1.5.7 Zákon zachování mechanické energie I

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.5.7 Zákon zachování mechanické energie I"

Transkript

1 .5.7 Záon zacoání mecanicé energie I Předolady: 506 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα. Předmět, terý se oybuje ryclostí má ineticou energii E = m. Předmět, terý se nacází e ýšce nad ladinou nuloé otenciální energie, má olooou energii E = mg. Práce yonaná ýslednou silou ůsobící na ředmět se roná řírůstu ineticé energie W = E. Práce yonaná graitační silou ůsobící na ředmět se roná úbytu otenciální energie W = E. Př. : Kámen o motnosti 5 g olně ustíme z ěže ysoé 45 m. Urči otenciální a ineticou energii amene: a) oamžiu yuštění b) o s ádu c) o s ádu d) o 3 s ádu. Za ladinu nuloé otenciální energie oažuj atu ěže. a) Energie oamžiu yuštění Výša = 45 m E = mg = J = 50J Ryclost = 0 m/s E = 0 Celoá energie: E = E + E = J = 50 J b) Energie o. seundě ádu Dráa: s = at = 0 m = 5m ýša = 40 m = mg = J = 000 J E 5 0 m J 50 J Ryclost = at = 0 = 0 m/s E = = = Celoá energie: E = E + E = J = 50 J c) Energie o. seundě ádu Dráa: s = at = 0 m = 0m ýša = 5 m = mg = 5 0 5J = 50 J E 5 0 m J 000 J Ryclost = at = 0 = 0 m/s E = = = Celoá energie: E = E + E = J = 50 J c) Energie o 3. seundě ádu Dráa: s = at = 0 3 m = 45m ýša = 0 m = mg = J = 0 J E

2 5 30 m J 50J Ryclost = at = 0 3 = 30 m/s E = = = Celoá energie: E = E + E = J = 50 J Pedagogicá oznáma: Počítat ředcozí řílad rozodně není laní nální odiny. Přílad slouží síše zoaoání zorečů a maximálně o deseti minutác je třeba ostouit dál. Př. : Kámen o motnosti 5 g olně ustíme z ěže ysoé 0 m. Poiš, ja se růběu ádu mění jeo otenciální a ineticá energie. Která síla změny obou druů energií zůsobuje? Odor zducu zanedbej. Potenciální energie amene lesá (je stále níž), ineticá energie amene roste (adá čím dál rycleji). Na ámen ůsobí ouze graitační síla je tedy zároeň ýslednicí, její ráce je ladná (má stejný směr jao osunutí amene). Práce yonaná ýslednou silou se roná změně ineticé energie: W = E. Práce yonaná graitační silou se roná úbytu otenciální energie: W W = E = E. Úbyte otenciální energie se roná řírůstu ineticé energie E = E E + E = 0 E + E = onstanta = záon zacoání energie. = E. POZOR: Platí ouze, dyž zanedbáme odor zducu. Odor zducu by zmenšil ýslednou sílu ůsobící na ámen a tím i řírůste ineticé energie. Kineticá energie by rostla omaleji než by otenciální lesala a celoé množstí energie by se zmenšoalo. Součet otenciální a ineticé energie tělesa nazýáme celoou mecanicou energií tělesa. Záon zacoání mecanicé energie: Při šec mecanicýc dějíc se zanedbatelným ůsobením odoroýc sil (tření, odor zducu aod.) se může měnit ineticá energie tělesa jeo otenciální energii a naoa, jejic součet ša zůstáá onstantní. E = E + E = onstanta Záon zacoání mecanicé energie nutně ylýá ze šec ředcozíc ýsledů ři našem studiu fyziy. Můžeme o snadno doázat omocí zorců ro obě energie a ronoměrně zryclený oyb. Sledujeme olný ád ředmětu o motnosti m z ýšy 0. Počáte ádu: Předmět má ouze otenciální energii: E0 = mg0. V liboolném ozdějším čase ředmět o trocu sadne a zísá určitou ryclost E = E + E = mg + m. Určíme ýšu ředmětu a jeo ryclost liboolném čase t: Předmět se oybuje ronoměrně zrycleným oybem s nuloou očáteční ryclostí a zryclením g:

3 ýša : s = gt = 0 gt, ryclost : = gt. Dosadíme do ztau ro energii: E = E ( ) ( ) + E = mg + m = mg 0 gt + m gt. E = mg0 mg gt + mg t = mg0 mg + mg = mg0 celoá mecanicá energie ředmětu se nezmění. Na co je záon zacoání mecanicé energie dobrý? Nemusíme se zajímat o to, ja děj robíal, stačí znát situaci na začátu a onci. Pedagogicá oznáma: Všecny následující řílady se do once odiny sočítat nedají, snažím se ale, aby žáci stili samostatně co nejíce rozborů. Jde oět o náci orientace roblému, dy se žáci musí sami zamyslet, o co jde a odle too se rozodnout. Př. 3: Urči ryclost, terou doadne na zem ředmět adající z ýšy 0,5 m. Odor zducu zanedbej. = 0,5m, E 0,5 m g = 0m/s, oamži oamži E E E E = 0 ( oamžiu yuštění nemá ředmět žádnou ryclost). E = 0 (ladina nuloé otenciální energie je na zemi). E = E mg = g = Předmět doadne zem ryclostí 3, m/s. m = = g g = g = 0 0,5 = 3, m/s Př. 4: Předmět adá z ýšy 0,5 m. Urči jeo ryclost 0 cm nad odlaou. Odor zducu zanedbej. = 0,5m, = 0,m, g = 0m/s, 3

4 0,5 m 0, m E oamži oamži E E E E Předmět má 0 cm nad odlaou ryclost,8 m/s. = 0 ( oamžiu yuštění nemá ředmět žádnou ryclost). E = E + E mg = mg + m = + g g g g = ( ) = = ( ) g g ( ) ( ) = g = 0 0,5 0, =,8 m/s Pedagogicá oznáma: Většina studentů řeší řílad omocí zorce odozenéo třetím říladu dosazením = 0, 4 m. Taoé řešení je samozřejmě sráné. Přesto uazuji studentům řešení obsažené učebnici, aby si šimli, že odečítání ýše je obsaženo i e ýsledném zorci. Pedagogicá oznáma: Studenti, teří nestinou následující da řílady o odině, by si je měli dolnit doma. Je to ýjimečné, jde o záladní orientaci roblematice, terá usnadňuje ráci následující odině. Př. 5: Kámen byl ržen sisle zůru ryclostí 54 m/od. Jaou ryclost bude mít e ýšce 0 m? Odor zducu zanedbej. = 54 m/ = 5 m/s = 0 m Odor zducu neuažujeme latí záon zacoání mecanicé energie. V oamžiu ru měl ámen ouze ineticou energii, terá se růběu stouání ostuně mění na olooou. 0 m E oamži E oamži E E E Kámen bude mít e ýšce 0 m ryclost 5 m/s. = 0 (těleso ráme z nuloé ladiny otenciální energie). E = E + E m = m + mg / = + g g = = g = m/s = 5m/s 4

5 Pedagogicá oznáma: Předcozí řílad ůsobí studentům značné roblémy. Rozebereme si řílad, nareslíme si obráze a yíšeme si do něj, jaé druy energie těleso obou oloác má. Pa trám na tom, aby ronici E = E + E sestaili sami. Př. 6: Kámen byl z ýšy 0 m ozen olmo dolů ryclostí 5 m/s. Jaou ryclostí doadne na zem. Odor zducu zanedbej. = 0 m, = 0m, = 5 m/s, 0 m E E oamži = 0 (doad na zem). E + E = E mg + m = m + = g = g + = m/s = 0,6 m/s E oamži E E Kámen doadne na zem ryclostí 0,6 m/s. Př. 7: Kámen byl ze země ozen olmo zůru ryclostí 0 m/s. Do jaé ýšy ystouá? = 0 m, = 0 m/s, = 0, E oamži E = 0 (ázíme ze země), E = 0 ( nejyšším bodě se zastaí). E = E m = mg 0 = = m = 0m g 0 oamži E E E Kámen ystouá do ýšy 0 m. Pedagogicá oznáma: Něterým žáům zůstanou ronici dě neznámé, rotože si neuědomí, že oamžiu dosažení maximální ýšy se ámen na oamži zastaí. 5

6 Př. 8: Kámen byl z ýšy 0 m ozen olmo naoru ryclostí 5 m/s. Jaou ryclostí doadne na zem. Odor zducu zanedbej. = 0 m, = 0m, = 5 m/s, 0 m E E oamži = 0 (doad na zem). E + E = E mg + m = m g + = = g + = m/s = 0,6 m/s E oamži E E Kámen doadne na zem ryclostí 0,6 m/s. Pedagogicá oznáma: Možná doonce ětšina žáů si řílad rozděluje na dě části a jao meziýslede zjišťuje maximální ýšu ru. Jde o dobrou záminu řiomenutí, že laní ýodou ZZE je, že nemusíme sledoat růbě děje, ale ouze očáteční a oncoý sta a roto nás maximální ýša ru ůbec nezajímá. I úaou je a možné zjistit, že ryclost doadu musí být stejná jao říladu 6. Př. 9: Tenista dribluje míčem. Míče oouští ruu sisle dolů ryclostí m / s e ýšce 80cm nad orcem urtu. Do jaé ýšy by o odrazu ysočil, dyby byl jeo odraz od urtu doonale ružný (beze ztrát energie)? 80cm 0,8m = = m / s = V místě, de oouští ruu, má míče otenciální i ineticou energii. Potenciální energie se ři ádu mění ineticou. V oamžiu nárazu na urt má míče ouze ineticou energii. Při odrazu se tato energie změní na energii ružnosti míču a oět na ineticou energii. Ta se ři letu míču naoru mění na otenciální. V nejyšším místě má míče ouze otenciální energii. Protože jsme ředoládali nuloé ztráty, musí být jeo otenciální energie nejyšším bodě dráy stejná, jao byla jeo celoá energie oamžiu, dy oustil ruu. 6

7 0,8 m E E E oamži E oamži = 0 (míč se nejyšším bodě dráy zastaí). E + E = E / m + mg = mg m + g = g = + g g + g + 0 0,8 = = m = m g 0 E Míče by o odrazu ysočil do ýšy m. Srnutí: Celoá mecanicá energie tělesa se zacoáá, můžeme ji roto yužít oronání situací e dou různýc oamžicíc. 7

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

4.3. Teoretický rozbor manipulace s primárním kalem

4.3. Teoretický rozbor manipulace s primárním kalem 6 Pro etrojení oau buouí onot čaoé řay, tey oau buouío ýoje množtí rimárnío alu alší měíí, by bylo zaotřebí íe onot minulý (min. za roy). Celoé množtí za leoané obobí 5 790,00 m 3 Průměrné enní množtí

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8. Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Kinetická teorie plynu

Kinetická teorie plynu Kineticá teorie plnu Kineticá teorie plnu, terá prní poloině 9.století doázala úspěšně spojit lasicou fenoenologicou terodnaiu s echaniou, poažuje pln za soustau elého počtu nepatrných hotných částic oleul,

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

š ú ě Ú ě ě ú Ú Ý Í Ě Í Ú Í Á Ý Ů Ý Ů Í ě Á Í ě Č ú ř ě ň ř ů ň ř ů Č ň ř ů ů ň ř ů Í ň ř šť š ů ř ř ě ř ř ů ň ů ř ě ř š ř ř ř ů ř ů ř ů ř ř ř ů ě ě ě ř ř ů ř ů ě š ě ř ů Ú ř ě ř ř ě Č ř ů ř ř ě ř ů ř

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

Popis Pohybu. Signální verze učebnice, Prodos 2006.

Popis Pohybu. Signální verze učebnice, Prodos 2006. Pás dopravníku na obrázku je v poybu. To naznačuje i šipka, kterou pan kreslíř namaloval k převodovému kolu. Zdá se, že v poybu jsou i kočka s myší, vždyť uánějí o sto šest. Proč by se ale na ně zedník

Více

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK

ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK Úloha č. 11 ASYNCHRONNÍ MOTOR. REGULACE OTÁČEK ÚKOL MĚŘENÍ: 1. Zjistěte činný, jalový a zdánlivý příon, odebíraný proud a účiní asynchronního motoru v závislosti na zatížení motoru. 2. Vypočítejte výon,

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:

DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny: DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové

Ústřední komise Fyzikální olympiády, Univerzita Hradec Králové, Rokitanského 62, 500 03 Hradec Králové č Čs čas fyz 6 () 67 Tepelné záření v teoreticých i experimentálních úlohách MEZINÁRODNÍ FYZIKÁLNÍ OLYMPIÁDY Jan Kříž, Ivo Volf, Bohumil Vybíral Ústřední omise Fyziální olympiády, Univerzita Hradec Králové,

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

úř Ú é Ú Í Á ř ř ř ř ř ř é ř ř ř ř ř ř ř ř ú é ň ř ú ř ř ř ř ř ú ř ú ř éú ú ů š ř Ů ř ů Ů Ž ř ů Ž ž ů é ú ž Ž ř Ů ú ů ř ů Ú ř ř š ř Ú ř ů ů ů ů ů ů š ř ř ř Ú ř Ž řú ň ř ú ů ů ř ř š ř ů Ů ř ř ř ú ú éú ř

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Ó Š ÚČ č ÚČ Í Č Č ň ř ň ř ů ř š č ř š Í č úč š úč š š Č ř úč úč Č č Š č ř úč úč Í ř ř úč ú Š Ó ó ř č Š č Ú č č ň ř ň ř ř š Č úř Ý š č Á úč š úč Š š č Í Č ř č úč Í ř ř ú ř Ů ř Í Ů ř ů ů č Č č ř Ú ů č Č

Více

Fotografujeme za letu

Fotografujeme za letu Ja na to Fotografujeme za letu Fotografoání z ptačí perspetiy je nesmírně láaé počínání a soro aždý nědy zusil fotografoat z dopraního letadla. Mnohem zajímaější ýsledy ša přináší fotografoání ze sportoního

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

Ú Í Á É Í Á Í Ů Ž ř Á É Í ř Ú ř Í ů ř ú ú ú ů ř ú ů ů Ú Í Á É Í Á Í Ů Ž ř ř ř Í Ú ů Ú Í š ň ř ů ř ň ř Ú ř Ú š ů ů řš řú řš ú Í ú Ú ú Ú ů ú ů Ú ů Ú Ú Í Á É Í Á Í ů Ž ř Í ú úč ř ň ř ň Í ú ř ř Ú Í ř ř ř ú

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

í í ť í í í š ř í ří ř š í ý í í íí ůú ú ůů ů ů í ř řú ý ř ý ý ř í ří ů ří Ú í ř ý ř ý ý í ří í ý š í ř í š ší ž í í ř í í ú í ů ú ř í š í ž ž ů ý í Č Ú í í í ť Á ří í ř í ý í í ů ů ď ý í í ů íí ů í ž

Více

č ú č ů ř é č č ú Úč ř š ř Šč š ř š č Š č ř č ř ř ů č ů é č é ř é č č č ů š ř ů ů é é č ř ř éč ž ř č š č ů š ř č ů č é č ř ř é č é š é ř é ř č Ž ř Š ř š ř é é ř š ř ř ř Ž ř š ř š é é č ů é Ž č č ř ř é

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

ď ř ř ř é ř ř ů ř ř é ř řú é ň é ř ň ř ů ň řú ů é ň ř ů ň ř ů é ň ř ú ň ř ů ň ř ů ž ž ň ř é ž ů é ň ů ž ř é ř ů ř š é ů ř é ř ů é ň ř ň é ř ž ů ů ř ž é ž ž ž ž ř é ř ř ů ř ř ů ř ú ů Ú ů ů ř é ř é ř ř é

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

5. kapitola Agregátní poptávka a agregátní nabídka

5. kapitola Agregátní poptávka a agregátní nabídka 5. kapitola Agregátní poptávka a agregátní nabídka V této kapitole se seznámíte - s tím, co je to agregátní poptávka a jaké faktory ji ovlivňují - podrobně s tím, jak délka časového období ovlivňuje agregátní

Více

ýú š ř Í ď ř Í šť ý ř ř ř ř ď ý ř ř ů ú š ň ý ř š ř ž ú ř ý ú ý ú ý ř ř ý Š Š ř šť ř ř ý ř Š Š Č ř ř ó ř ý ď ř Í ž ů ř ř ň ý šť š Ž Ť Í ú ůř ř ú Í ú ž ř Š šů ř ř ó Š ř š ř Ž ů Í ř Í ř ň ý šť ř ř ú ň Ž

Více

Vysokorychlostní železnice úspěchy a výzvy

Vysokorychlostní železnice úspěchy a výzvy Vysoorychlostní železnice úspěchy a výzvy Dr. Gunter Ellwanger, ředitel pro vysoorychlostní železnice, Mezinárodní železniční unie Vysoorychlostní vlay přiláaly na železnici nové cestující především na

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

Č ó ž č ě š č ěš Í ž ě š ř ů Č úč ý ž ě ú ěš ě ů ý č ů ý č ů ď č ě ž ů ěž ě č ý ď č ř ý ě ř č ů řů ů ř ř ř Í ž č č ý ý ů ř ť ý ý ů č ť Č ý Č Č ř š č ý ř ě ů č ř řď ř š Č š č ř ě č ý ř ě ů ř č ú Í š č ý

Více

» Omezení prašnosti, prachového podílu» Zlepšení tokových vlastností» Úprava sypné hmotnosti» Zlepšení tabletovatelnosti» Fixace homogenity

» Omezení prašnosti, prachového podílu» Zlepšení tokových vlastností» Úprava sypné hmotnosti» Zlepšení tabletovatelnosti» Fixace homogenity Proč zvyšovat velikost části Úrava velikosti části - vlhká granulae - fluidní granulae» Omezení rašnosti, rahového odílu» Zlešení tokovýh vlastností» Úrava syné hmotnosti» Zlešení tabletovatelnosti» Fixae

Více

Uzavřená cesta- (kružnice)

Uzavřená cesta- (kružnice) 1 Defnce zálaních omů Graf- teor grafů se grafem rozumí obety osané množnou hran a množnou rcholů orentoaný X neorentoaný Neorentoaný graf- usořáaná troce množny rcholů množny hran a ncence G=(VX Incence

Více

Souhrn vzorců z finanční matematiky

Souhrn vzorců z finanční matematiky ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

í í ž á ů č ř í Íý ú ě é íč ě áčě ěř Í á ě čč áď ě á ý ý ěš é ú ě í é š ě í ž ří ě é šá ě ý á ě á é á ě é č Í í ě á ě ě é š Í á á Í Í ž á í á š š řě ě ř á Ž ě Í í í čí š á š ě ý ží č á ě í í š ě í ý á

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta informačních technologií DIPLOMOVÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Faulta informačních technologií DIPLOMOVÁ PRÁCE Brno 2002 Igor Potúče PROHLÁŠENÍ: Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Martina

Více

Č ý é é Č ó ě ě ť ů ě ý ů ě é ý é ť ó ó ě ý ě ě Ť ů ť ě ě ů ý ě é é ě ě ů ž Š é Š ž Š Š Š é ě Š ý ó Č é ů ě ž ě ž ť Š ě Š ý Š Š ě ť é é ď Š ý Š žň é ž ů ž ů ě ěž ý žé Č é ě ž Š Š ý Š ě Š ť ě ý ý ž ý ů

Více

ří í š Š í š ří ň Š ř é š ů é ů ž í Š íž ů í í ú í ú ř í ň íš é é Íť š Ž ů š Ž ú ý ž ří í š ů ů š í é š ů ž é ř ř ř í Ú ý ří é é í í ů ý í ř é ó Ž í í é é í í ř ší íž ř š é ů é ť ý ú ř ř š í í í ů Ž š

Více

Deskriptivní geometrie I.

Deskriptivní geometrie I. Středí růmyslová šol eletrotecicá Vyšší odorá šol rduice, Krl IV. 3 esritiví geometrie I. Ig. Rudolf Rožec = = = = rduice 00 Srit jsou urče ro ředmět desritiví geometrie II. ročíu tecicéo lyce jo dolě

Více

ř Ž Ú Ě Ú ž ě ě Ž ě ě ě é ý é é é ě š ě ě ž ě ě ě ě ď é í í š ý á ů ů í ě í á í á íč ě í á Ž ř Ž ě Ž ě ě ž ý é á í úř ž ý ý á š ř á í í ží Ž í í ž ší ý íš č ž ů ě í ě ě í č ží ří í á é ř é ří č é ž íč

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ

THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ Jan CHOCHOLÁČ 1 THE POSSIBILITY OF RELOCATION WAREHOUSES IN CZECH-POLISH BORDER MOŽNOSTI RELOKACE SKLADŮ V ČESKO-POLSKÉM PŘÍHRANIČÍ BIO NOTE Jan CHOCHOLÁČ Asistent na Katedře dopravního managementu, maretingu

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami Fréování obrábění rovinných nebo tvarových loch vícebřitým nástrojem réou mladší ůsob než soustružení (rvní réky 18.stol., soustruhy 13.stol.) Podstata metody řený ohyb: složen e dvou ohybů cykloida (blížící

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze 1. Úol měření Úolem měření na rotorové (Müllerově) odparce je sestavit energeticou a látovou bilanci celého zařízení a stanovit součinitele prostupu tepla odpary a ondenzátoru brýdových par.. Popis zařízení

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

Í Č Ý ě ě ř é š Š š ó Í ř ř š š Í ř ř ý ř é ř ě ě Ú ř ž ž ř š Í ě š Šť ý ž Ť ěž š ř ř š ř ú ě ú ý ě Í Á Á Í Ý Ě ŠÁ Ř Ě ŘÍ Á ÚĚ Č Ě Ů Á Á Č Ě Š Ě É Á Á Ř Ě ÁŽ ÚČ Ě ÁŘŮ Ě Š Ř Ř úš ř ř š Í Í Í ř é ř š é ý

Více

Dopplerovský měřič traťové rychlosti

Dopplerovský měřič traťové rychlosti Doppleroský měřič traťoé ryclosti Záklaní unkcí Doppleroa měřiče ryclosti je nepřetržité určoání ektoru traťoé ryclosti ůči zemskému porcu. Poku je měření tooto ektoru konertoáno o ormátu zemskýc zeměpisnýc

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Sportovní hala - Náměstí Práce - U Zámku - Jižní Svahy-Kocanda

Sportovní hala - Náměstí Práce - U Zámku - Jižní Svahy-Kocanda Jízda historického trolejbusu Škoda Tr HT (r.v. 979) 7 7 8 8 9 9 7 9 7 Sportovní hala Platnost od.. do.. 7 8 9 7 8 9 >> dospělí...,- Kč Pro odbavení ve voze NELZE použít stávající jízdenky, časové >> děti

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2 . Do dou sejných nádob nalijeme odu a ruť o sejných objemech a eploách. Jaký bude poměr přírůsků eplo kapalin, jesliže obě kapaliny přijmou při zahříání sejné eplo? V = V 2 =V, T = T 2, Q =Q 2 c = 9 J

Více

OBSAH. Slovo ředitelky 1. Klub pro rodinu Jahůdka 2. NZDM Jahoda 4. NZDM Džagoda 6. Terénní program 8. Soukromá mateřská škola 10.

OBSAH. Slovo ředitelky 1. Klub pro rodinu Jahůdka 2. NZDM Jahoda 4. NZDM Džagoda 6. Terénní program 8. Soukromá mateřská škola 10. VZ 12 O OBSAH Slovo ředitely 1 Klub pro rodinu Jahůda 2 NZDM Jahoda 4 NZDM Džagoda 6 Terénní program 8 Souromá mateřsá šola 10 Dobrovolníci 12 Lidé v Jahodě 13 Ace pro všechny 14 Účetní zpráva 16 Kontaty

Více

Ý Á Ř é á ší ě ý ů á é ří á í á í í ěří ř á á í á ř č áš ý ý é á í Š ší é ů ř č ý ří Ž ě ý í á ý ó é č ý ý ó ý á í š čá í á Ž é á í Ž á í Í š ě ší ě ž í ě ě ě éř é žř č ó žč ě ěř ž á í ě é óž ý é ř í é

Více

Datová centra a úložiště. Jaroslav G. Křemének g.j.kremenek@gmail.com

Datová centra a úložiště. Jaroslav G. Křemének g.j.kremenek@gmail.com Datová centra a úložiště Jaroslav G. Křemének g.j.kremenek@gmail.com České národní datové úložiště Součást rojektu CESNET Rozšíření národní informační infrastruktury ro VaV v regionech (eiger) Náklady

Více

ř ř ř ó é ř ř é ř ř ů ř ř ó ř ř é ř ť Ď ž ň é ř ň ř ň ř é ž ů ň ř ň řú é ň ř ů ň ř ň ř ž ž ň ř é ž ů é ů é ň ů ů ž ř é ř ů š é ů ř é ř ů ř ů é ň ň é ř ň é ř ř ž ů ů ř ž ž ž ř é ř ř ů ř é ř ů ř ú ů ú ů

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Porovnání dostupnosti různých konfigurací redundance pro napájení stojanů

Porovnání dostupnosti různých konfigurací redundance pro napájení stojanů Porovnán dostunosti různých konfigurac redundance ro naájen stojanů White Paer č. 48 Resumé K zvýšen dostunosti výočetnch systémů jsou ro zařzen IT oužvány řenače a duáln rozvody naájen. Statistické metody

Více

č Č ó Č ě ó č ý ý č ř é č č é Ž é ř é ý č č ý ý Ž ř ě ň ú č Ž č č ř é č č ý Úč ě é úč ěř úč ě ý č ď č č Ú Č Č č č Ž ý ě Ž ž č č Ž ý č Č é é ě ý ř š ý ý ú ý ř é ř ě Ž š ý ř č ř ý Ž é ř ž Ž é ý ý ů ř ů ý

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více