulární, multimolekulární (namalovat) Přichycení do objemu, také plyn v kapalině. Povrchové procesy Plyny obklopující pevné látky jsou vázány do objeu a na povrch - sorbce, nebo jsou z něho uvolňovány - desorbce oba jevy probíhají zároveň Přichycení na povrch.. adsorbce. onoolekulární,

Více

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D. HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Počet atomů a molekul v monomolekulární vrstvě

Počet atomů a molekul v monomolekulární vrstvě Počet atomů a molekul v monomolekulární vrstvě ϑ je stupeň pokrytí ϑ = N 1 N 1p N 1 = ϑn 1p ν 1 = 1 4 nv a ν 1ef = γν 1 = γ 1 4 nv a γ je koeficient ulpění () F6450 1 / 23 8kT v a = πm = 8kNa T π M 0 ν

Více

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Studium fotoelektrického jevu

Studium fotoelektrického jevu Studium fotoelektrického jevu Úkol : 1. Změřte voltampérovou charakteristiku přiložené fotonky 2. Zpracováním výsledků měření určete hodnotu Planckovy konstanty Pomůcky : - Ampérmetr TESLA BM 518 - Školní

Více

VEDENÍ ELEKTRICKÉHO PROUDU V PLYNU, SAMOSTATNÝ A NESAMOSTATNÝ VÝBOJ

VEDENÍ ELEKTRICKÉHO PROUDU V PLYNU, SAMOSTATNÝ A NESAMOSTATNÝ VÝBOJ Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_2S2_D19_Z_ELMAG_Vedeni_elektrickeho_proudu_v_ plynech_samostatny_a_nesamostatny_vyboj_pl

Více

Senzory ionizujícího záření

Senzory ionizujícího záření Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5

Více

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST

MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST RV, RK VODOKRUŽNÉ VÝVĚVY A KOMPRESORY SIGMA PUMPY HRANICE, s.r.o. Tovární č.p. 65, 5 Hranice I - Město, Česká republika tel.: 5 66, fax: 5 66 e-mail: sigmapumpy@sigmapumpy.com

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

ADC (ADS) AIR DATA COMPUTER ( AIR DATA SYSTEM ) Aerometrický počítač, Aerometrický systém. V současné době se používá DADC Digital Air data computer

ADC (ADS) AIR DATA COMPUTER ( AIR DATA SYSTEM ) Aerometrický počítač, Aerometrický systém. V současné době se používá DADC Digital Air data computer ADC (ADS) AIR DATA COPUTER ( AIR DATA SYSTE ) Aerometrický očítač, Aerometrický systém V současné době se oužívá DADC Digital Air data comuter Slouží ke snímání a komlexnímu zracování aerometrických a

Více

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla.

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla. Čeradla ředstavují komletní konstrukční řadu oběhových čeradel s integrovaným systémem řízení odle diferenčního tlaku, který umožňuje řizůsobení výkonu čeradla aktuálním rovozním ožadavkům dané soustavy.

Více

Primární etalon pro měření vysokého a velmi vysokého vakua

Primární etalon pro měření vysokého a velmi vysokého vakua VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Charakteristika a mrtvá doba Geiger-Müllerova počítače

Charakteristika a mrtvá doba Geiger-Müllerova počítače Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Fyzikální metody nanášení tenkých vrstev

Fyzikální metody nanášení tenkých vrstev Fyzikální metody nanášení tenkých vrstev Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce)

Více

Anomální doutnavý výboj

Anomální doutnavý výboj Anomální doutnavý výboj Výboje v plynech ve vakuu Základní procesy ve výboji Odprašování dopadající kladné ionty vyrážejí z katody částice, tím dochází k úbytku hmoty katody a zmenšování rozměrů. Odprašování

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

RV, RK SIGMA PUMPY HRANICE A KOMPRESORY 426 2.98 71.01

RV, RK SIGMA PUMPY HRANICE A KOMPRESORY 426 2.98 71.01 SIGMA PUMPY HRANICE VODOKRUŽNÉ VÝVĚVY A KOMPRESORY RV, RK SIGMA PUMPY HRANICE, s.r.o. Tovární 65, 75 Hranice tel.: 6/6, fax: 6/ 57 Email: sigmahra@sigmahra.cz 6.9 7. Použití Vývěvy RV se používají v mnoha

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu

EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky rostředí rof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu OSNOVA 5. KAPITOLY Úvod do roblematiky měření

Více

Vakuové metody přípravy tenkých vrstev

Vakuové metody přípravy tenkých vrstev Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD

Více

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ PŘEŇOVÁNÍ PÍSOVÝCH SPALOVACÍCH MOORŮ Účinnou cestou ke zvyšování výkonů PSM je zvyšování středního efektivního tlaku oběhu e oocí řelňování. Současně se tí zravidla zvyšuje i celková účinnost otoru. Zvyšování

Více

Obr. 1: Řez masivním průřezem z RD zasaženým účinkům požáru

Obr. 1: Řez masivním průřezem z RD zasaženým účinkům požáru Teorie: Dřevo a materiály na bázi dřeva jsou sloučeninami uhlíku, kyslíku, vodíku a dalších rvků řírodního ůvodu. Jedná se o hořlavé materiály, jejichž hořlavost lze do jisté míry omezit ovrchovou úravou,

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

8. Komponenty napájecí části a příslušenství

8. Komponenty napájecí části a příslušenství Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT HYDRAULICKÉ A PNEUMATICKÉ MECHANISMY 8. Komponenty napájecí části

Více

Teoretické základy vakuové techniky

Teoretické základy vakuové techniky Vakuová technika Teoretické základy vakuové techniky tlak plynu tepeln! pohyb molekul st"ední volná dráha molekul proud#ní plynu vakuová vodivost $erpání plyn% ze systém% S klesajícím tlakem se chování

Více

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Mlžnákomora PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Historie vývoje mlžné komory Jelikož není možné částice hmoty pozorovat pouhým okem, bylo vyvinutozařízení,ježzviditelňujedráhytěchtočásticvytvářenímmlžné

Více

2. Cvi ení A. Výpo et množství vzduchu Zadání p íkladu: Množství p ivád ného vzduchu Vp :

2. Cvi ení A. Výpo et množství vzduchu Zadání p íkladu: Množství p ivád ného vzduchu Vp : 2. Cvčení Požadavky na větrání rostor - Výočet množství větracího vzduchu - Zůsob ohřevu a chlazení větracího vzduchu A. Výočet množství vzduchu výočet množství čerstvého větracího vzduchu ro obsluhovaný

Více

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD

Více

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody

Třetí Dušan Hložanka 16. 12. 2013. Název zpracovaného celku: Řetězové převody. Řetězové převody Předmět: Ročník: Vytvořil: Datum: Stavba a rovoz strojů Třetí Dušan Hložanka 6.. 03 Název zracovaného celku: Řetězové řevody Řetězové řevody A. Pois řevodů Převody jsou mechanismy s tuhými členy, které

Více

Měření charakteristik fotocitlivých prvků

Měření charakteristik fotocitlivých prvků Měření charakteristik fotocitlivých prvků Úkol : 1. Určete voltampérovou charakteristiku fotoodporu při denním osvětlení a při osvětlení E = 1000 lx. 2. Určete voltampérovou charakteristiku fotodiody při

Více

Svařování svazkem elektronů

Svařování svazkem elektronů Svařování svazkem elektronů RNDr.Libor Mrňa, Ph.D. 1. Princip 2. Interakce elektronů s materiálem 3. Konstrukce elektronové svářečky 4. Svařitelnost materiálů, svařovací parametry 5. Příklady 6. Vrtání

Více

Elektronová Mikroskopie SEM

Elektronová Mikroskopie SEM Elektronová Mikroskopie SEM 26. listopadu 2012 Historie elektronové mikroskopie První TEM Ernst Ruska (1931) Nobelova cena za fyziku 1986 Historie elektronové mikroskopie První SEM Manfred von Ardenne

Více