17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

Rozměr: px
Začít zobrazení ze stránky:

Download "17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?"

Transkript

1 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností daných smykovým třením z počáteční rychlosti 18 km/h? Součinitel smykového tření je 0,1. (g 10 ms -2 ) v = 21,7 km/hod. 2. Hmotný bod koná pohyb po kružnici s poloměrem 0,2 m se stálým úhlovým zrychlením = 2 s -2. Určete hodnotu tangenciálního, normálového a celkového zrychlení na konci 4 s pohybu, jestliže v čase t = 0 s byl bod v klidu. a t = 0,4 ms -2, a n = 12,8 ms -2, a c = 12,806 ms Jaká práce se vykoná při stlačení nárazníkové pružiny vagónu o x 0 = 5 cm, jestliže na její stlačení o 1 cm je třeba síla 30 kn a potřebná síla je úměrná zkrácení pružiny (tj. F= -kx). A = 3750 J 4. Z jaké výšky h o volně padalo těleso hmotnosti 3 kg (g 10 ms -2 ), jestliže v posledních dvou sekundách svého pohybu urazilo dráhu 30 m? Odpor vzduchu neuvažujte. Určete hybnost tělesa těsně před dopadem. h o = 31,25 m, p = 75 kgms Kolo průměru 0,6 m, které bylo původně v klidu, se začalo v okamžiku t = 0 s otáčet s konstantním úhlovým rychlením = 0,2 s -2. Určete, kolikrát se otočilo během prvních 20 s a jaká byla v tom okamžiku jeho obvodová rychlost a normálové zrychlení? n = 20, v = 1,2 ms -1, a n = 4,8 ms Určete práci vykonanou silou F = 3t 2 i + 2j + 4k N působící po křivce r = ti - 5/2t 2 j + tk m, v době mezi okamžiky 1 s a 5 s. Jak velký je průměrný výkon P pr v udaném časovém intervalu a jak velký je okamžitý výkon P 4 na konci čtvrté sekundy? A = 20 J, P pr = 5 W, P 4 = 12 W 7. Dva automobily pohybující se proti sobě mají při vzájemné vzdálenosti l = 747,5 m počáteční rychlosti v 01 = 10 ms -1 a v 02 = 15 ms -1. Od tohoto okamžiku se pohybují se zrychleními a 1 = 3 ms -2, a 2 = 2 ms -2. Určete, za jak dlouho se potkají, jak daleko od výchozích bodů (zanedbáte-li jejich délky) a jaká bude jejich vstřícná rychlost (v km/hod). t = 13 s, s 1 = 383,5 m, s 2 = 364 m, v = 324 km/hod. 8. Hmotný bod o hmotnosti 2 kg se pohybuje po kružnici o poloměru 2 m tak, že s = t 2 + 2t - 1. Určete absolutní hodnotu jeho zrychlení v čase 4 s a odstředivou sílu v tomto okamžiku. a = 50,04 ms -2, F o = 100 N 9. Těleso je přitahováno k počátku souřadnic silou, která je dána vztahem F = - 6 x (N,m). Jaké síly je potřeba k udržení tělesa v bodě A ve vzdálenosti 0,3 m od počátku a v bodě B ve vzdálenosti 0,6 m od počátku? Jakou práci je třeba vykonat při přesunutí tělesa z bodu A do bodu B? F 0,3 = 1,8 N, F 0,6 = 3,6 N, A = 0,81 J

2 10. Cyklista a automobil se ze vzdálenosti l = 100 m pohybují proti sobě tak, že cyklista jede rovnoměrně rychlostí v 1 = 3 ms -1 a automobil zrychluje z počáteční rychlosti v 0 = 7 ms -1 se zrychlením a = 4 ms -2. Určete, za jak dlouho se setkají, vzdálenost místa setkání od výchozích pozic a vzájemnou rychlost při míjení (v km/hod.), zanedbáte-li jejich délky. t = 5 s, l 1 = 15 m, l 2 = 85 m, v = 108 km/hod. 11. Určete normálové a tečné zrychlení na obvodu cirkulárky s poloměrem 20 cm po 3 s od zapnutí, jestliže se rozjíždí rovnoměrně z nuly na otáček/min po dobu 5 s. a t = 13,3 ms -2, a n = 8000 ms Těleso hmotnosti m = 5 kg se pohybuje svisle dolů se zrychlením a = 12 ms -2. Jak velká síla kromě tíhy na těleso ještě působí? Určete hybnost tělesa v okamžiku dopadu, byla-li jeho počáteční rychlost ve výšce 2 m nad dopadovou plochou 6 ms -1. (g 10 ms -2 ) F = 10 N, p = 45,826 kgms Kulička hmotnosti 5 g upevněná na niti se pohybuje po kružnici o poloměru r = 0,1 m tak, že úhlová souřadnice je dána vztahem = 2 + 4t 3. Určete absolutní hodnotu jejího zrychlení v čase 2 s a její okamžitou hybnost v čase t = 4 s. a = 230,45 ms -2, p = 0,096 kgms Jaká je hmotnost automobilu, jestliže se při výkonu motoru P = 14 kw pohybuje rychlostí 72 km/h se součinitelem tření 0,07. Určete, jaké teplo (přeměněná práce resp. energie) je nutno odvést z brzd během zastavení uvedeného automobilu z dané rychlosti.(g 10 ms -2 ) m = 10 3 kg, Q = J 15. Rychlost hmotného bodu o hmotnosti 0,5 kg je dána rovnicemi: v x = 6t (ms -1 ; s); v y = t (ms -1 ; s); v z = t 3-1 (ms -1 ; s). Určete polohový vektor tohoto bodu v čase t = 2 s a sílu, která na něj v tomto okamžiku působí. V čase t 0 = 0 s byl polohový vektor bodu r = i + j + k (m). r = (19;17/3;3) m, F = (12;2;6) N 16. Kotouč o poloměru R = 0,5 m je uveden do rotačního pohybu stanoveného rovnicí =.t 2,5 (rad,s). Určete úhlovou rychlost, úhlové zrychlení, tečné, normálové a celkové zrychlení na okraji kotouče a frekvenci po prvních 4 s pohybu. = 62,83 s -1, = 23,56 s -2, a t = 11,781 ms -2, a n = 1973,8 ms -2, a c = 1973,84 ms -2, f = 10 Hz 17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? h = 0,16 m 18. Těleso hmotnosti m = 1000 kg se pohybuje rychlostí v 0 = 27 km/h. Chceme ho zastavit na dráze 20 m. Jakou konstantní silou musíme pohyb brzdit a jaké teplo (přeměněná práce resp. energie) se při tom uvolní? F = 1406,25 N, Q = J

3 19. Kolikrát se otočí disk setrvačníku o poloměru 30 cm a tloušťce 2 cm, který během dvou minut dosáhne frekvence otáčení 2 Hz? Setrvačník se roztáčel z klidu s konstantním úhlovým zrychlením. Určete obvodovou rychlost ve dvou třetinách vzdálenosti mezi středem a okrajem disku po 1 minutě. n = 120, v = 1,257 ms Dráha tělesa o hmotnosti 2 kg, které se pohybuje po ose x, je dána vztahem x = (10t 3-5t) (m;s). Vypočtěte, jakou práci vykoná síla působící tento pohyb v době mezi okamžiky 1 s a 5 s. Jaký je průměrný výkon během tohoto časového intervalu, jaký je okamžitý výkon síly na konci 4 s? A = 554,4 kj, P pr = 138,6 kw, P 4 = 228 kw 21. Celková tíha parašutisty s padákem je G = 10 3 N. Otevřený padák je bržděn odporem vzduchu přímo úměrným v 2 a ploše S průmětu padáku do vodorovné roviny (tj. F R = ksv 2 ). Při rychlosti 3 ms -1 je brzdící síla rovna 100 N na jednotku plochy průmětu padáku do vodorovné roviny. Jak velký musí být průmět padáku do vodorovné roviny, aby rychlost dopadu parašutisty byla bezpečná (v m 1,2 ms -1 )? Sp 62,5 m Vypočítejte obvodovou a úhlovou rychlost setrvačníku, který má průměr d = 2 m a koná 90 otáček za minutu. Určete obvodovou rychlost v jedné třetině vzdálenosti od středu směrem k obvodu setrvačníku? = 3 s -1, v o = 3 ms -1, v = ms Střela hmotnosti 20 g opouští ústí pušky rychlostí 264 ms -1. Vypočtěte délku hlavně, jestliže výslednice sil působících na střelu v hlavni je dána vztahem F = x/9 N. l = 0,46 m 24. Vlak jedoucí rychlostí v = 60 km/h dokážeme použitím brzd zastavit na dráze s 1 = 400 m. Jakou nejvyšší rychlost může mít vlak, abychom ho stejným bržděním dokázali zastavit na dráze 100 m. v 30 km/hod. 25. Po kružnici o poloměru R = 2 m se pohybuje těleso hmotnosti m = 0,2 kg tak, že jeho dráha je dána rovnicí s = 2 t 3 (m,s). Určete sílu, působící na těleso v čase t = 2 s. F = 57,8 N 26. Jakou práci vykoná během prvních 5 s motor výtahu, který má i s materiálem celkovou hmotnost m = 1 t, jestliže zvedá plošinu od země s konstantním zrychlením a = 2 ms -2? Za jak dlouho zvedne výtah plošinu o 20 m z výšky 10 m? (g 10 ms -2 ) A = J, t = 2,315 s 27. Motor automobilu o hmotnosti m = 1 t má tažnou sílu 1600 N. Za kolik sekund může auto dosáhnout rychlost v = 54 km/h? Určete hybnost automobilu při této rychlosti. t = 9,375 s, p = 15 kns

4 28. Cyklista o hmotnosti 100 kg i s kolem jede po obloukovém mostě rychlostí v = 18 km/h. Poloměr křivosti ve středu mostu je r = 100 m. Jakým tlakem působí kolo na most v okamžiku průchodu středem mostu, je-li na každém kole styčná plocha tvaru elipsy o poloosách 2 cm a 3 cm? (g 10 ms -2 ) p = 258,6 kpa 29. Jak velkou práci vykoná síla F = 6t 2 i + j N, jejíž působiště se pohybuje po dráze s = 3t 2 j m mezi koncem druhé a čtvrté sekundy? Jaký impuls za tu dobu udělí tělesu o hmotnosti 2 kg, na které působí? Jaká bude výsledná hybnost tělesa, mělo-li na konci druhé sekundy rychlost v = 3i +4j ms -1. A = 36 J, I = 112i + 2j Ns, p = 118i + 10j kgms Jaká je počáteční rychlost, kterou vrháme těleso hmotnosti 0,25 kg v horizontálním směru, jestliže po 2 s pohybu má těleso rychlost rovnající se dvojnásobku počáteční rychlosti? Určete hybnost tělesa při dopadu na zemský povrch, je-li vrženo z věže vysoké 80 m (g 10 ms -2 ). v o = 11,55 ms -1, p = 10,41 kgms Na podlaze železničního vagónu jedoucího konstantní rychlostí po vodorovné přímé trati je volně uložená kulička hmotnosti 20 g vzdálená 6 m od stěny ve směru jízdy. V určitém okamžiku vlak začne brzdit s konstantním zpožděním a = -2 ms -2. Určete hybnost kuličky v okamžiku nárazu na stěnu vagónu. Valivé tření kuličky při kutálení má součinitel 0,08. (g 10 ms -2 ) p = 0,076 kgms Jakou minimální rychlost (v km/hod) musí vyvinout automobil o hmotnosti 1,26 t na obloukovém mostě s poloměrem křivosti ve středu mostu r = 100 m, aby alespoň na okamžik kola vozu ztratila kontakt s vozovkou (prověšení kol neuvažujte)? Jaká bude hybnost automobilu při této rychlosti? (g 10 ms -2 ) v > 114 km/hod., p = 39,9 kgms Nájezdová rampa v autorodeu svírá se zemským povrchem úhel Určete, jakou minimální rychlostí (v km/hod) musí najet motocyklista na rampu, aby přeskočil vzdálenost 50 m (g 10 ms -2 ). Je-li hmotnost jezdce i s motocyklem 450 kg určete hybnost tohoto tělesa v okamžiku opuštění rampy. v 100,5 km/hod., p = 12, kgms Jak daleko od mola může být bližší okraj pramice, aby na ni doletěl automobil o rozvoru 2,5 m a hmotnosti 1250 kg, který opouští molo rovnoběžné se zemským povrchem rychlostí 81 km/hod při svislé vzdálenosti mezi povrchem mola a povrchem pramice 5 m (g 10 ms -2 )? Určete hybnost automobilu v okamžiku opuštění mola. l = 20 m, p = kgms Kaskadér s automobilem o rozvoru 2,5 m opouští molo rovnoběžné se zemským povrchem rychlostí 108 km/hod a bezpečně dosedá na bližší konec pramice dlouhé 43,5 m tak, že zadní kola sedají na okraj. Okamžitě brzdí na hranici určené součinitelem smykového tření 0,8. Jakou rychlostí narazí do bariéry připevněné na vzdálenějším okraji pramice, je-li vzdálenost od čela vozu po přední osu 1 m? (g 10 ms -2 ) v = 58 km/hod.

5 36. Na podlaze železničního vagónu je volně uložená kulička hmotnosti 20 g. Valivé tření kuličky při kutálení má součinitel 0,08 (g 10 ms -2 ). Určete, zda při průjezdu vlaku zatáčkou o poloměru 1 km konstantní rychlostí 100 km/hod. dojde k pohybu kuličky (neuvažujete-li nerovnosti kolejnic a jejich spojů) a doložte výpočtem svoje tvrzení. F o < F t, ne 37. Nájezdová rampa v autorodeu svírá se zemským povrchem úhel Určete, jakou vzdálenost přeskočí automobil, který na rampu najíždí rychlostí 72 km/hod. (g 10 ms -2 ) l = 20 m 38. Kaskadér s automobilem o hmotnosti 1250 kg a rozvorem 2,5 m opouští molo rovnoběžné se zemským povrchem rychlostí 108 km/hod a bezpečně dosedá na bližší konec pramice dlouhé 43 m tak, že zadní kola sedají na okraj. Okamžitě brzdí na hranici určené součinitelem smykového tření 0,8. Při nárazu na bariéru připevněnou na vzdálenějším okraji pramice (vzdálenost od čela vozu po přední osu je 0,5 m) se hybnost vozu z 20% spotřebuje na deformaci vozidla a ze 80% na impuls síly předaný bariéře. Celý děj nárazu trvá 0,12 s. Kolik hřebíků spotřebují kaskadéři na připevnění bariéry, když průměrná síla potřebná na vytažení hřebíku je 1680 N? (g 10 ms -2 ) n = Jakou rychlostí by se vzdalovala původně stojící pramice o hmotnosti 6250 kg od mola, kdyby na ni dosedl a zabrzdil automobil o hmotnosti 1250 kg, který přiletěl z mola rychlostí 81 km/hod rovnoběžnou se zemským povrchem, nebudeme-li uvažovat tření pramice ve vodě? Uveďte v km/hod. v = 13,5 km/hod. 40. Při výpočtu deformace vozidla předpokládáme, že průměrná konstantní síla, která působí deformaci vyplývá ze skutečnosti, že 90% hybnosti vozidla se přenáší do impulzu této síly. Dále předpokládáme, že deformací je třeba pohltit pouze 60% původní pohybové energie a zbytek se spotřebuje jiným způsobem. Určete, o kolik se zkrátí přední část automobilu o hmotnosti 1500 kg deformací při nárazu do pevné překážky (zdi) z původní rychlosti 90 km/hod., trvala-li deformační část děje nárazu 0,175 s. l = 1,46 m

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Soubor příkladů z fyziky pro bakalářskou fyziku VŠB TUO prof. ing. Libor Hlaváč, Ph.D.

Soubor příkladů z fyziky pro bakalářskou fyziku VŠB TUO prof. ing. Libor Hlaváč, Ph.D. Soubor příkladů z fyziky pro bakalářskou fyziku VŠB TUO prof. ing. Libor Hlaváč, Ph.D. 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 50 m a skloněného

Více

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně

Více

Pokyny k řešení didaktického testu - Dynamika

Pokyny k řešení didaktického testu - Dynamika Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Vybrané kapitoly ze středoškolské fyziky

Vybrané kapitoly ze středoškolské fyziky UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky Vybrané kapitoly ze středoškolské fyziky Sbírka příkladů pro přípravný kurz 1. ročníku DFJP Univerzity Pardubice

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Vybrané kapitoly ze středoškolské fyziky

Vybrané kapitoly ze středoškolské fyziky UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky Vybrané kapitoly ze středoškolské fyziky Sbírka příkladů pro přípravný kurz uchazečů o studium na DFJP Univerzity Pardubice RNDr. Jan

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ROVNOMĚRNÝ POHYB 1) První třetinu dráhy projel automobil rychlostí

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony.

DYNAMIKA DYNAMIKA. Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky jsou tři Newtonovy pohybové zákony. Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 30. 8. 2012 Název zpracovaného celku: DYNAMIKA DYNAMIKA Dynamika je část mechaniky, která studuje příčiny pohybu těles. Základem dynamiky

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

III. Dynamika hmotného bodu

III. Dynamika hmotného bodu III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]

Více

VIDEOSBÍRKA ENERGIE A HYBNOST

VIDEOSBÍRKA ENERGIE A HYBNOST VIDEOSBÍRKA ENERGIE A HYBNOST 1. V poloze x=2 mělo těleso o hmotnosti 1kg rychlost 3 m/s. Graf znázorňuje velikost působící síly, která urychluje přímočarý pohyb tělesa. Těleso nemění svou výšku a při

Více

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 3.: Kinematika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny klid nebo

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 2. Kinematika Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)

BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky F Y Z I K A I

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky F Y Z I K A I UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky F Y Z I K A I Sbírka příkladů pro technické obory prezenčního studia Dopravní fakulty Jana Pernera (PF1CP & PF1PP)

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky FYZIKA I

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky FYZIKA I UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky FYZIKA I Sbírka příkladů pro studijní obor Dopravní stavitelství na Dopravní fakultě Jana Pernera (PF1CP PF1CK)

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2

Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2 Dynamika Hybnost: p=m v. Newtonův zákon síly: F= d p, pro m=konst platí F=m dv dt =ma. Impulz síly: I = t1 t 2 F t dt. Zákon akce a reakce: F 1 = F 2 Newtonovy pohybové rovnice: d 2 r t 2 = F m. Výsledná

Více

11. Dynamika Úvod do dynamiky

11. Dynamika Úvod do dynamiky 11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Věra Keselicová. březen 2013

Věra Keselicová. březen 2013 VY_52_INOVACE_VK46 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová březen 2013 6. ročník

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle Při výstřelu lodního protiletadlového děla projektil neboli střela ráže 3 mm o hmotnosti 190 gramů zrychlí z klidu na rychlost 880 km/h za 0,01 s. Předpokládáme, že: pohybující se projektil v hlavni je

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-07 Téma: Mechanika a kinematika Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TESTY Testy Část 1 1. Čím se zabývá kinematika? 2. Které těleso

Více

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205 DRUHY POHYBŮ Velikosti okamžité rychlosti se většinou v průběhu pohybu mění Okamžitá rychlost hmotného bodu (její velikost i

Více

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího

Více

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6

V 1 = 0,50 m 3. ΔV = 50 l = 0,05 m 3. ρ s = 1500 kg/m 3. n = 6 ÚLOHY - ŘEŠENÍ F1: Objem jedné dávky písku u nakládače je 0,50 m 3 a dávky se od této hodnoty mohou lišit až o 50 litrů podle toho, jak se nabírání písku zdaří. Suchý písek má hustotu 1500 kg/m 3. Na valník

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213

KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 KINEMATIKA 13. VOLNÝ PÁD Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 Volný pád První systematické pozorování a měření volného pádu těles prováděl Galileo Galilei (1564-1642) Úvodní pokus: Poslouchej, zda

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost.

1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost. 1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost. 2. Cyklista jede z osady do města. První polovinu cesty vedoucí přes kopec jel

Více

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti: 3. V pravoúhlých souřadnicích je rychlost rovnoměrného přímočarého

Více

TŘENÍ A PASIVNÍ ODPORY

TŘENÍ A PASIVNÍ ODPORY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 3. BŘEZNA 2013 Název zpracovaného celku: TŘENÍ A PASIVNÍ ODPORY A) TŘENÍ SMYKOVÉ PO NAKLONĚNÉ ROVINĚ Pohyb po nakloněné rovině bez

Více

R 2 R 4 R 1 R

R 2 R 4 R 1 R TEST:Bc-1314-FYZ Varianta:0 Tisknuto:18/06/2013 1. Jak daleko od Země je Měsíc, jestliže světlo urazí tuto vzdálenost za 1,28 sekundy? Rychlost světla je 300 000 km/s. 1) 384 000 km 2) 425 000 km 4) 256

Více

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? GRAF 1: s (m) a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s? e) Jakou dráhu ujede automobil za 5 s? f) Za jak

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu... Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa... 2 4 _ Druhy pohybů... 3 5 _ Rychlost rovnoměrného pohybu... 4 6 _ Výpočet dráhy... 5 7 _ Výpočet času... 6 8 _ PL:

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost: Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL:

23_Otáčivý účinek síly 24_Podmínky rovnováhy na páce 25_Páka rovnováha - příklady PL: Obsah 23_Otáčivý účinek síly... 2 24_Podmínky rovnováhy na páce... 2 25_Páka rovnováha - příklady... 3 PL: Otáčivý účinek síly - řešení... 4 27_Užití páky... 6 28_Zvedání těles - kladky... 6 29_Kladky

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 3: Měření součinitele smykového tření Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D11C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

Mechanika II.A První domácí úkol

Mechanika II.A První domácí úkol Mechanika II.A První domácí úkol (Zadání je ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 3.) Vážené studentky a vážení studenti,

Více

Mechanická práce, výkon a energie pro učební obory

Mechanická práce, výkon a energie pro učební obory Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

Rovnoměrný pohyb po kružnici

Rovnoměrný pohyb po kružnici DUM Základy přírodních věd DUM III/2-3-06 éma: Rovnoměrný pohyb po kružnici Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Rovnoměrný pohyb po kružnici Rovnoměrný pohyb po

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky. Základy fyziky I

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky. Základy fyziky I UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky Základy fyziky I Sbírka příkladů pro posluchače prezenčního studia DFJP Univerzity Pardubice (studijní obory DMML, TŘD, MMLS, AID) RNDr.

Více