17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?"

Transkript

1 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností daných smykovým třením z počáteční rychlosti 18 km/h? Součinitel smykového tření je 0,1. (g 10 ms -2 ) v = 21,7 km/hod. 2. Hmotný bod koná pohyb po kružnici s poloměrem 0,2 m se stálým úhlovým zrychlením = 2 s -2. Určete hodnotu tangenciálního, normálového a celkového zrychlení na konci 4 s pohybu, jestliže v čase t = 0 s byl bod v klidu. a t = 0,4 ms -2, a n = 12,8 ms -2, a c = 12,806 ms Jaká práce se vykoná při stlačení nárazníkové pružiny vagónu o x 0 = 5 cm, jestliže na její stlačení o 1 cm je třeba síla 30 kn a potřebná síla je úměrná zkrácení pružiny (tj. F= -kx). A = 3750 J 4. Z jaké výšky h o volně padalo těleso hmotnosti 3 kg (g 10 ms -2 ), jestliže v posledních dvou sekundách svého pohybu urazilo dráhu 30 m? Odpor vzduchu neuvažujte. Určete hybnost tělesa těsně před dopadem. h o = 31,25 m, p = 75 kgms Kolo průměru 0,6 m, které bylo původně v klidu, se začalo v okamžiku t = 0 s otáčet s konstantním úhlovým rychlením = 0,2 s -2. Určete, kolikrát se otočilo během prvních 20 s a jaká byla v tom okamžiku jeho obvodová rychlost a normálové zrychlení? n = 20, v = 1,2 ms -1, a n = 4,8 ms Určete práci vykonanou silou F = 3t 2 i + 2j + 4k N působící po křivce r = ti - 5/2t 2 j + tk m, v době mezi okamžiky 1 s a 5 s. Jak velký je průměrný výkon P pr v udaném časovém intervalu a jak velký je okamžitý výkon P 4 na konci čtvrté sekundy? A = 20 J, P pr = 5 W, P 4 = 12 W 7. Dva automobily pohybující se proti sobě mají při vzájemné vzdálenosti l = 747,5 m počáteční rychlosti v 01 = 10 ms -1 a v 02 = 15 ms -1. Od tohoto okamžiku se pohybují se zrychleními a 1 = 3 ms -2, a 2 = 2 ms -2. Určete, za jak dlouho se potkají, jak daleko od výchozích bodů (zanedbáte-li jejich délky) a jaká bude jejich vstřícná rychlost (v km/hod). t = 13 s, s 1 = 383,5 m, s 2 = 364 m, v = 324 km/hod. 8. Hmotný bod o hmotnosti 2 kg se pohybuje po kružnici o poloměru 2 m tak, že s = t 2 + 2t - 1. Určete absolutní hodnotu jeho zrychlení v čase 4 s a odstředivou sílu v tomto okamžiku. a = 50,04 ms -2, F o = 100 N 9. Těleso je přitahováno k počátku souřadnic silou, která je dána vztahem F = - 6 x (N,m). Jaké síly je potřeba k udržení tělesa v bodě A ve vzdálenosti 0,3 m od počátku a v bodě B ve vzdálenosti 0,6 m od počátku? Jakou práci je třeba vykonat při přesunutí tělesa z bodu A do bodu B? F 0,3 = 1,8 N, F 0,6 = 3,6 N, A = 0,81 J

2 10. Cyklista a automobil se ze vzdálenosti l = 100 m pohybují proti sobě tak, že cyklista jede rovnoměrně rychlostí v 1 = 3 ms -1 a automobil zrychluje z počáteční rychlosti v 0 = 7 ms -1 se zrychlením a = 4 ms -2. Určete, za jak dlouho se setkají, vzdálenost místa setkání od výchozích pozic a vzájemnou rychlost při míjení (v km/hod.), zanedbáte-li jejich délky. t = 5 s, l 1 = 15 m, l 2 = 85 m, v = 108 km/hod. 11. Určete normálové a tečné zrychlení na obvodu cirkulárky s poloměrem 20 cm po 3 s od zapnutí, jestliže se rozjíždí rovnoměrně z nuly na otáček/min po dobu 5 s. a t = 13,3 ms -2, a n = 8000 ms Těleso hmotnosti m = 5 kg se pohybuje svisle dolů se zrychlením a = 12 ms -2. Jak velká síla kromě tíhy na těleso ještě působí? Určete hybnost tělesa v okamžiku dopadu, byla-li jeho počáteční rychlost ve výšce 2 m nad dopadovou plochou 6 ms -1. (g 10 ms -2 ) F = 10 N, p = 45,826 kgms Kulička hmotnosti 5 g upevněná na niti se pohybuje po kružnici o poloměru r = 0,1 m tak, že úhlová souřadnice je dána vztahem = 2 + 4t 3. Určete absolutní hodnotu jejího zrychlení v čase 2 s a její okamžitou hybnost v čase t = 4 s. a = 230,45 ms -2, p = 0,096 kgms Jaká je hmotnost automobilu, jestliže se při výkonu motoru P = 14 kw pohybuje rychlostí 72 km/h se součinitelem tření 0,07. Určete, jaké teplo (přeměněná práce resp. energie) je nutno odvést z brzd během zastavení uvedeného automobilu z dané rychlosti.(g 10 ms -2 ) m = 10 3 kg, Q = J 15. Rychlost hmotného bodu o hmotnosti 0,5 kg je dána rovnicemi: v x = 6t (ms -1 ; s); v y = t (ms -1 ; s); v z = t 3-1 (ms -1 ; s). Určete polohový vektor tohoto bodu v čase t = 2 s a sílu, která na něj v tomto okamžiku působí. V čase t 0 = 0 s byl polohový vektor bodu r = i + j + k (m). r = (19;17/3;3) m, F = (12;2;6) N 16. Kotouč o poloměru R = 0,5 m je uveden do rotačního pohybu stanoveného rovnicí =.t 2,5 (rad,s). Určete úhlovou rychlost, úhlové zrychlení, tečné, normálové a celkové zrychlení na okraji kotouče a frekvenci po prvních 4 s pohybu. = 62,83 s -1, = 23,56 s -2, a t = 11,781 ms -2, a n = 1973,8 ms -2, a c = 1973,84 ms -2, f = 10 Hz 17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? h = 0,16 m 18. Těleso hmotnosti m = 1000 kg se pohybuje rychlostí v 0 = 27 km/h. Chceme ho zastavit na dráze 20 m. Jakou konstantní silou musíme pohyb brzdit a jaké teplo (přeměněná práce resp. energie) se při tom uvolní? F = 1406,25 N, Q = J

3 19. Kolikrát se otočí disk setrvačníku o poloměru 30 cm a tloušťce 2 cm, který během dvou minut dosáhne frekvence otáčení 2 Hz? Setrvačník se roztáčel z klidu s konstantním úhlovým zrychlením. Určete obvodovou rychlost ve dvou třetinách vzdálenosti mezi středem a okrajem disku po 1 minutě. n = 120, v = 1,257 ms Dráha tělesa o hmotnosti 2 kg, které se pohybuje po ose x, je dána vztahem x = (10t 3-5t) (m;s). Vypočtěte, jakou práci vykoná síla působící tento pohyb v době mezi okamžiky 1 s a 5 s. Jaký je průměrný výkon během tohoto časového intervalu, jaký je okamžitý výkon síly na konci 4 s? A = 554,4 kj, P pr = 138,6 kw, P 4 = 228 kw 21. Celková tíha parašutisty s padákem je G = 10 3 N. Otevřený padák je bržděn odporem vzduchu přímo úměrným v 2 a ploše S průmětu padáku do vodorovné roviny (tj. F R = ksv 2 ). Při rychlosti 3 ms -1 je brzdící síla rovna 100 N na jednotku plochy průmětu padáku do vodorovné roviny. Jak velký musí být průmět padáku do vodorovné roviny, aby rychlost dopadu parašutisty byla bezpečná (v m 1,2 ms -1 )? Sp 62,5 m Vypočítejte obvodovou a úhlovou rychlost setrvačníku, který má průměr d = 2 m a koná 90 otáček za minutu. Určete obvodovou rychlost v jedné třetině vzdálenosti od středu směrem k obvodu setrvačníku? = 3 s -1, v o = 3 ms -1, v = ms Střela hmotnosti 20 g opouští ústí pušky rychlostí 264 ms -1. Vypočtěte délku hlavně, jestliže výslednice sil působících na střelu v hlavni je dána vztahem F = x/9 N. l = 0,46 m 24. Vlak jedoucí rychlostí v = 60 km/h dokážeme použitím brzd zastavit na dráze s 1 = 400 m. Jakou nejvyšší rychlost může mít vlak, abychom ho stejným bržděním dokázali zastavit na dráze 100 m. v 30 km/hod. 25. Po kružnici o poloměru R = 2 m se pohybuje těleso hmotnosti m = 0,2 kg tak, že jeho dráha je dána rovnicí s = 2 t 3 (m,s). Určete sílu, působící na těleso v čase t = 2 s. F = 57,8 N 26. Jakou práci vykoná během prvních 5 s motor výtahu, který má i s materiálem celkovou hmotnost m = 1 t, jestliže zvedá plošinu od země s konstantním zrychlením a = 2 ms -2? Za jak dlouho zvedne výtah plošinu o 20 m z výšky 10 m? (g 10 ms -2 ) A = J, t = 2,315 s 27. Motor automobilu o hmotnosti m = 1 t má tažnou sílu 1600 N. Za kolik sekund může auto dosáhnout rychlost v = 54 km/h? Určete hybnost automobilu při této rychlosti. t = 9,375 s, p = 15 kns

4 28. Cyklista o hmotnosti 100 kg i s kolem jede po obloukovém mostě rychlostí v = 18 km/h. Poloměr křivosti ve středu mostu je r = 100 m. Jakým tlakem působí kolo na most v okamžiku průchodu středem mostu, je-li na každém kole styčná plocha tvaru elipsy o poloosách 2 cm a 3 cm? (g 10 ms -2 ) p = 258,6 kpa 29. Jak velkou práci vykoná síla F = 6t 2 i + j N, jejíž působiště se pohybuje po dráze s = 3t 2 j m mezi koncem druhé a čtvrté sekundy? Jaký impuls za tu dobu udělí tělesu o hmotnosti 2 kg, na které působí? Jaká bude výsledná hybnost tělesa, mělo-li na konci druhé sekundy rychlost v = 3i +4j ms -1. A = 36 J, I = 112i + 2j Ns, p = 118i + 10j kgms Jaká je počáteční rychlost, kterou vrháme těleso hmotnosti 0,25 kg v horizontálním směru, jestliže po 2 s pohybu má těleso rychlost rovnající se dvojnásobku počáteční rychlosti? Určete hybnost tělesa při dopadu na zemský povrch, je-li vrženo z věže vysoké 80 m (g 10 ms -2 ). v o = 11,55 ms -1, p = 10,41 kgms Na podlaze železničního vagónu jedoucího konstantní rychlostí po vodorovné přímé trati je volně uložená kulička hmotnosti 20 g vzdálená 6 m od stěny ve směru jízdy. V určitém okamžiku vlak začne brzdit s konstantním zpožděním a = -2 ms -2. Určete hybnost kuličky v okamžiku nárazu na stěnu vagónu. Valivé tření kuličky při kutálení má součinitel 0,08. (g 10 ms -2 ) p = 0,076 kgms Jakou minimální rychlost (v km/hod) musí vyvinout automobil o hmotnosti 1,26 t na obloukovém mostě s poloměrem křivosti ve středu mostu r = 100 m, aby alespoň na okamžik kola vozu ztratila kontakt s vozovkou (prověšení kol neuvažujte)? Jaká bude hybnost automobilu při této rychlosti? (g 10 ms -2 ) v > 114 km/hod., p = 39,9 kgms Nájezdová rampa v autorodeu svírá se zemským povrchem úhel Určete, jakou minimální rychlostí (v km/hod) musí najet motocyklista na rampu, aby přeskočil vzdálenost 50 m (g 10 ms -2 ). Je-li hmotnost jezdce i s motocyklem 450 kg určete hybnost tohoto tělesa v okamžiku opuštění rampy. v 100,5 km/hod., p = 12, kgms Jak daleko od mola může být bližší okraj pramice, aby na ni doletěl automobil o rozvoru 2,5 m a hmotnosti 1250 kg, který opouští molo rovnoběžné se zemským povrchem rychlostí 81 km/hod při svislé vzdálenosti mezi povrchem mola a povrchem pramice 5 m (g 10 ms -2 )? Určete hybnost automobilu v okamžiku opuštění mola. l = 20 m, p = kgms Kaskadér s automobilem o rozvoru 2,5 m opouští molo rovnoběžné se zemským povrchem rychlostí 108 km/hod a bezpečně dosedá na bližší konec pramice dlouhé 43,5 m tak, že zadní kola sedají na okraj. Okamžitě brzdí na hranici určené součinitelem smykového tření 0,8. Jakou rychlostí narazí do bariéry připevněné na vzdálenějším okraji pramice, je-li vzdálenost od čela vozu po přední osu 1 m? (g 10 ms -2 ) v = 58 km/hod.

5 36. Na podlaze železničního vagónu je volně uložená kulička hmotnosti 20 g. Valivé tření kuličky při kutálení má součinitel 0,08 (g 10 ms -2 ). Určete, zda při průjezdu vlaku zatáčkou o poloměru 1 km konstantní rychlostí 100 km/hod. dojde k pohybu kuličky (neuvažujete-li nerovnosti kolejnic a jejich spojů) a doložte výpočtem svoje tvrzení. F o < F t, ne 37. Nájezdová rampa v autorodeu svírá se zemským povrchem úhel Určete, jakou vzdálenost přeskočí automobil, který na rampu najíždí rychlostí 72 km/hod. (g 10 ms -2 ) l = 20 m 38. Kaskadér s automobilem o hmotnosti 1250 kg a rozvorem 2,5 m opouští molo rovnoběžné se zemským povrchem rychlostí 108 km/hod a bezpečně dosedá na bližší konec pramice dlouhé 43 m tak, že zadní kola sedají na okraj. Okamžitě brzdí na hranici určené součinitelem smykového tření 0,8. Při nárazu na bariéru připevněnou na vzdálenějším okraji pramice (vzdálenost od čela vozu po přední osu je 0,5 m) se hybnost vozu z 20% spotřebuje na deformaci vozidla a ze 80% na impuls síly předaný bariéře. Celý děj nárazu trvá 0,12 s. Kolik hřebíků spotřebují kaskadéři na připevnění bariéry, když průměrná síla potřebná na vytažení hřebíku je 1680 N? (g 10 ms -2 ) n = Jakou rychlostí by se vzdalovala původně stojící pramice o hmotnosti 6250 kg od mola, kdyby na ni dosedl a zabrzdil automobil o hmotnosti 1250 kg, který přiletěl z mola rychlostí 81 km/hod rovnoběžnou se zemským povrchem, nebudeme-li uvažovat tření pramice ve vodě? Uveďte v km/hod. v = 13,5 km/hod. 40. Při výpočtu deformace vozidla předpokládáme, že průměrná konstantní síla, která působí deformaci vyplývá ze skutečnosti, že 90% hybnosti vozidla se přenáší do impulzu této síly. Dále předpokládáme, že deformací je třeba pohltit pouze 60% původní pohybové energie a zbytek se spotřebuje jiným způsobem. Určete, o kolik se zkrátí přední část automobilu o hmotnosti 1500 kg deformací při nárazu do pevné překážky (zdi) z původní rychlosti 90 km/hod., trvala-li deformační část děje nárazu 0,175 s. l = 1,46 m

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

2.3 Automobil ujel vzdálenost 180 km za 2,5 hodiny. Jaká byla jeho průměrná rychlost?

2.3 Automobil ujel vzdálenost 180 km za 2,5 hodiny. Jaká byla jeho průměrná rychlost? 2.1 Kinematika 2.1 Vyjádřete rychlosti 10 m s 1, 20 m s 1, 30 m s 1 a 40 m s 1 v kilometrech za hodinu. 2.2 Vyjádřete rychlosti 18 km h 1, 54 km h 1 a 90 km h 1 v metrech za sekundu. 2.3 Automobil ujel

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

Stručný návod k obsluze programu Vlaková dynamika verze 3.4

Stručný návod k obsluze programu Vlaková dynamika verze 3.4 Stručný návod k obsluze programu Vlaková dynamika verze 3.4 Program pracuje pod Windows 2000, spouští se příkazem Dynamika.exe resp. příslušnou ikonou na pracovní ploše a obsluhuje se pomocí dále popsaných

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

[2 b.] Zákon o silničním provozu upravuje pravidla provozu: [2 b.] Řidič smí v provozu na pozemních komunikacích užít:

[2 b.] Zákon o silničním provozu upravuje pravidla provozu: [2 b.] Řidič smí v provozu na pozemních komunikacích užít: 1) [2 b.] Zákon o silničním provozu upravuje pravidla provozu: a) Jen na dálnicích a silnicích pro motorová vozidla. b) Na dálnicích, silnicích, místních komunikacích a účelových komunikacích. c) Na všech

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší. EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t +

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2001

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2001 Střední průmyslová škola sdělovací techniky Panská Praha Jaroslav Reichl, 00 určená studentům. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl OBSAH Sbírka příkladů pro. ročník

Více

1.4. Práce, energie, výkon

1.4. Práce, energie, výkon 1.4. Práce, energie, výkon 1. Vysvětlit pojem dráhový účinek síly, znát obecný vztah pro výpočet práce.. Vědět, že výkon je veličina vyjadřující jak rychle se práce koná. 3. Umět vyjádřit práci z výkonu

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 9. 2012 Číslo DUM: VY_32_INOVACE_17_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 9. 2012 Číslo DUM: VY_32_INOVACE_17_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 9. 2012 Číslo DUM: VY_32_INOVACE_17_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Jméno a příjmení holka nebo kluk * Třída Datum Škola

Jméno a příjmení holka nebo kluk * Třída Datum Škola M-6 Jméno a příjmení holka nebo kluk * Třída Datum Škola Následující graf ukazuje, jak se měnily (převážně jak rostly) tržby v a letecké dopravě v České republice od roku. Pozemní doprava zahrnuje především

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Mechanika teorie srozumitelně

Mechanika teorie srozumitelně Rovnoměrný pohybu po kružnici úhlová a obvodová rychlost Rovnoměrný = nemění se velikost rychlostí. U rovnoměrného pohybu pro kružnici máme totiž dvě rychlosti úhlovou a obvodovou. Směr úhlové rychlosti

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

Thinking Ace Parking Smart

Thinking Ace Parking Smart Thinking Ace Parking Smart ACE PARKING řešení pro rozmístění střední velikosti ACE PARKING vícerozměrný mechanický systém typu výtahu, který rychle a bezpečně zaparkuje co nejvyšší počet vozidel na minimální

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině

Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Jméno: Třída: Spolupracovali: Datum: Teplota: Tlak: Vlhkost: Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Teoretický úvod: Rovnoměrně zrychlený pohyb Rovnoměrně zrychlený pohyb je pohyb,

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

3. Mechanická převodná ústrojí

3. Mechanická převodná ústrojí 1M6840770002 Str. 1 Vysoká škola báňská Technická univerzita Ostrava 3.3 Výzkum metod pro simulaci zatížení dílů převodů automobilů 3.3.1 Realizace modelu jízdy osobního vozidla a uložení hnacího agregátu

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

AUTOKLUB ČESKÉ REPUBLIKY Opletalova 29, 110 00 Praha 1 tel. 602 363 032 e mail: spicka@autoklub.cz, www.autoklub.cz

AUTOKLUB ČESKÉ REPUBLIKY Opletalova 29, 110 00 Praha 1 tel. 602 363 032 e mail: spicka@autoklub.cz, www.autoklub.cz AUTOKLUB ČESKÉ REPUBLIKY Opletalova 29, 110 00 Praha 1 tel. 602 363 032 e mail: spicka@autoklub.cz, www.autoklub.cz AUTOKLUB ČR TESTOVAL ZIMNÍ PNEUMATIKY RŮZNÝCH ROZMĚRŮ 15, 16, 17 VĚTŠÍ NEBO MENŠÍ KOLA?

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4

Mezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia Combi 4x4 EZINÁPRAVOVÁ SPOJKA HALDEX 4. GENERACE ezinápravová spojka Haldex 4. generace ezinápravová spojka Haldex 4. generace zajišťuje pohon všech kol u nového modelu Superb 4x4 (od KT 36/08) a u modelu Octavia

Více

POROZUMĚNÍ POJMU SÍLA

POROZUMĚNÍ POJMU SÍLA TEST POROZUMĚNÍ POJMU SÍLA original Force Concept Inventory 1992 D. Hestenes, M. Wells, G. Swackhamer In: Phys. Teach. 30 (3), 141-158 (1992) Revised 1995: I. Halloun, R. Hake, E. Mosca Department of Physics

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

TEST: Mgr SIPZ Varianta: 0 Tisknuto:10/09/2013 3) dnes se u laiků doporučuje již pouze srdeční masáž

TEST: Mgr SIPZ Varianta: 0 Tisknuto:10/09/2013 3) dnes se u laiků doporučuje již pouze srdeční masáž TEST: Mgr SIPZ Varianta: 0 Tisknuto:10/09/2013 1. Jaký je poměr KPR u dospělého člověka pro laickou veřejnost? 1) poměr nádechů ke počtu stlačení hrudníku je 2:30 2) ani jedna z uvedených odpovědí není

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Legislativa a zimní pneumatiky

Legislativa a zimní pneumatiky Legislativa a zimní pneumatiky Zimní pneumatiky dle Evropské unie Na území Evropské unie je platná definice zimních pneumatik dle Směrnice rady 92/23/EHS přílohy II v článcích 2.2 a 3.1.5. 2.2 (Specifikace

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM

GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM ČOS 235003 1. vydání ČESKÝ OBRANNÝ STANDARD ČOS GEOMETRIE STYČNÉ PLOCHY MEZI TAHAČEM A NÁVĚSEM Praha ČOS 235003 1. vydání (VOLNÁ STRANA) 2 Český obranný standard květen 2003 Geometrie styčné plochy mezi

Více

Jawa 50 typ 550. rok výroby 1955-1958

Jawa 50 typ 550. rok výroby 1955-1958 Jawa 50 typ 550. rok výroby 1955-1958 1 Motor ležatý dvoudobý jednoválec Chlazení vzduchem Ø 38 mm 44 mm ový objem 49,8 cm 3 Kompresní poměr 6,6 : 1 Největší výkon 1,5k (1,1 kw)/5000 ot/min. Rozvod pístem

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Kola. Konstrukce kola (jen kovové části)

Kola. Konstrukce kola (jen kovové části) Kola Účel: (kolo včetně pneumatiky): Umístění: - nese hmotnost vozidla - kola jsou umístěna na koncích náprav - přenáší síly mezi vozovkou a vozidlem - doplňuje pružící systém vozidla Složení kola: kovové

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Inventarizace lesů, Metodika venkovního sběru dat Verze 6.0

Inventarizace lesů, Metodika venkovního sběru dat Verze 6.0 Inventarizace lesů, Metodika venkovního sběru dat Verze 6.0 3. MĚŘENÍ STROMU Veškerá měření a popisy se uskutečňují jen na zaměřených stromech, které se v okamžiku šetření nacházejí na inventarizační ploše

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Věc: Obousměrný provoz jízdních kol v ul. Hřbitovní - město Příbor

Věc: Obousměrný provoz jízdních kol v ul. Hřbitovní - město Příbor Městský úřad Příbor odbor investic a správy majetku náměstí Sigmunda Freuda 19 74258 Příbor Datum: 7. 10. 2014 Věc: Obousměrný provoz jízdních kol v ul. Hřbitovní - město Příbor Vážená paní /vážený pane,

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství Protokol SADA DUM Číslo sady DUM: Název sady DUM: Název a adresa školy: Registrační číslo projektu: Číslo a název šablony: Obor vzdělávání: Tematická oblast ŠVP: Předmět a ročník Autor: Použitá literatura:

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Přednáška č. 2 NÁVRHOVÉ KATEGORIE POZEMNÍCH KOMUNIKACÍ. 1. Návrhová rychlost. 2. Směrodatná rychlost. K = γ [grad/km] l

Přednáška č. 2 NÁVRHOVÉ KATEGORIE POZEMNÍCH KOMUNIKACÍ. 1. Návrhová rychlost. 2. Směrodatná rychlost. K = γ [grad/km] l Přednáška č. NÁVRHOVÉ KATEGORIE POZEMNÍCH KOMUNIKACÍ 1. Návrhová rychlost Návrhová rychlost v n slouží k odvození návrhových prvků pro projektování pozemní komunikace, určuje se podle - hospodářského a

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

1 Newtonův gravitační zákon

1 Newtonův gravitační zákon Studentovo minimum GNB Gravitační pole 1 Newtonův gravitační zákon gravis latinsky těžký každý HB (planeta, těleso, částice) je zdrojem tzv. gravitačního pole OTR (obecná teorie relativity Albert Einstein,

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

OBCHODNÍ AKADEMIE ORLOVÁ, P Ř ÍSPĚ VKOVÁ ORGANIZACE

OBCHODNÍ AKADEMIE ORLOVÁ, P Ř ÍSPĚ VKOVÁ ORGANIZACE OBCHODNÍ AKADEMIE ORLOVÁ, P Ř ÍSPĚ VKOVÁ ORGANIZACE MECHANIKA A TERMIKA U Č EBNÍ TEXT PRO DISTANČ NÍ FORMU VZDĚ LÁVÁNÍ Mgr. MICHAELA MASNÁ ORLOVÁ 006 Obsah Obsah: Úvod... 5 Používané symboly... 6 Měření...

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více