Obsah 1.Rozklad podle vlastních tvaru kmitu Výpočtové modely kozistentni matice hmotnosti Rayleigho utlum/podíl

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah 1.Rozklad podle vlastních tvaru kmitu... 2 2.Výpočtové modely... 2 3. kozistentni matice hmotnosti... 2 4.Rayleigho utlum/podíl... 3 5."

Transkript

1 Obsah Rozklad podle vlasích vau kmiu Výpočové modely 3 kozisei maice hmoosi 4Rayleigho ulum/podíl 3 5 řešeí seismicky amáhaé kosukce / seismicia 3 6 Hamoické buzeí 4 7 meody řešeí úlumu - log dekeme, polovičí ampliuda 5 Meoda logaimických dekemeu 5 8 Oogoalia (vlasosi vl Tvau kmiu) 6 9 Počáečí podmíky 6 Numeické meody po řešeí vlasích vaů, s 6 Dyamické buzei co je o zač?ěco k omu apsa s5 7 Vlasí maice K a M s 7 3 TYPY MATIC HMOTNOSTI 8 4 Duhy úlumu a jak je zjišťujem Rezoace kdy asae a co o je 9 7 omováí vlasích vaů Posuzováí savebí kcí vysavěých dyamickým účikům s3 Dyamická odezva 3 Vlasí kmiáí kce s3 Počáečí podmíky 4 Meoda přímé iegace pohybových ovic sačilo apsa Newmakova a Wilsoova spekum vlasí fekvece Newmakova meoda- implicií meoda 5 Wilsoova Ø meoda- implicií meoda 3 6 Hamiloův picip 3 8 Modálí saická výchylka 4 7 Pohybová ovice 4 8 Odezva a hamoické buzeí 5 9 Pokiický úlum 5 3 Co je echická seismicia 5 3 dyamicky součiiel 5 33 Implicií iegačí meody 5 34 explicií meody přímé iegačí meody 5 35 Meody po výpoče vlasích hodo: Houselholdeova, Podposou, Lazcosova 6 36 Coulombovo řeí 6 37 Lagageovy ovice 6 38 Typy picipů 7 39 hmoý mome sevačosi 7 4 maice hmoosi, uhosi 7 4spekum odezvy 8

2 Rozklad podle vlasích vau kmiu (s4) pohybové ovice: počáečí podmíky základím kokem meody ozkladu podle vlasích vaů kmiů je výpoče vlasích fekvecí a vaů kmiů sousavy a),,n; řešeím získáme, Φ b) M modálí maice hmoosi K modálí maice uhosi C modálí maice lumeí P() modálí zaěžovací veko Dílčí apjaos saická vlasos, vzah mezi přemísěím(převořeím) a saickou apjaosí Výpočové modely, model musí zachova ejvěěji geomeii osého sysému kosukce, model musí vysihova co ejlépe mechaické vlasosi skuečé kosukce mech vlas saické převáé vzah mezi sa účikem a sa výchylkou výpočové modely: - apjaosí vzah mezi výchylkou a sa apjaosí - dyamické - sevačé velikos a ozložeí hmo (sevačé síly) spojié, diskéí a) spojiý model (paciálí difeeciálí ovice) b) diskéí supeň volosi c) diskéí 3 supě volosi poče supňů volosi poče přemísěí odpovídající - úlumové - velikos a ozložeí lumících sil výzamým účikům sevač sil 3 kozisei maice hmoosi pokud jsou čley maice učey podle vzahu :

3 4Rayleigho ulum/podíl, poom maice hmoosi se azývá koziseí maicí hmoosi úlum: c αm + βk c maice lumeí (může bý modifikováa při každé změě uhosi kosukce) k maice ečých uhosí α, β lze saovi -expeimeálě - podle modálího lumeí dvou výzamých vau kmiů evýhoda: ezaučuje ealisické lumeí všech uvažovaých vaů podíl: Rayleighův podíl ( kvocie) spojiá sousava Nechť libovolá fce vyhovuje okajovým podmíkám a požadovaým spojiosem, poom plaí: ( ) R V l l ( V ) EI dx k m ρav dx R ( V ), když V c φ ( x) Podíl souží k odhadu úhlové fekvece Rayleighův kvocie (podíl) diskéí sousava sousav s moha supi volosi R R( ) T T k m Slouží k odhadu speka fekveci 5 řešeí seismicky amáhaé kosukce / seismicia SEISMICITA - příodí pohyb zemské kůy - echická dopava, výbuch, soje, poddolováí zeměřeseí zóy: ) pacifický pás ) alpský pás himaláje, Ia, uecko, sředoz Moře základí ěžkosi při učováí odezvy a seismické buzeí: ) áhodos buzeí ) elieáí chaake buzeí učeí odezvy a seismické buzeí je pořebé při ávhu budov, zařízeí(mechaické, elekoické)

4 Odezva jedosupňové sousavy buzeé zeměřeseím: odezva speka Řešeím ovice pomocí Duhamelova iegálu lze získa MAX a maximum absoluího zychleí Maximálí hodoa elaiví výchylky se objeví v čase m - Sd spekálí výchylka Max hodoa W() se azývá spekálí pseudoychlos S(v) Sv(T;ξ) W( M ) m Sd Řešeí: - pomocí spekálí odezvy - výpoče a buzeí akcelogam 6 Hamoické buzeí Po sousavy s SV Odezva elumeé sousavy a hamoické buzeí p ) p cos Ω ( Pohybová ovice: mu+ ku p( ) cos Ω Vyuceé kmiáí-usáleá odezva: cos Ω p ; k mω u p p k ; H ( Ω ) Odezva viskozě lumeé sousavy a hamoické buzeí m u+ c u+ ku p( ) cos Ω cos( Ω α) u p ξ gα Odezva u p cos( Ω α) a buzeí p( ) p cos Ω ejsou ve fázi,j jejich maxima easávají α ve sejém čase dochází ke zpožděí Ω Úplá odezva uu p +u c

5 Následky- buzeí o fekveci výazě meší ež fekvece sousavy << pohyb ělesa vůči základu malý ěleso se pohybuje se základem Za ezoace, při malém pohybu základu vzikají velké ampliudy elapohybu, pouze lumící síly limiují ampliudu Při buzeí >> sevačé síly pohybělesa jsou ak velké že ela Pohyb sesává z pohybu základu ěleso se pakicky epohybuje 7 meody řešeí úlumu - log dekeme, polovičí ampliuda PODKRITICKÝ TLM < ξ < d (-ξ ) d vlasí úhlová fekvece lumeé sousavy T d peioda lumeé sousavy T d π / d Řešeí: KRITICKÝ ÚTLM ξ edochází k oscilacím NADKRITICKÝ ÚTLM ξ > zápoé kořey RČOVÁNÍ TLMÍCÍCH PARAMETR: Meoda logaimických dekemeu δ log Dekeme vychází z pomě ampliud a začáku cyklu p a a koci cyklu q δp/q e ξtd

6 l (p/q ) ξ T d δ ξ T d při malém lumeí ξ<, δ π ξ o Meoda polovičí ampliudy >>> po malé hod lumeí ξ << π N ξ l() 8 Oogoalia (vlasosi vl Tvau kmiu) o SPOJITÁ SOSTAVA vzhledem k hmoosi: iegál od do L>> L ρ A Φ Φ s dx ; s >>>ovice vyjadřuje vlasos oogoaliy vlasích vaů vay Φ a Φ s mohou bý oogoálí i vzhledem k uhosi: L EI Φ II Φ v s dx o DISKRÉTNÍ SOSTAVA vzhledem k hmoosi: Φ st m Φ vzhledem k uhosi: Φ st k Φ 9 Počáečí podmíky o STARTOVACÍ: o OKRAJOVÉ: u()u výchylka/přemísěí v čase ů()ů ychlos v čase geomeické sousavy (podpoy, klouby ) vekuí: v(x e,) δv / δx xxe posé podepřeí: v(x e,) M(x e,) (δ v / δx xxe ) volý koec: S(x e,) (δ/ δx)(ei δ v / δx ) xxe M(x e,) (δ v / δx xxe ) Numeické meody po řešeí vlasích vaů, s (k i m)φ i ; i,,,n

7 Nejvíce používaé meody: o Houselhodeova QR ivezí ieace >> meoda účiá když hledáme všechy vlasí fekvece a vay kmiů a maice jsou plé ebo s velkou šířkou pásu (do ovic) o ieace podposou >> meoda účiá pří hledáí ejižších vlasosí fekvecí a odpovídajících vau kmiu, u sousav s velkým počem ovic ( - ) o Laczosova meoda >> řešeí po blocích V současé době ejefekivější meoda ahazující ieaci podposou meoda dovoluje učova fekveci a odpovidající vlasí vay v zadaých mezích ( ) Všechy meody jsou ieačí!! Dyamické buzei co je o zač?ěco k omu apsa s5 Obecé dyamické buzeí: Duhamelova iegačí meoda - vychází z fukce odezvy a impulsí buzeí - využívá poso supepozice du() (di/m )si ( τ) úplá odezva v čase je součem odezev a všechy elem impulzy u() (/m )si ( τ) τ au po elumeé sousavy s ulovými počáečími podmíkami plaí: u( ) p( τ ) h( τ ) dτ; kde h( τ ) si( τ ) m vizkozě lumeé sousavy a počáku v klidu ξ ( τ ) u( ) p( τ ) e sid ( τ ) dτ m eulové počáečí podmíky elumeá sousava u& u( ) p( τ )si( τ ) dτ u cos si m + + lumeá sousava ξ < ξ τ ) ξ u( ) p( τ ) e sid ( τ ) dτ ue cosd m + + d & d ξ ( u + ξ u ) e si ( d Vlasí maice K a M s k a m jsou maice poziivě defiiiví (ve věš případu) symeie maic uhosi a hmoosi k T k m T m poecioálí eegie defomace kieická eegie V ½ u T k u T ½ ů T m ů eí-li dosaečý poče vazeb, ma uhosi k je poziivě semidefiiiví (de(k)) ma hmoosi může bý semidefiiiví, v příp kdy máme sous ovic, u keé ěkeé pvky ma hmoosi odpovídající supňům volosi jsou ulové

8 3 TYPY MATIC HMOTNOSTI - fyzická m symeická věš poziivě defiiiví,(ěkdy poziivě semidefiiiví de(m) - diagoálí modálí M M Φ T m Φ diag (M, M, M N ) ((((((((oez diag modali maice uhosi K K Φ T k Φ diag (K, K, K N ) ))) 4 Duhy úlumu a jak je zjišťujem 6 ξ podkiický úlum < s, ξ ± i d d ξ kiický úlum ξ s ξ koře, edochází k oscilacím u ) ( C + C ) e u ( ξ ξ [ u + ( u + ξ u ] e ( ) & ) 3 adkiický úlum ξ > ξ ξ u ) e ( C cosh + C sih ) ( čováí lumících paameů -meoda logaimického dekemeu

9 pomě ampliud a počáku a koci cyklu u u p Q e ξ T d logaimický dekeme δ -meoda polovičí ampliudy obalová křivka πξ ξt ; při malém lumeí ξ ξ <, δ δ & πξ ξ & π d ξ ˆ R ξ NTd předpoklad u e uˆ u R e po malé hodoy lumeí ξ << ; πn ξ & l() ξ &, N 5 Rezoace kdy asae a co o je Ω (fekvece vlasích kmiů Ω je ova fekveci buzeí Ω ), u elumeých sousav ampliuda lieáě ose, u lumeých sousav ampliuda limiováa lumícími silami (fako zesíleí D S, ) epřízivý sav po kosukci - hozí poucha pokud je fekvečí pomě > asává adezoačí kmiáí ε a sává ezoace < asává podezoačí kmiáí u elumeých sousav po > je odezva v poifázi s buzeím, po < ve fázi s buzeím 7 omováí vlasích vaů 76 V ( x) C φ ( x) ; C - ásobiel (obsahuje ozmě); Základí ypy omováí omalizace V učiém mísě fukce ( ) φ x s φ - bezozměá fce Tam, kde fukce φ ( x) dosahuje maxima, uvažujeme apř φ ( x) ( x) ( max ) x φ

10 3 Nomováí vzhledem k hmoosi M ρ Aφ dx ; l Modálí hmoos M ( φ -omový va) ješě am ěco má bý, ale v om pdf o je špaě askeovaé Modálí uhos (ohybový pu) po -ý va K l ( φ ) EI dx K M 9 Posuzováí savebí kcí vysavěých dyamickým účikůms3 Dyamická odezva souh jevů povázejících působeí dyamických účiků Při odezvě sledujeme pohyb kce a její apjaos Pohyb je popisová polem přemísěí, ychlosí a zychleím Dy Účiky vyvolávají opěový pohyb vůči ějaké základí poloze azývaý kmiáí Cha zak kmiáí je měící se zaméko ychlosi a zychleí kmiavých pohybů(easává při desukci kce a je-li pohyb lume začou ieziou) Obecé zásady při posuzováí dy za kcí: Objeky mají po celou dobu živoosi vyhovova svému účelu! Kiéia bezpečosi: Mezí sav : Sav úososi (ejepřízivější kombiace sa A dy účiků) σ S + exσ dzm σ u Úava maeiálu sižuje meze pevosi maeiálu Mezí sav : přemísěí, převořeí (kombiace s a dy účiků, k Jsou obvyklé při běžém povozu) + ex u méě výz saveb zjedodušeé posouzeí: S dzm exx dzm X udym Kiéia povozí způsobilosi: a) Účiky kmiáí a člověka kmiáí aušuje od učié ieziy psychosomaickou ovováhu člověka b) Účiky kmiáí a sojí a echologická zařízeí (apř měřící přísoje) děleí do 4 říd cilivosi sojů c) Účiky kmiů šířicích se podložím a sousedí objeky a povozy Základí eoie kmiáí savebích kcí: Nosý sysém kosukce je vaově učiý Maeiál osých čásí je lieáě pužý 3 Vyšeřujeme malé kmiy u 3 Vlasí kmiáí kce s3 Po sousavy s SV

11 Pohybová ovice: m u+ cu+ ku p() Počáečí podmíky v čase u()u ; u+ u p( u ( ) u u+ ξ ) k kde k m a c ξ ; c c c Celková odezva sesává ze čásí: u( ) u ( ) u ( ) p + c u p () od působeí sil p() (vyuceé kmiáí) u c () vlasí kmiáí k m km c Z maemaického hlediska celkové řešeí difeeciálích ovic sesává z obecého řešeí u c () a paikuláího řešeí u p () Řešeí hledáme ve vau + S píšeme S ξ + S u C e pak po všechy hodoy Nelumeé vl Kmiáí sousavy ξ u+ u u( ) A cos( ) + A si( u u( ) u cos( ) + si( ) ; ; Π pak : u( ) ) α cos( α) cos T f Π Tlumeé vl Kmiáí sousavy ξ Π d ξ ; Td f d d Kosay A a A učíme deivacemi z poč podmíek _ + ξ u u u e ξ ξ ( ) u cosd + sid ebo u( ) e cos( d α) d Vl Kmiáí sousavy pod vlivem Coulombova řeí suché řeí mu + k u ±µ mg u < ; u > k Po sousavy s SV Pohybová ovice sup Nelumeé sousavy Po vlasí kmiáí je pavá saa ova ule: Po dosazeí do ovic:

12 Získáváme úlohu o vlasích hodoách Obecé řešeí vlasího kmiáí Vlasí kmiáí elumeé sousavy o N supích volosi v -ém vlasím vau Poom obecě plaí: Koeficiey a a b učíme ze vzahu: Vlasí kmiáí sousav s moha supi volosi viz s 4 Meoda přímé iegace pohybových ovic sačilo apsa Newmakova a Wilsoova A její umeická iegace: Nelumeý sysém: spekum vlasí fekvece ic jiého jsem easel A o evím jesli aky k omu ějak paří: Newmakova meoda- implicií meoda -meoda kosaího (půměého) zychleí, vzahy mezi přemísěím, achlosí a zychleími v čase a Ú + ú +((-δ)*ő +δő + ) u + u + *ú +((/-α)ő +αő + )* F K C M + + C M M K F C M + + M M K F M +

13 Paamey α a δ volíme ak, aby meoda byla sabilí Při δ/ a α/4 se jedá o meodu kosaího (půměého) zychleí Mimo yo vzahy máme pohybové ovice po čas + mő + +cú + +ku + P + Po dosazeí pvích ovic do 3 ovice vzike sousava algebaických ovic po ů + (m+δc+α k)ů + -ku -(c+k)ú -((-δ)c+(/-α)k)ů Jakmile vypočíáme ů + dosadíme zpě do pvích ovic a obdžíme ú + a u + Z posledí ovice je paé, že je účelé eměi maici k^m+δc+α k Případ m, c, k- kosaí kosaí 5 Wilsoova Ø meodaimplicií meoda θ Meoda lieáího zychleí v ozšířeém ievalu, +Ø V libovolém časovém okamžiku plaí ő +τ ő +τ/(ø)+(ő +Ø - ő ) Posupou iegací získáme ú +τ ú +τő +τ /(Ø)*(ő +Ø -ő ) u +τ u +τú +τ /ő +τ 3 /(Ø)*(ő +Ø - ő ) θ θ Po dosazeí τ Ø obdžíme vzahy po ú +Ø a u +Ø ve vau ú +Ø u +Ø/*(ő +Ø +ő ) u +Ø u +Øú +(Ø )/6*(ő +Ø +ő ) půběh zychleí v čase Obdobě jako v Newmakově meodě posledí ovice dosadíme do pohybových ovic +Ø a vypočíáme ő +Ø Pomocí pvích 3 ovic po dosazeí τ lze vypočía ő +, ú + a u + Sabilia a přesos meody je závislá a výběu koeficieu Ø Meoda je sabilí při Ø>,37 Obyčejě používáme Ø,4, opimálí hodoa Ø,485 6 Hamiloův picip H picip pacuje s kieickou a poeciálí eegií (skaláy), což je výhodější ež pacova se silami (vekoy) jako v picipu viuálích přemísěí Okajové podmíky jsou zaváděy v pocesu sesavováí ovic Hamilo předpokládal, že kofiguace sousavy jsou specifikováy v čase a δ ( T V ) d + δwcd T úplá kieická eegie sousavy V poeciálí eegie sousavy (eegie defomace a poeciálí e Kozevaivích vějších sil) δw c viuálí páce ekozevaivích sil zahujících lumeí a vějších sil ezahuých do V δ( ) symbol pví vaiace, viuálí změa T, čas, ve keých je kofiguace zámá Aplikace Hamiloova picipu ohýbaý pu se smykovou defomací a oačí sevačosí (Timošekova eoie) v β α x

14 Z eoie ohýbaých puů MEIα - eegie defomace od ohybu V b L I EI( α ) dx - eegie defomace od smyku Kde smykový koeficie κ lze získa z výpoču eegie defomace pomocí smyku Po obdélík κ5/6 - kieická eegie puu T - viuálí páce ekozevaivích sil δw c L V S L L κgaβ dx V S τγdadx ρ A( v& ) dx + L A L p( x, ) δv( x, ) dx ρi( & α) Příčý posuv v(x,) a pooočeí půřezu α(x,) musí vyhovova okajovým podmíkám Fukce v a α jsou ezámé dx Dosazeí ěcho vzahů do Hamiloova picipu vede k iegaci meodou pe paes a pak a paciálí difeeciálí pohybové ovice číme okajové podmíky jak geomeické, ak přiozeé Nakoec získáme: 4 V EI 4 x 4 ( V V EI V ρi V p ρa ) ρi + * ( p ρa ) * ( p ρa ) x κga x κga Beoulli-Euleova hlaví čle hlavčlzahsmykdef kombose a smykdef Teoie zahosevač 8 Modálí saická výchylka D F φ p T K K ; K - modálí maice uhosi; F - modálí síla haje sejou oli jako saické přemísěí u u jedosupňových sousav 7 Pohybová ovice

15 mő+cú+kup() jedá se o maemaický zápis fyzikálího vzahu po pohyb ělesa posoem, aby byl pohyb jedozačě uče musíme saovi počáečí podmíky přemísěí v čase o a ychlos v čase o Jsou dvě poože řešíme ovici řádu Po ovici řeího řádu bychom museli zá i zychleí, maice k,m,c jsou kosaí Ifo v o3 8 Odezva a hamoické buzeí hamoické buzeí je fce si ebo cos vyvolá kmiáí, může asa ezoace a popsa věci k ezoaci) -závažos ůlohy 9 Pokiický úlum ξc/c úlum/ kiický úlum 3 Co je echická seismicia Vziká jako ásledek působeí člověka (poddolovaé, ) 3 dyamicky součiiel 33 Implicií iegačí meody Oázka 5 a 6 34 explicií meody přímé iegačí meody

16 Explicií meoda- Difeečí meoda využívá áhady deivací dle času difeecemi 35 Meody po výpoče vlasích hodo: Houselholdeova, Podposou, Lazcosova 36 Coulombovo řeí 37 Lagageovy ovice

17 38 Typy picipů 39 hmoý mome sevačosi Im [kg*m] Po oaci hmoého ělesa u sosředěé hmoy m 4 maice hmoosi, uhosi

18 4spekum odezvy

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

nestacionární děj - průběh charakterizují časově proměnné veličiny

nestacionární děj - průběh charakterizují časově proměnné veličiny MECHNICKÉ KMITÁNÍ MECHNICKÉ KMITÁNÍ (OSCILCE) esacioáí ěj - půběh chaakeizují časově poměé veliči epeioický peioický ahamoický hamoický vuceé kmi vlasí kmi pohb hmoého bou (sousav HB ebo ělesa), při ěmž

Více

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku . ročík echické koferece ARaP, 4. a 5.. 4, Praha Modelováí vlivu paramerického buzeí a kmiáí vekuého osíku Jiří TŮMA, Per Ferfecki, Pavel ŠURÁNE, Miroslav MAHDA VŠB - Techická uiverzia Osrava ARaP 4 Osova

Více

Dynamický model prostorového lanového manipulátoru a jeho řízení Obor Inženýrská Mechanika a Mechatronika

Dynamický model prostorového lanového manipulátoru a jeho řízení Obor Inženýrská Mechanika a Mechatronika ČVU FKUL SROJNÍ Úsav mechaik DIPLOMOVÁ PRÁCE Damický model posoového laového maipuláou a jeho říeí Obo Ižeýská Mechaika a Mechaoika Paha HOSSY Cossi lidé Hugues ob. Půmslový obo Výhod-Nevýhod Výhod Věší

Více

Válcová momentová skořepina

Válcová momentová skořepina Válcová momenová skořepina Momenová skořepina je enkosěnné ěleso, jež nesplňuje předpoklady o membánové napjaosi. Válcová skořepina je vlášním případem skořepiny oačně symeické, musí edy splňova podmínky

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV

Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV Fačí maageme Zahuí flace do výpoču NPV Co je flace? defce měřeí pomocí CPI, PPI, defláou eálá a omálí velča měřeí v peěžích jedokách ebo v kupí síle běžé a sálé cey Reálý a omálí dsko zaedbáme-l daě (Fshe):

Více

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti. Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace

Více

Přijímací zkouška na navazující magisterské studium 2016

Přijímací zkouška na navazující magisterské studium 2016 Přijímací zkouška a avazující magiserské sudium 2016 Sudijí program: Sudijí obor: Maemaika Fiačí a pojisá maemaika Variaa A Řešeí příkladů pečlivě odůvoděe. Věuje pozoros ověřeí předpokladů použiých maemaických

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5 Fakula srojího ižeýrsví VUT v Brě Úsav kosruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 5 Čelí soukolí se šikmými zuby hp://www.audiforum.l/ Moderaio is bes, ad o avoid all exremes. PLUTARCHOS Čelí soukolí

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011 Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4

Více

DYNAMIKA STAVEBNÍCH KONSTRUKCÍ. Konstrukce citlivé na dynamické zatížení štíhlé konstrukce. Vítr. Chodci. Vítr. Vítr. Vítr.

DYNAMIKA STAVEBNÍCH KONSTRUKCÍ. Konstrukce citlivé na dynamické zatížení štíhlé konstrukce. Vítr. Chodci. Vítr. Vítr. Vítr. Vlasslav Salajka 9 DYNAMIKA SAVEBNÍCH KONSRUKCÍ Koskce clvé a dyamcké zaížeí šíhlé koskce Ví Ví Chodc Ví Ví Vlasslav Salajka 9 Ví Chodc Vlasslav Salajka 9 Vlasslav Salajka 9 Ví Vlasslav Salajka 9 Ví Účky

Více

MODELOVÁNÍ KMITÁNÍ DYNAMICKÉ SOUSTAVY S N-STUPNI VOLNOSTI

MODELOVÁNÍ KMITÁNÍ DYNAMICKÉ SOUSTAVY S N-STUPNI VOLNOSTI VYSOKÉ UČENÍ ECHNICKÉ V BRNĚ BRNO UNIVERSIY OF ECHNOLOGY FAKULA SROJNÍHO INŽENÝRSVÍ ÚSAV MECHANIKY ĚLES, MECHARONIKY A BIOMECHANIKY FACULY OF MECHANICAL ENGINEERING INSIUE OF SOLID MECHANICS, MECHARONICS

Více

β. Potom dopadající výkon bude

β. Potom dopadající výkon bude Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa

Více

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají Teploa laky obou čásech se yroají 1 m1 1 m rooáe budou sředí kieické eergie obou druhů molekul sejé: 1 1 m m 1 1 ěžší molekuly se pohybují pomaleji ež lehčí sejé musí edy bý i objemoé kocerace: 1 když

Více

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina)

DYNAMIKA časový účinek síly Impuls síly. 2. dráhový účinek síly mechanická práce W (skalární veličina) DYNAMIKA 2 Působením síly na čásici se obecně mění její pohybový sav. Síla působí vždy v učiém časovém inevalu a záoveň na učiém úseku ajekoie s. 1. časový účinek síly Impuls síly 2. dáhový účinek síly

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v

Více

7. Soustavy lineárních diferenciálních rovnic.

7. Soustavy lineárních diferenciálních rovnic. 7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic

Více

Evakuace osob v objektech zdravotnických zařízení

Evakuace osob v objektech zdravotnických zařízení Evakuace osob v objekech zdravoických zařízeí Ig. Libor Folwarczy, Ph.D., Ig. Jiří Pokorý, Ph.D. Hasičský záchraý sbor Moravskoslezského kraje, Výškovická 40, 700 0 Osrava-Zábřeh E-mail: libor.folwarczy@hzsmsk.cz,

Více

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε.

Světlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε. Učebí ex k předášce UFY2 Feselovy vzoce a jevy a ozhaí dvou posředí I Svělo v zoopím lákovém posředí a a ozhaí zoopí bezzáové delekkum je chaakezováo skaláí pemvou ε εε a pemeablou μ μμ (kde μ po emagecké

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ)

3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ) 3. POJIŠTĚÍ OSOB (ŽIVOTÍ POJIŠTĚÍ) 3.. EMOELOVÝ PŘÍSTUP 3... ekremeí řád vymíráí populace Úmrosí abulky a) Smr je áhodým jevem, kerý se pojišťuje pro účely ŽP sačí pracova s průměrými hodoami záko velkých

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

Číslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Číslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projeku CZ..7/.5./34.58 Číslo maeriálu VY_32_INOVACE_CTE_2.MA_7_Klopé obvody RS, JK, D, T. Název školy Auor Temaická oblas Ročík Sředí odborá škola a Sředí odboré učilišě, Dubo Ig. Miroslav Krýdl

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

DIMENZOVÁNÍ KOMPOZITNÍCH PROFILŮ PREFEN

DIMENZOVÁNÍ KOMPOZITNÍCH PROFILŮ PREFEN DIMNZOVÁNÍ KOMPOZITNÍCH PROFILŮ PRFN 1 Kulkova 10/4231, 615 00 Bro el.: 541 583 208, 297, fa.: 549 254 556 e-mail: kompozi@prefa.cz hp://www.prefa-kompozi.cz DIMNZOVÁNÍ PROFILŮ Maeriálová srukura, základí

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č.3 MECHATRONIKA Ing. Jana Kovářová Co je o mechaonika? Inedisciplinání obo Mechanika Elekonika Řízení Výpočení echnika Obsah Waův eguláo Základní pojmy Výuka mechaoniky

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Rotačně symetrické úlohy

Rotačně symetrické úlohy Roačně symeické úlohy Pužnos a pevnos Napěí a defomace zaíženého pužného ělesa Základní úloha pužnosi - Posup řešení úlohy ) podmínky ovnováhy ) vzahy mezi posuvy a převořeními 3) vyloučení posuvů ovnice

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Cvičení č. 14 Vlastní čísla a vlastní vektory. Charakteristický mnohočlen a charakteristická rovnice. Lokalizace spektra. Spektrální rozklad.

Cvičení č. 14 Vlastní čísla a vlastní vektory. Charakteristický mnohočlen a charakteristická rovnice. Lokalizace spektra. Spektrální rozklad. Cičení z lineání algeby 7 Ví Vondák Cičení č 4 Vlasní čísla a lasní ekoy Chaakeisický mnohočlen a chaakeisická onice Lokalizace speka Spekální ozklad Vlasní čísla a lasní ekoy maice Nechť je dána čecoá

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.)

1.6. Srovnání empirických a teoretických parametrů (4.-5.předn.) .6. rováí empirických a eoreických paramerů (4.-5.před.) Cíle: - pravděpodobosí zkoumáí výběrového saisického souboru: kvaifikace eoreických paramerů, srováí eoreických a empirických paramerů (Probable

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Návrh kombinovaného řízení

Návrh kombinovaného řízení Poceedis o Ieaioal Scieiic Coeece o FME Sessio 4: Aoaio Cool ad Applied Ioaics Pape 44 Návh kobiovaého říeí VÍTEČEK Aoí Po I CSc kaeda ATŘ FS VŠB-Techická iveia Osava 7 lisopad 5 78 33 Osava-Poba e-ail:

Více

OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt

OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt OBEKTOVÁ ALGEBRA Zdeěk Pezlar Úsav Iformaiky, Provozě-ekoomická fakula MZLU, Bro, ČR Absrak V objekovém modelu da defiujeme objekové schéma (řídu) jako čveřici skládající se ze jméa řídy, aribuů, domé

Více

- w(t) y R akční veličina. w(t) + u řídicí veličina v poruchová veličina Obr.5.1.: Základní blokové schéma jednorozměrového regulačního obvodu

- w(t) y R akční veličina. w(t) + u řídicí veličina v poruchová veličina Obr.5.1.: Základní blokové schéma jednorozměrového regulačního obvodu Cvičeí 5 - REGULAČNÍ OBVOD Čeké vyoké učeí echické v Paze Fakula ifoačích echologií Kaeda čílicového ávhu Doc.Ig. Kaeřia Hyiová, CSc. Kaeřia Hyiová 6.. 5.cvičeí - Regulačí obvod 5.. Regulačí obvod Doud

Více

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

6 Algoritmy ořezávání a testování polohy

6 Algoritmy ořezávání a testování polohy 6 lgorim ořezáváí a esováí poloh Sudijí íl Teo blok je věová problemaie vzájemé poloh grafikýh primiiv, zejméa poloze bodu vzhledem k mohoúhelíku včeě jedolivýh speifikýh varia jako jsou čřúhelík, jehož

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY DYNAMICKÉ VLASTNOSTI LAVALOVA ROTORU DYNAMIC BEHAVIOR OF LAVAL ROTOR

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY DYNAMICKÉ VLASTNOSTI LAVALOVA ROTORU DYNAMIC BEHAVIOR OF LAVAL ROTOR VYSOKÉ UČENÍ TEHNIKÉ V BRNĚ BRNO UNIVERSITY OF TEHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETIKÝ ÚSTAV FAULTY OF MEHANIAL ENGINEERING ENERGY INSTITUTE DYNAMIKÉ VLASTNOSTI LAVALOVA ROTORU DYNAMI BEHAVIOR

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

FOURIEROVA A LAPLACEOVA TRANSFORMACE,

FOURIEROVA A LAPLACEOVA TRANSFORMACE, FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Pe Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakula mechaoniky, infomaiky a mezioboových sudií Teno maeiál vznikl v ámci pojeku ESF CZ..07/..00/07.047, keý je spolufinancován Evopským sociálním fondem a sáním

Více

IV. MKP vynucené kmitání

IV. MKP vynucené kmitání Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích

Více

Á Č É ŘÍ ě š ž ě ě š ú ě ů ě ě ě ž Ž ž ě ž ů ě ě ň š ú ě ž ě ž ě Á Á ď ď Ý ž ů ě ě ě ž ě ž ě ů ů ě Ý ž ů ě ěž ž Ý Č ě Ý ůž ěž ě ž Ý ž ůž ě ě ž ě ž ú ě ůž ěž ůž ě ě ě ž ůž ě ž ž ě ů ě ě š ú ž ě Ý ě ž ůž

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

VÝKONOVÉ DIODY 5000 A 0,1 A I FAV 50 V U RRM V

VÝKONOVÉ DIODY 5000 A 0,1 A I FAV 50 V U RRM V VÝKONOVÉ DIODY Výkoové polovodičové diody se v aplikacích používají k zabezpečeí průchodu proudu jedím směrem, ejčasěji k usměrňováí sřídavého proudu.,1 A I AV 5 A 5 V RRM 1 V Věkerých aplikacích je požadová

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.

Více

Mechanismy s konstantním převodem

Mechanismy s konstantním převodem Mechanismy s konsanním přeodem Obsah přednášky : eičina - přeod mechanismu, aié soukoí, ozubené soukoí, předohoé a paneoé soukoí, kadkosoje a aiáoy. Doba sudia : asi hodina Cí přednášky : seznámi sudeny

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Úvod do aalýzy časových řad Obsah Úvod... Teoreické základy pro aalýzu časových řad.... Základí pojmy..... Druhy časových řad..... Grafická aalýza.....3 Popisé charakerisiky... 4. Základí úpravy časových

Více

Simulační schemata, stavový popis. Petr Hušek

Simulační schemata, stavový popis. Petr Hušek Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,

Více

í Ť Ř š í í ů á í ú ť á ý á á áš í ý í ý ů í í á í á ů á ů áž í č é í é é ó č Ž š á Š á á š Ž č é í ť ý í Ží á ší á Ž í š ý á í á í ú í ý é á í í ů č ý á í ůá á á í Ž á ý é í č ý ů í ší ý á ů ý ů í č á

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

Kmitání tělesa s danou budicí frekvencí

Kmitání tělesa s danou budicí frekvencí EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů

Více

Přehled modelů viskoelastických těles a materiálů

Přehled modelů viskoelastických těles a materiálů Přehled modelů vskoelsckých ěles merálů Klscké reologcké modely Klscké reologcké modely vycházejí z předsvy, že chováí ěles lze hrd chováím sysému složeého z pruž písů, edy z ookeových ewoových ěles. ookeovo

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

R o č n í k 2004. V ě s t n í k MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY. Částka 11 Vydáno: LISTOPAD 2004 Kč OBSAH

R o č n í k 2004. V ě s t n í k MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY. Částka 11 Vydáno: LISTOPAD 2004 Kč OBSAH R o č n í k 2004 V ě s n í k MINISTERSTVA ZDRAVOTNICTVÍ ČESKÉ REPUBLIKY Čáska 11 Vydáno: LISTOPAD 2004 Kč OBSAH METODICKÁ OPATŘENÍ 11. Zajišění jednoného posupu při ověřování podmínek vzniku onemocnění

Více

TESTOVÁNÍ a DIAGNOSTIKA VÝROBNÍCH STROJŮ I

TESTOVÁNÍ a DIAGNOSTIKA VÝROBNÍCH STROJŮ I ESOVÁNÍ a DIAGNOSIKA VÝROBNÍCH SROJŮ I Leraura: Skra: Zdeěk Vorlíček: Solehlvos a dagoska výrobích srojů ČVU Praha 99 Vorlíček, Rudolf: Dagoska VS ČVU Praha 98 Ka.. Úvod: Proč se zabýváme esováím a dagoskou

Více

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x

Více