ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

Rozměr: px
Začít zobrazení ze stránky:

Download "ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU"

Transkript

1 AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové slová: Kvantfkáca rzka, ctlvostní analýza. ÚVOD Vzhledem k rostoucí potřebě ocenění rzka v rámc managementu nvestc, dané mmo jné rostoucí kvaltou konkurence, je v tomto příspěvku podán příklad kalkulace rzka v zjednodušeném příkladu nákup nemovtost. Protože samotná analýza rzka není vždy postačující, je následně kalkulované rzko podrobeno analýzy ctlvost. U obojího, jak u analýzy rzka, tak ctlvost, jsou uvedeny základní otázky, které by s měl nvestor po jejch zpracování vždy položt a zodpovědět. Management rzka je složtý proces skládající se z mnoha dílčích procesů je sám různě propojený s mnoha ostatním procesy managementu nvestce. Vzhledem k omezenému rozsahu tohoto příspěvku je pojednání o tomto zde vynecháno a je objasněna pouze kalkulace rzka a procesy jí zpravdla následující. Blžší nformace o rozsahu managementu rzka, o jeho vztazích s ostatním procesy managementu nvestc čtenář nalezne např. v [].. KVATIFIKACE RIZIKA Předpokládejme za měsíc nákup nemovtost v celkové pořzovací ceně 5 ml. Kč a dále, že tato cena reprezentuje náklady žvotního cyklu stavby. Výše této ceny je dohodnuta jako pevná, leč ještě nebyla uzavřena smlouva. Dále předpokládejme, že veškeré dentfkované poruchy stavby tuto výš kupní ceny ovlvnly, míra nflace se za tu dobu nezmění a že stavba není pojštěna prot žvelní událost. Tyto předpoklady reprezentují výchozí (nultý) nvestční scénář. ) Jří Marek, Ing., FSV ČVUT, Thákurova 7, 9 Praha Dejvce,

2 Z důvodu množících se nformací v médích, po dohodě o pevné výš kupní ceny, že vzroste do okamžku koupě nemovtost míra nflace o % a že na této výš zůstane celý následující rok od koupě, č vzhledem k určté možnost, že budou objeveny, řekněme během prvního roku po koup nemovtost a vždy bezprostředně na to odstraněny, její další dříve nezjštěné poruchy, exstují tímto dva alternatvní scénáře vznku dodatečných nvestčních nákladů. K těmto dvěma alternatvním scénářům ještě přpojíme možnost, že do stavby udeří blesk a celá shoří. Z hledska nvestora budeme považovat trvání nebezpečí úderu blesku a požáru pouze od okamžku koupě nemovtost. Faktcky může ke shoření stavby dojít před její koupí. V tom případě bude nvestor nkasovat pouze ztrátu rovnou nákladům ztracené příležtost. áklady ztracené příležtost se uvažují v tomto příkladě nulové. Předpokládejme, že se všechna nebezpečí podařlo dentfkovat. Všem vzájemně možným kombnacem těchto tří scénářů dostaneme celkem sedm možností vznku dodatečných nákladů nvestce: - vzroste míra nflace, - po koup nemovtost budou objeveny její dříve nedentfkované poruchy, - nvestce celá shoří, 4 - vzroste míra nflace budou objeveny dodatečné poruchy, 5 - vzroste míra nflace nvestce celá shoří, - budou objeveny dodatečné poruchy nvestce celá shoří, 7 - vzroste míra nflace budou objeveny dodatečné poruchy nvestce celá shoří. Kalkulace rzka bude provedena na časové období od okamžku dohody o ceně do počátku druhého roku od koupě, tedy celkem na třnáct měsíců. Pokud by nflace do okamžku koupě stoupla o procento, který se považuje za okamžk uzavření smlouvy, pak předpokládáme, že by prodejce nemovtost chtěl původní cenu ve výš 5 ml. Kč o ono procento navýšt. U scénářů, kde se kombnuje nebezpečí objevení dodatečných poruch stavby s nebezpečím vyhoření stavby následkem žvelní událost může praktcky nastat pouze stuace, že budou objeveny nejprve dodatečné poruchy stavby, tyto poruchy budou odstraněny a až poté do stavby udeří blesk a shoří. Opačné pořadí těchto událostí není praktcky možné. Pokud budeme počítat pravděpodobnost, že nastane skutečně scénář, označme j jako P, tato koncdenční pravděpodobnost je rovna součnu pravděpodobností scénářů a, tj. P = P P. Hodnota P v sobě obecně ale nezahrnuje pouze možnost, že budou objeveny dodatečné poruchy stavby, odstraněny a poté do stavby udeří blesk, ale teoretcky možnou stuac, že do stavby udeří blesk a následně dojde k objevení poruch. Proto pravděpodobnost, že budou objeveny poruchy a až po jejch odstranění stavba shoří, je rovna P =,5 P. Této úpravě se vyhneme, pokud před kvantfkací rzka řekneme, že každý z výše uvedených sedm scénářů představuje takový sled dílčích událostí, že tyto událost mohou nastat pouze v praktcky možném pořadí, pokud se scénář sestává z více než jednoho dílčího nebezpečí. Rozdílnost obou přístupů ke stanovení těchto pravděpodobností bude mít vlv na výš rzka, ale následná analýza výsledků se bude provádět shodně v obou případech.

3 árůst míry nflace o % je předpovězen s pravděpodobností,. Zvýšení původně plánovaných nvestčních nákladů v důsledku zjštění nových poruch je očekáváno ve výš 5% z původní plánované ceny nvestce, a to s pravděpodobností,5. Pravděpodobnost, že do stavby udeří blesk a celá shoří, je 7. V tom případě přjdeme o celých 5 ml. Kč. Veškeré tyto údaje byly stanoveny na základě expertního dotazování, lépe řečeno se to předpokládá. V následující tabulce jsou postupně vyčísleny dodatečné náklady nvestora C, pravděpodobnost P a jednotlvá rzka R, která se spočtou jako součny předpokládaných dodatečných nákladů C a pravděpodobností P, že -tý scénář skutečně nastane: 7 R = R = C R. () = 7 = Všechny hodnoty jsou spočteny za výše uvedeného předpokladu, že pořadí dílčích scénářů je praktcky možné. Tabulka - Dodatečné náklady, pravděpodobnost a rzko scénář C P Rzko R v ml. Kč 5,=,5,,5,=,5 5,5=,75,5,75,5=, = ,5,5=,9,,5=,5,9,5= ,5=5,5, -7 = -8 5,5-8 =5,5-8 5,55=5,75,5-7 =5-9 5,755-9 =78, ,5,55=5,9,,5 - =5-5,95 - =79,5 - Rzko R,577, 57 Celkové rzko,57 ml. Kč v porovnání s původně plánovanou cenou nvestce 5 ml. Kč je nepatrné. Pravděpodobnost, že k žádnému růstu dodatečných nákladů nedojde, je rovna: P = =, P = Poznamenejme, že pokud je některá z hodnot P větší než hodnota P, č hodnota P je zanedbatelná vzhledem k součtu pravděpodobností P, pak není možné považovat scénář spojený s pravděpodobností P za nultý bezrzkový. Strom událostí musíme sestavt na jném scénář, č jejch kombnacích, vztahujícím se k P - na scénář nejvíce pravděpodobném. a základě kalkulace rzka by měla vždy následovat analýza jeho dílčích výsledků. Mělo by být zhodnoceno, které kombnace C a P

4 mohou plánovaný výsledek nvestce nejvíce ovlvnt, a prot těmto kombnacím je záhodno přjmout vhodná opatření (transfer rzka, pohlcení rzka, pojštění se prot rzku apod.). Tato opatření pro nvestora mnohdy představují dodatečné náklady (uvědomme s, že náklady jsou spojeny například se samotným zpracováním analýzy rzka), proto musí vždy nvestor zvážt, zda náklady, které na optmalzac rzka chce vynaložt, budou úměrné předpokládaným efektům.. AALÝZA CITLIVOSTI Tato metoda slouží k testování ctlvost určtého parametru (nákladů žvotního cyklu, zsku, rzka, apod.) na změny ostatních parametry (nflace, úroková míra, změna pořzovacích nákladů apod.), které testovaný parametr určtým způsobem determnují. Uvažujme, že nvestor po koup nemovtost a její modernzac, která bude vyžadovat náklady 5 ml., předpokládá její další prodej se zskem 5 ml. Kč právě rok po koup, tedy že stavbu má v plánu prodat za 5 ml. Kč (tuto cenu jž dohodl s budoucím kupcem). Pro zsk obecně platí, že je roven rozdílu výnosů V a nákladů : Z = V, kde V >. () Za předpokladu, že bude tato podmínka splněna, lze testovat například ctlvost plánovaného zsku Z na změny výše jednotlvých složek nákladů. Tj., jak se sníží č zvýší zsk nvestora, pokud dojde k určté změně jím předpokládaných nákladů ml. Kč. áklady předpokládané s největší pravděpodobnost ( P =, 849 u scénáře nula) jsou defnovány jako náklady, kdy nedojde k žádným dodatečným nákladům, tedy: předpokládané = ml. Kč př nulové lac Prodejní cena C je rovna nf žádné _ dodatečné _ poruchy žádný požár _ () C = Z. (4) předpoklád ané Z toho výše zsku Z je rovna Z = C. předpokládané Možnost, že nastane požár a stavba nebude pojštěna prot žvelní událost, vyloučíme, protože nvestor v tom případě bude nkasovat pouze ztrátu. V případě, kdy bude reálná míra a nepředpokládají se dodatečné poruchy, bude pro skutečnou výš zsku platt 4

5 Z skutečná = 5, přčemž číslo (5 5 ml. Kč) v předchozím vztahu jsou mnmální předpokládané prodejní náklady, jnak řečeno se jedná o součet nákladů na pořízení nvestce a její rekonstrukc. Tedy nvestor nebude realzovat zsk v okamžku, kdy bude vyšší než 4% p.a. V případě dodatečných poruch stavby, které budou spjaty s dodatečné _ poruchy, bude zsk nvestora nenulový v případě, kdy tyto náklady budou nžší než 5 ml. Kč. Abychom mohl jednoznačně říc, že je zsk více č méně ctlvý na změny než na změny dodatečných nákladů spojených s odstraněním poruch, je nutné znát rozložení pravděpodobností obou případů, a to pro všechny možnost od okamžku, kdy dojde k nulovým nárůstům nákladů v důsledku nflace č nákladů vlvem poruch až po hodnoty, kdy jejch výše budou mít za následek nulový zsk. Pokud pravděpodobnost, že nastane = 4 %, je dvojnásobná, oprot pravděpodobnost, že dodatečné náklady s vyžádají 5 ml. Kč, a současně jejch nárůsty od okamžku, kdy se rovnaly tyto pravděpodobnost pro oba alternatvní scénáře, rostly lneárně, lze říc, že hodnota Z je dvakrát více ctlvá na zněny než na změny _. dodatečné poruchy Jelkož se v tomto příspěvku analyzuje rzko nvestce před její první koupí, bude níže uvedena jeho analýza ctlvost taktéž v souvslost s tímto obdobím. Pokud rzko z Tab. vyjádříme pomocí proměnných, obdržíme vztah: ( C C ) ( P P ) C P R = C P C P (5) = = C P. = = = a základě vztahu (5) lze říc, že rzko nvestce je obecně různě ctlvé na změny nákladových odchylek C a na změny pravděpodobností P. ejprve stanovíme ctlvost rzka R na změny nákladů C, a to tak, že spočteme parcální dervace funkce R dle C. a ctlvost rzka vůč nákladovým odchylkám ukazují složky R R gradentu funkce R = R C ; C ;...). ( = = R R = P = P ( P P ) ( P P ) = R = P ( P P ) ( P P ) = ( P P ) ( P P ) = P P P () (7) (8) 5

6 Dosazením výchozích hodnot, pomocí nchž je spočtena hodnota R, do () až (8) dostaneme: =,5, =, 55, = 5 9. Z tohoto pohledu vykazuje rzko nejvyšší ctlvost na změny C. yní k ctlvost rzka R na změny pravděpodobností P. Opět spočteme parcální dervace funkce R dle těchto pravděpodobností a spočteme hodnoty gradentu funkce R = R P ; P ;...) dosazením hodnot pro výpočet R. ( = C = C P ( C C ) P C = = P (9) = C = C P C P C P P = = () = C ( C C ) P C P C P P = = () =,95, =, 84, = 7, 8. V tomto případě vykazuje rzko nejvyšší ctlvost na změny P. Kromě toho je z výpočtu zřejmé celkové pořadí všech šest proměnných z hledska ctlvost nejvíce je rzko ctlvé na změnu P a nejméně na změnu C, pokud se kupříkladu předpokládaná hodnota každé této proměnné zvýší o procento.. ZÁVĚR Systematcké provádění managementu rzka zvyšuje konkurenceschopnost a především z dlouhodobého pohledu nvestorov snžuje dodatečné náklady nvestc a umožňuje nvestce lépe řídt. Z těchto hlavních důvodů je proto vhodné, aby byla jeho mplementace do řídících procesů nvestorů, kteří ho v současnost neprovádějí, provedena co nejdříve. LITERATURA [] PMBOK Gude Edton, Project Management Insttute, Four Campus Boulevard, ewton Square, USA [] FOTR, J.: Jak hodnott a snžovat podnkatelské rzko. Management press s.

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

Společné zátěžové testy ČNB a vybraných pojišťoven

Společné zátěžové testy ČNB a vybraných pojišťoven Společné zátěžové testy ČNB a vybraných pojšťoven Zátěžových testů se účastní tuzemské pojšťovny které dohromady představují přblžně 90 % pojstného trhu. Výpočty provádějí samotné pojšťovny dle metodky

Více

Proces řízení rizik projektu

Proces řízení rizik projektu Proces řízení rzk projektu Rzka jevy a podmínky, které nejsou pod naší přímou kontrolou a ovlvňují cíl projektu odcylky, předvídatelná rzka, nepředvídatelná rzka, caotcké vlvy Proces řízení rzk sled aktvt,

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

1. Mezinárodní trh peněz

1. Mezinárodní trh peněz 1. Meznárodní trh peněz Na počátku 21. století je vývoj světového hospodářství slně ovlvněn procesem globalzace 1, v důsledku čehož dochází k dost výraznému otevírání národních ekonomk, které tak jž nemůžeme

Více

MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE

MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE MONETÁRNÍ A FISKÁLNÍ POLITIKA V OTEVŘENÉ EKONOMICE Stále krátké období NEMĚNÍ SE P!! Dopady fskální/monetární poltky na a S tím spojené další proměnné:

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Rizikového inženýrství stavebních systémů

Rizikového inženýrství stavebních systémů Rzkového nženýrství stavebních systémů Mlan Holcký, Kloknerův ústav ČVUT Šolínova 7, 166 08 Praha 6 Tel.: 24353842, Fax: 24355232 E-mal: Holcky@vc.cvut.cz Základní pojmy Management rzk Metody analýzy rzk

Více

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ

BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OTEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ Prof. Ing. Mloš Mařík, CSc. BEZRIZIKOVÁ VÝNOSOVÁ MÍRA OEVŘENÝ PROBLÉM VÝNOSOVÉHO OCEŇOVÁNÍ RESUMÉ: Jedním z důležtých a přtom nepřílš uspokojvě řešených problémů výnosového oceňování podnku je kalkulace

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě?

ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě? ROVNOVÁHA Zadání 1. Použijte neoklasickou teorii rozdělování k předpovědi efektu následujících událostí na reálnou mzdu a reálnou cenu kapitálu: a) Vlna imigrace zvýší množství pracovníků v zemi. b) Zemětřesení

Více

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Polemika o významu dividendové politiky

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Polemika o významu dividendové politiky Finanční management Dividendová politika, opce, hranice pro cenu opce, opční techniky Nejefektivnější portfolio (leží na hranici dle Markowitze: existuje jiné s vyšším výnosem a nižší směrodatnou odchylkou

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu Měření solventnost pojsttelů nežvotního pojštění metodou míry solventnost a metodou rzkově váženého kaptálu Martna Borovcová 1 Abstrakt Příspěvek je zaměřen na metodku vykazování solventnost. Solventnost

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

Studijní opora MODEL IS-LM, FISKÁLNÍ A MONETÁRNÍ POLITIKA. Část 1 Model IS-LM

Studijní opora MODEL IS-LM, FISKÁLNÍ A MONETÁRNÍ POLITIKA. Část 1 Model IS-LM Studjní opora Název předmětu: EKONOMIE II (část makroekonome) Téma 2 MODEL IS-LM, FISKÁLNÍ A MONETÁRNÍ POLITIKA Část 1 Model IS-LM Zpracoval: doc. RSDr. Luboš ŠTANCL, CSc. Operační program Vzdělávání pro

Více

8 Monetární politika. Teoretická východiska. Cíle a nástroje monetární politiky. Monetární politika v modelu IS-LM

8 Monetární politika. Teoretická východiska. Cíle a nástroje monetární politiky. Monetární politika v modelu IS-LM 8 Monetární poltka Teoretcká východska Cíle a nástroje monetární poltky Monetární poltka je druhem hospodářské poltky, která prostřednctvím ovlvňování nabídky peněz v ekonomce, usluje o dosažení makroekonomckých

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Model IS-LM Zachycuje současnou rovnováhu na trhu zboží a služeb a trhu peněz.

Model IS-LM Zachycuje současnou rovnováhu na trhu zboží a služeb a trhu peněz. 3 Určení rovnovážné produkce v modelu -LM Teoretcká východska Model -LM je neokeynesánským modelem, jeho autorem je anglcký ekonom J.R. Hcks. Model -LM Zachycuje současnou rovnováhu na trhu zboží a služeb

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Řešené problémy. 1) Ekonomika je charakterizována těmito údaji: C = 0,8 (1 - t)y, I = i, G = 400 a t = 0,25.

Řešené problémy. 1) Ekonomika je charakterizována těmito údaji: C = 0,8 (1 - t)y, I = i, G = 400 a t = 0,25. Řešené problémy ) Ekonomka je charakterzována těmto údaj: C =,8 ( - t)y, I = 5-5, G = 4 a t =,25. a) Jaká je rovnce křvky poptávky po autonomních výdajích? A = A - b A = 5 5 + 4 = 9 5 b) Jaká je rovnce

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ RAKC POPTÁVKY DOMÁCNOTÍ PO NRGII NA ZVYŠOVÁNÍ NRGTICKÉ ÚČINNOTI: TORI A JJÍ DŮLDKY PRO KONTRUKCI MPIRICKY OVĚŘITLNÝCH MODLŮ tela Rubínová, Unverzta Karlova v Praze, Centrum pro otázky žvotního prostředí,

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Účetní systémy 2 4. přednáška. Leasing

Účetní systémy 2 4. přednáška. Leasing Účetní systémy 2 4. přednáška Leasing Rozlišení : a) Běžný operativní leasing účtuje se shodně s ČÚS, nájemné do nákladů na běžnou činnost b) Kapitálový (finanční) leasing - rozdíly oproti ČÚS ad b) Východisko:

Více

1. Agregátní nabídka AS :úhrn nabízených produkt pro finální užití (ne meziprodukty)

1. Agregátní nabídka AS :úhrn nabízených produkt pro finální užití (ne meziprodukty) Mak 3 : agregátní nabídka a otávka. Agregátní nabídka AS :úhrn nabízených rodukt ro fnální užtí (ne mezrodukty) 2. Determnanty AS : využtelné výrobní zdroje (ráce, katál, da) techncký okrok hos. oltka

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Věstník ČNB částka 9/2012 ze dne 29. června 2012. ÚŘEDNÍ SDĚLENÍ ČESKÉ NÁRODNÍ BANKY ze dne 27. června 2012

Věstník ČNB částka 9/2012 ze dne 29. června 2012. ÚŘEDNÍ SDĚLENÍ ČESKÉ NÁRODNÍ BANKY ze dne 27. června 2012 ÚŘEDNÍ SDĚLENÍ ČESKÉ NÁRODNÍ BANKY ze dne 27. června 2012 k ověřování dostatečného krytí úvěrových ztrát Třídící znak 2 1 1 1 2 5 6 0 I. Účel úředního sdělení Účelem tohoto úředního sdělení je nformovat

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE Jana Valečková 1 1 Vysoká škola báňská-techncká unverzta Ostrava, Ekonomcká fakulta, Sokolská

Více

Masarykova univerzita Ekonomicko správní fakulta

Masarykova univerzita Ekonomicko správní fakulta Masarykova unverzta Ekonomcko správní fakulta Fnanční matematka dstanční studjní opora Frantšek Čámský Brno 2005 Tento projekt byl realzován za fnanční podpory Evropské une v rámc programu SOCRATES Grundtvg.

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

1. Metoda ABC (Activity Based Costing)

1. Metoda ABC (Activity Based Costing) 1. Metoda ABC (Activity Based Costing) Klasická kalkulace ÚVN nezjišťuje příčinu vzniku nákladů, neumožňuje účinně snižovat náklady, všechny složky režijních nákladů chápe tak, že vznikají v přímé souvislosti

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

OTEVŘENÁ EKONOMIKA. b) Předpokládejte, že se vládní výdaje zvýší na Spočítejte národní úspory, investice,

OTEVŘENÁ EKONOMIKA. b) Předpokládejte, že se vládní výdaje zvýší na Spočítejte národní úspory, investice, OTEVŘENÁ EKONOMIKA Zadání 1. Pomocí modelu malé otevřené ekonomiky předpovězte, jak následující události ovlivní čisté vývozy, reálný směnný kurz a nominální směnný kurz: a) Klesne spotřebitelská důvěra

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Práce s daty, kombinatorika a pravděpodobnost Gradovaný řetězec úloh Téma: Pravděpodobnost

Více

3.1.1. Výpočet vnitřní hodnoty obligace (dluhopisu)

3.1.1. Výpočet vnitřní hodnoty obligace (dluhopisu) Využití poměrových ukazatelů pro fundamentální analýzu cenných papírů Principem této analýzy je stanovení, zda je cenný papír na kapitálovém trhu podhodnocen, správně oceněn, nebo nadhodnocen. Analýza

Více

Všeobecná rovnováha 1 Statistický pohled

Všeobecná rovnováha 1 Statistický pohled Makroekonomická analýza přednáška 4 1 Všeobecná rovnováha 1 Statistický pohled Předpoklady Úspory (resp.spotřeba) a investice (resp.kapitál), kterými jsme se zabývali v minulých lekcích, jsou spolu s technologickým

Více

Specifikace, alokace a optimalizace požadavků na spolehlivost

Specifikace, alokace a optimalizace požadavků na spolehlivost ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 47. SEMINÁŘ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupny pro spolehlvost k problematce Specfkace, alokace a optmalzace

Více

FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE. COST BENEFIT ANALÝZA Část II.

FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE. COST BENEFIT ANALÝZA Část II. FINANČNÍ ŘÍZENÍ Z HLEDISKA ÚČETNÍ EVIDENCE COST BENEFIT ANALÝZA Část II. Diskontní sazba Diskontní sazba se musí objevit při výpočtu ukazatelů ve stejné podobě jako hotovostní toky. Diskontní sazba = výnosová

Více

Výpočet pojistného v životním pojištění. Adam Krajíček

Výpočet pojistného v životním pojištění. Adam Krajíček Výpočet pojistného v životním pojištění Adam Krajíček Dělení životního pojištění pojištění riziková - jedná se o pojištění, u kterých se předem neví, zda dojde k pojistné události a následně výplatě pojistného

Více

Oceňování majetkové hodnoty dřevin

Oceňování majetkové hodnoty dřevin 11. června 2013, Brno Konference měst 2013 Připravil: Ing. Tomáš Badal Oceňování majetkové hodnoty dřevin strana 2 Hodnota = co dostanu dlouhodobější charakter není skutečně zaplacená určuje se odhadem

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Zisk Jan Čadil VŠE FNH

Zisk Jan Čadil VŠE FNH Zisk Jan Čadil VŠE FNH Footer Text 12/10/2014 1 Ekonomický zisk Rozdíl mezi tržbami a náklady, včetně implicitních Firma má výstup q = f m 1,, m i. Obecně může mít více druhů výstupu (1 až n). Cenu produkce

Více

OÈNÍ OPTIKA. Zámeèek na Pastýøské stìnì èeká oprava. Domácnosti zaènou navštìvovat sèítaèi ptactva. i INFORMACE INFORMACE HORES ÈR. Bc.

OÈNÍ OPTIKA. Zámeèek na Pastýøské stìnì èeká oprava. Domácnosti zaènou navštìvovat sèítaèi ptactva. i INFORMACE INFORMACE HORES ÈR. Bc. Zámeèek na Pastýøské stìnì èeká oprava Jedna z domnat Dìèína se zøejmì skryje pod lešením - zámeèek na Pastýøské stìnì èeká rozsáhlá oprava oken, fasády a také støechy. Objekt, který je stavební kulturní

Více

INVESTIČNÍ DOTAZNÍK. 2. Investiční cíle zákazníka. 1. Identifikace zákazníka. Jméno, příjmení/obchodní firma/ název: RČ/IČ: Bydliště/sídlo:

INVESTIČNÍ DOTAZNÍK. 2. Investiční cíle zákazníka. 1. Identifikace zákazníka. Jméno, příjmení/obchodní firma/ název: RČ/IČ: Bydliště/sídlo: INVESTIČNÍ DOTAZNÍK Investiční dotazník je předkládán v souladu s ust. 15h a 15i zákona č. 256/2004 Sb., o podnikání na kapitálovém trhu, ve znění pozdějších předpisů zákazníkovi společnosti IMPERIUM FINANCE

Více

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU

APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s Pracovní lst č. 6: Stablta svahu Stablta svahu 1 - máme-l násyp nebo výkop, uvntř svahu vznká smykové napětí - aktvuje se smykový odpor zemny - porušení - na celé smykové ploše se postupně dosáhne maxma

Více

Stručný úvod do testování statistických hypotéz

Stručný úvod do testování statistických hypotéz Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP

DETERMINATION OF THE NUMBER OF PERIODIC AND UNDPLANNED REPAIRS CAUSED BY VIOLENT DAMAGE ON RAILWAY TRACTION VEHICLES FOR NEWLY PROPOSED REPAIR SHOP STAOVEÍ POČTU PERIODICKÝCH OPRAV A EPÁOVAÝCH OPRAV VZIKÝCH VIVEM ÁSIÉHO POŠKOZEÍ A HACÍCH KOEJOVÝCH VOZIDECH PRO OVĚ AVRHOVAOU OPRAVU DETERMIATIO OF THE UMBER OF PERIODIC AD UDPAED REPAIRS CAUSED BY VIOET

Více

Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu

Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu Management projektu III. Fakulta sportovních studií 2016 5. přednáška do předmětu Projektový management ve sportu doc. Ing. Petr Pirožek,Ph.D. Ekonomicko-správní fakulta Lipova 41a 602 00 Brno Email: pirozek@econ.muni.cz

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Užití swapových sazeb pro stanovení diskontní míry se zřetelem na Českou republiku

Užití swapových sazeb pro stanovení diskontní míry se zřetelem na Českou republiku M. Dvořák: Užtí swapových sazeb pro stanovení dskontní míry Užtí swapových sazeb pro stanovení dskontní míry se zřetelem na Českou republku Mchal Dvořák * 1 Úvod Korektní určení bezrzkových výnosových

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC

FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC PROJEKTOVÉ ŘÍZENÍ STAVEB FINANČNÍ A EKONOMICKÁ ANALÝZA, HODNOCENÍ EKONOMICKÉ EFEKTIVNOSTI INVESTIC Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

Finanční modely v oblasti Consultingu

Finanční modely v oblasti Consultingu Finanční modely v oblasti Consultingu Jan Cimický 1 Abstrakt Ve své disertační práci se zabývám finančním modelováním. Práce je koncipována jako soubor vzájemně často propojených nebo na sebe navazujících

Více

Jednání OK , podklad k bodu 2: Návrh valorizace důchodů

Jednání OK , podklad k bodu 2: Návrh valorizace důchodů Jednání OK 1. 12. 2016, podklad k bodu 2: Návrh valorizace důchodů Znění návrhu Odborná komise pro důchodovou reformu navrhuje stanovit minimální valorizaci procentní výměry důchodů podle indexu spotřebitelských

Více

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule

SLOŽENÉ ÚROKOVÁNÍ. částky naspořené po n letech při m úrokových obdobích za jeden rok platí formule Klasický termínovaný vklad SLŽENÉ ÚRKVÁNÍ PŘÍKLAD: Podnikatel uložil na klasický termínovaný vklad částku 300 000 Kč. Jaká bude výše kapitálu za 3 roky, jestliže úroková sazba činí 2% p.a. a je a) roční

Více

Návrh a management projektu

Návrh a management projektu Návrh a management projektu Metody ekonomického posouzení projektu ČVUT FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ strana 1 Ing. Vladimír Jurka 2013 Ekonomické posouzení Druhy nákladů a výnosů Jednoduché metody

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

Strategie Covered Call

Strategie Covered Call Strategie Covered Call Tato strategie vzniká kombinací pozice na podkladovém aktivu a výpisem call opce na toto aktivum. Řada obchodníků bohužel neví, že s pomocí této strategie mohou zvýšit výnosnost

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové

Více

INVESTIČNÍ DOTAZNÍK. 1. Identifikace zákazníka. 2. Investiční cíle zákazníka. Jméno a příjmení / obchodní firma / název: RČ/IČ: bytem/sídlo:

INVESTIČNÍ DOTAZNÍK. 1. Identifikace zákazníka. 2. Investiční cíle zákazníka. Jméno a příjmení / obchodní firma / název: RČ/IČ: bytem/sídlo: INVESTIČNÍ DOTAZNÍK Investiční dotazník je předkládán v souladu s ust. 15h a 15i zákona č. 256/2004 Sb., o podnikání na kapitálovém trhu, ve znění pozdějších předpisů zákazníkovi společnosti B22 Finance

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

KRITÉRIA EKONOMICKÉ EFEKTIVNOSTI

KRITÉRIA EKONOMICKÉ EFEKTIVNOSTI KRITÉRIA EKONOMICKÉ EFEKTIVNOSTI INVESTICE - Investiční rozhodování má dlouhodobé účinky - Je nutné se vyrovnat s faktorem času - Investice zvyšují poptávku, výrobu a zaměstnanost a jsou zdrojem dlouhodobého

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více